1
|
Qin C, Yang H, Lu Y, Li B, Ma S, Ma Y, Zhou F. Tribology in Nature: Inspirations for Advanced Lubrication Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420626. [PMID: 39972641 DOI: 10.1002/adma.202420626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Friction-induced energy consumption is a significant global concern, driving researchers to explore advanced lubrication materials. In nature, lubrication is vital for the life cycle of animals, plants, and humans, playing key roles in movement, predation, and decomposition. After billions of years of evolution, natural lubrication exhibits remarkable professionalism, high efficiency, durability, and intelligence, offering valuable insights for designing advanced lubrication materials. This review focuses on the lubrication mechanisms of natural organisms and significant advancements in biomimetic soft matter lubrication materials. It begins by summarizing common biological lubrication behaviors and their underlying mechanisms, followed by current design strategies for biomimetic soft matter lubrication materials. The review then outlines the development and performance of these materials based on different mechanisms and strategies. Finally, it discusses potential research directions and prospects for soft matter lubrication materials. This review will be a valuable resource for advancing research in biomimetic lubrication materials.
Collapse
Affiliation(s)
- Chenxi Qin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiong Lu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
2
|
Cai X, Ding Y, Qiu H, Xiong D. Molecular Dynamics Simulation of the Hydration Lubrication Mechanism of CS-MPC/CS-ChS NPs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3177-3186. [PMID: 39887212 DOI: 10.1021/acs.langmuir.4c03876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Osteoarthritis (OA) remains a significant clinical challenge, with current treatments like sodium hyaluronate injections offering limited efficacy due to suboptimal lubrication and rapid degradation. In this study, we explored an advanced solution to these issues by investigating the colubrication mechanism of a composite biolubricant consisting of 2-methacryloyloxyethyl phosphorylcholine-modified chitosan (CS-MPC) and chondroitin sulfate-modified chitosan nanoparticles (CS-ChS NPs) using molecular dynamics (MD) simulations. Results show that the composite lubricant outperforms individual CS-MPC or CS-ChS NPs, exhibiting a lower coefficient of friction (COF) and a superior load-bearing capacity. The CS-MPC/CS-ChS NP system maintains a consistent compression ratio of -0.5% under different external pressures and exhibited a low coefficient of friction (COF) of 0.041 across varying shear velocities. The sulfate groups on CS-ChS NPs interact with CS-MPC chains, stabilizing the system through electrostatic interactions and enabling the effective dispersion of normal stress, thereby protecting the substrate surface from wear. This enhanced performance is attributed to the formation of a multilayered hydration shell around the lubricant molecules. The hydration shells provide superior lubrication, contributing to the system's robustness under varying loads. These findings offer critical insights into designing high-performance biolubricants for joint protection, presenting a promising avenue for future OA treatments.
Collapse
Affiliation(s)
- Ximing Cai
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210009, Jiangsu, P. R. China
| | - Yan Ding
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210009, Jiangsu, P. R. China
| | - Haofeng Qiu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210009, Jiangsu, P. R. China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, P. R. China
| | - Dangsheng Xiong
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
3
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
4
|
Gong P, Wang M, Wang J, Li J, Wang B, Bai X, Liu J, Liu Z, Wang D, Liu W. A biomimetic lubricating nanosystem for synergistic therapy of osteoarthritis. J Colloid Interface Sci 2024; 672:589-599. [PMID: 38852359 DOI: 10.1016/j.jcis.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Failure of articular cartilage lubrication and inflammation are the main causes of osteoarthritis (OA), and integrated treatment realizing joint lubrication and anti-inflammation is becoming the most effective treat model. Inspired by low friction of human synovial fluid and adhesive chemical effect of mussels, our work reports a biomimetic lubricating system that realizes long-time lubrication, photothermal responsiveness and anti-inflammation property. To build the system, a dopamine-mediated strategy is developed to controllably graft hyaluronic acid on the surface of metal organic framework. The design constructs a biomimetic core-shell structure that has good dispersity and stability in water with a high drug loading ratio of 99%. Temperature of the solution rapidly increases to 55 °C under near-infrared light, and the hard-soft lubricating system well adheres to wear surfaces, and greatly reduces frictional coefficient by 75% for more than 7200 times without failure. Cell experiments show that the nanosystem enters cells by endocytosis, and releases medication in a sustained manner. The anti-inflammatory outcomes validate that the nanosystem prevents the progression of OA by down-regulating catabolic proteases and pain-related genes and up-regulating genes that are anabolic in cartilage. The study provides a bioinspired strategy to employ metal organic framework with controlled surface and structure for friction reduction and anti-inflammation, and develops a new concept of OA synergistic therapy model for practical applications.
Collapse
Affiliation(s)
- Peiwei Gong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Meng Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jiangli Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Junyao Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Bairen Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiao Bai
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhe Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dandan Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
5
|
Liu J, Huang X, Lv T, Cao L, Lu L. Intra-articular injection of chitosan combined with low-dose glucocorticoid for the treatment of knee osteoarthritis in early and middle stages. Medicine (Baltimore) 2024; 103:e39924. [PMID: 39465712 PMCID: PMC11460911 DOI: 10.1097/md.0000000000039924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 10/29/2024] Open
Abstract
This study explores the clinical efficacy of intra-articular injection of chitosan combined with low-dose glucocorticoid for the treatment of knee osteoarthritis in early and middle stages. The visual analog scale (VAS) score, Lysholm score, Hospital for Special Surgery (HSS) score, and changes in the levels of inflammatory cytokines IL-1, IL-6, and TNF-α in the joint fluid before and after treatment in the 3 groups were compared, and the clinical efficacy was evaluated. All cases were followed up, with a follow-up time of 7 to 12 months, and no lost cases. The horizontal comparison showed that the VAS score, Lysholm score, HSS score, and levels of inflammatory cytokines IL-1, IL-6, and TNF-α in the joint fluid after treatment in each group were better than before treatment, and the difference was statistically significant (P < .05). The longitudinal comparison showed that there was no significant difference in VAS score, Lysholm score, HSS score and levels of inflammatory cytokines IL-1, IL-6, and TNF-α in synovial fluid among the 3 groups before treatment (P > .05); However, after treatment, there were significant differences among the 3 groups (P < .05), group C was better than group A and group B, group B was better than group A, and the differences were statistically significant (P < .05). The difference in clinical efficacy among the 3 groups was statistically significant (P < .05). The clinical efficacy of chitosan combined with low-dose glucocorticoid intra-articular injection in the treatment of knee osteoarthritis in early and middle stages is significant, with the characteristics of small trauma, rapid onset, and lasting efficacy, and it avoids the adverse reactions of topical or oral nonsteroidal anti-inflammatory drugs. As a first-line treatment option, it is recommended for promotion and use in clinical practice.
Collapse
Affiliation(s)
- Jiuxiang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing City, China
| | - Xiaowen Huang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing City, China
| | - Tianrun Lv
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing City, China
| | - Liang Cao
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing City, China
| | - Lu Lu
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing City, China
| |
Collapse
|
6
|
Deng J, Wei R, Qiu H, Wu X, Yang Y, Huang Z, Miao J, Liu A, Chai H, Cen X, Wang R. Biomimetic zwitterionic copolymerized chitosan as an articular lubricant. Carbohydr Polym 2024; 330:121821. [PMID: 38368102 DOI: 10.1016/j.carbpol.2024.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
Restoration of the lubrication functions of articular cartilage is an effective treatment to alleviate the progression of osteoarthritis (OA). Herein, we fabricated chitosan-block-poly(sulfobetaine methacrylate) (CS-b-pSBMA) copolymer via a free radical polymerization of sulfobetaine methacrylate onto activated chitosan segment, structurally mimicking the lubricating biomolecules on cartilage. The successful copolymerization of CS-b-pSBMA was verified by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and 1H nuclear magnetic resonance. Friction test confirmed that the CS-b-pSBMA copolymer could achieve an excellent lubrication effect on artificial joint materials such as Ti6Al4V alloy with a coefficient of friction as low as 0.008, and on OA-simulated cartilage, better than the conventional lubricant hyaluronic acid, and the adsorption effect of lubricant on cartilage surface was proved by a fluorescence labeling experiment. In addition, CS-b-pSBMA lubricant possessed an outstanding stability, which can withstand enzymatic degradation and even a long-term storage up to 4 weeks. In vitro studies showed that CS-b-pSBMA lubricant had a favorable antibacterial activity and good biocompatibility. In vivo studies confirmed that the CS-b-pSBMA lubricant was stable and could alleviate the degradation process of cartilage in OA mice. This biomimetic lubricant is a promising articular joint lubricant for the treatment of OA and cartilage restoration.
Collapse
Affiliation(s)
- Junjie Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Rufang Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Haofeng Qiu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China; School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital; Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Yanyu Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jiru Miao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ashuang Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Haiyang Chai
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, PR China; Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, PR China.
| | - Rong Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| |
Collapse
|