1
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
2
|
Jiang Y, Yan C, Li M, Chen S, Chen Z, Yang L, Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int J Biol Macromol 2024; 278:135072. [PMID: 39191341 DOI: 10.1016/j.ijbiomac.2024.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Cancer, caused by uncontrolled proliferation of abnormal cells, has long been a global public health issue. For decades, natural products have been proven to be an essential source for novel anticancer drug discovery. But their instability, low solubility and bioavailability, poor targeting impede therapeutic efficacy. With the development of nanotechnology, nanomedicine delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. However, constructing suitable nanocarrier is still a major challenge. Polysaccharides are extensively employed as carrier materials in nanomedicine delivery systems, owing to their unique physicochemical properties, biocompatibility and low immunogenicity. Polysaccharide-based nanomedicine delivery systems show high drug delivery efficiency, controlled drug release, and precise tumor targeting. This paper reviews influencing factors in the construction of polysaccharide-based nanocarriers and the application of polysaccharide-based nanocarriers for the delivery of natural products in treating various cancers. It focuses on their in vitro and in vivo anticancer efficacy and mechanisms. Furthermore, the review contrasts the capabilities and limitations of polysaccharide-based nanocarriers with traditional delivery methods, underlining their potential to enable targeted, reduced toxicity and excellent cancer treatment modalities. Finally, we discuss the current research limitations and future prospects in this emerging field.
Collapse
Affiliation(s)
- Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Wan X, Zhang Y, Wan Y, Xiong M, Xie A, Liang Y, Wan H. A Multifunctional Biomimetic Nanoplatform for Dual Tumor Targeting-Assisted Multimodal Therapy of Colon Cancer. ACS NANO 2024; 18:26666-26689. [PMID: 39300799 DOI: 10.1021/acsnano.4c05773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The biomimetic nanoparticles (NPs) possessing abilities of tumor targeting and multimodal therapy show great potential for efficient combat of colon cancer. Herein, we developed a multifunctional biomimetic nanoplatform (Fe3O4@PDA@CaCO3-ICG@CM) based on CaCO3-modified magnetic polydopamine (PDA) loaded with indocyanine green (ICG), which was encapsulated by a mouse lymphoma cell (EL4) membrane (CM) expressing functional proteins (i.e., lymphocyte function-associated antigen 1, LFA-1; transforming growth factor-β receptor, TGF-βR; programmed cell death protein 1, PD-1; and factor related apoptosis ligand, FasL). Under magnetic attraction and LFA-1/PD-1-mediated endocytosis, Fe3O4@PDA@CaCO3-ICG@CM efficiently targeted CT26 colon tumor cells. The released calcium ion (Ca2+) from the NPs triggered by acidic tumor microenvironment, the enhanced photothermal effect contributed by the combination of PDA and ICG, and FasL's direct killing effect together induced tumor cells apoptosis. Moreover, the apoptosis of CT26 cells induced immunogenic cell death (ICD) to promote the maturation of dendritic cells (DCs) to activate CD4+/CD8+ T cells, thereby fighting against tumor cells, which could further be boosted by programmed death-ligand 1 (PD-L1) blockage and transforming growth factor-β (TGF-β) scavenging by Fe3O4@PDA@CaCO3-ICG@CM. As a result, in vivo satisfactory therapeutic effect was observed for CT26 tumor bearing-mice treated with Fe3O4@PDA@CaCO3-ICG@CM under laser irradiation and magnetic attraction, which could eradicate primary tumors and restrain distant tumors through dual tumor targeting-assisted multimodal therapy and eliciting adaptive antitumor immune response, generating the immune memory for inhibiting tumor metastasis and recurrence. Taken together, the multifunctional biomimetic nanoplatform exhibits superior antitumor effects, providing an insightful strategy for the field of nanomaterial-based treatment of cancer.
Collapse
Affiliation(s)
- Xin Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yiqun Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mengmeng Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Anqi Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
An N, Tang S, Wang Y, Luan J, Shi Y, Gao M, Guo C. FeP-Based Nanotheranostic Platform for Enhanced Phototherapy/Ferroptosis/Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309940. [PMID: 38534030 DOI: 10.1002/smll.202309940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Ferroptosis is an iron-dependent and lipid peroxides (LPO)-overloaded programmed damage cell death, induced by glutathione (GSH) depletion and glutathione peroxide 4 (GPX4) inactivation. However, the inadequacy of endogenous iron and reactive oxygen species (ROS) restricts the efficacy of ferroptosis. To overcome this obstacle, a near-infrared photo-responsive FeP@PEG NPs is fabricated. Exogenous iron pool can enhance the effect of ferroptosis via the depletion of GSH and further regulate GPX4 inactivation. Generation of ·OH derived from the Fenton reaction is proved by increased accumulation of lipid peroxides. The heat generated by photothermal therapy and ROS generated by photodynamic therapy can enhance cell apoptosis under near-infrared (NIR-808 nm) irradiation, as evidenced by mitochondrial dysfunction and further accumulation of lipid peroxide content. FeP@PEG NPs can significantly inhibit the growth of several types of cancer cells in vitro and in vivo, which is validated by theoretical and experimental results. Meanwhile, FeP@PEG NPs show excellent T2-weighted magnetic resonance imaging (MRI) property. In summary, the FeP-based nanotheranostic platform for enhanced phototherapy/ferroptosis/chemodynamic therapy provides a reliable opportunity for clinical cancer theranostics.
Collapse
Affiliation(s)
- Na An
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuanglong Tang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuwei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Luan
- The HIT Center for Life Science, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Shi
- Magnetic Resonance Department of the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Minghui Gao
- The HIT Center for Life Science, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Zhang H, Jiang M, Xing W, Zhao R, Li G, Zheng Z. Peptide-IR820 Conjugate: A Promising Strategy for Efficient Vascular Disruption and Hypoxia Induction in Melanoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051862 DOI: 10.1021/acsami.4c07503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Photothermal therapy (PTT) has emerged as a noninvasive and precise cancer treatment modality known for its high selectivity and lack of drug resistance. However, the clinical translation of many PTT agents is hindered by the limited biodegradability of inorganic nanoparticles and the instability of organic dyes. In this study, a peptide conjugate, IR820-Cys-Trp-Glu-Trp-Thr-Trp-Tyr (IR820-C), was designed to self-assemble into nanoparticles for both potent PTT and vascular disruption in melanoma treatment. When co-assembled with the poorly soluble vascular disrupting agent (VDA) combretastatin A4 (CA4), the resulting nanoparticles (IR820-C@CA4 NPs) accumulate efficiently in tumors, activate systemic antitumor immune responses, and effectively ablate melanoma with a single treatment and near-infrared irradiation, as confirmed by our in vivo experiments. Furthermore, by exploiting the resulting tumor hypoxia, we subsequently administered the hypoxia-activated prodrug tirapazamine (TPZ) to capitalize on the created microenvironment, thereby boosting therapeutic efficacy and antimetastatic potential. This study showcases the potential of short-peptide-based nanocarriers for the design and development of stable and efficient photothermal platforms. The multifaceted therapeutic strategy, which merges photothermal ablation with vascular disruption and hypoxia-activated chemotherapy, holds great promise for advancing the efficacy and scope of cancer treatment modalities.
Collapse
Affiliation(s)
- Hongxia Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Mengmeng Jiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Weiyu Xing
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Rui Zhao
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Zheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
6
|
Zhang P, Zheng L, Zhang X, Liu M, Li M, Zhang M, Wu JL, Choi MMF, Bian W. Mesoporous Graphene Oxide Nanocomposite Effective for Combined Chemo/Photo Therapy Against Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:7493-7508. [PMID: 39081895 PMCID: PMC11287468 DOI: 10.2147/ijn.s460767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Lung cancer is the most common cancer worldwide, among which non-small cell lung cancer (NSCLC) accounts for about 80% of all lung cancers. Chemotherapy, a mainstay modality for NSCLC, has demonstrated restricted effectiveness due to the emergence of chemo-resistance and systemic side effects. Studies have indicated that combining chemotherapy with phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), can enhance efficacy of therapy. In this work, an aminated mesoporous graphene oxide (rPGO)-protoporphyrin IX (PPIX)-hyaluronic acid (HA)@Osimertinib (AZD) nanodrug delivery system (rPPH@AZD) was successfully developed for combined chemotherapy/phototherapy for NSCLC. Methods A pH/hyaluronidase-responsive nanodrug delivery system (rPPH@AZD) was prepared using mesoporous graphene oxide. Its morphology, elemental composition, surface functional groups, optical properties, in vitro drug release ability, photothermal properties, reactive oxygen species production, cellular uptake and cell viability were evaluated. In addition, the in vivo therapeutic effect, biocompatibility, and imaging capabilities of rPPH@AZD were verified by a tumor-bearing mouse model. Results Aminated mesoporous graphene oxide (rPGO) plays a role as a drug delivery vehicle owing to its large specific surface area and ease of surface functionalization. rPGO exhibits excellent photothermal conversion properties under laser irradiation, while PPIX acts as a photosensitizer to generate singlet oxygen. AZD acts as a small molecule targeted drug in chemotherapy. In essence, rPPH@AZD shows excellent photothermal and fluorescence imaging effects in tumor-bearing mice. More importantly, in vitro and in vivo results indicate that rPPH@AZD can achieve hyaluronidase/pH dual response as well as combined chemotherapy/PTT/PDT anti-NSCLC treatment. Conclusion The newly prepared rPPH@AZD can serve as a promising pH/hyaluronidase-responsive nanodrug delivery system that integrates photothermal/fluorescence imaging and chemo/photo combined therapy for efficient therapy against NSCLC.
Collapse
Affiliation(s)
- Peigang Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Department of Cardiothoracic Surgery, People’s Hospital of Lvliang, Lvliang, Shanxi, 033099, People’s Republic of China
| | - Lingling Zheng
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People’s Republic of China
| | - Xiaorui Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Miao Liu
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Mingli Li
- Department of Cardiothoracic Surgery, People’s Hospital of Lvliang, Lvliang, Shanxi, 033099, People’s Republic of China
| | - Mengting Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People’s Republic of China
| | - Martin M F Choi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| | - Wei Bian
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, 030000, People’s Republic of China
- Department of Cardiothoracic Surgery, People’s Hospital of Lvliang, Lvliang, Shanxi, 033099, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, 030000, People’s Republic of China
| |
Collapse
|
7
|
Wang S, Zhang R, Li X, Chen Y, Zhu L, Yang B, Wang J, Du YH, Liu J, Ye TT, Wang S. "Rigid-Flexible" Dual-Ferrocene Chimeric Nanonetwork for Simultaneous Tumor-Targeted Tracing and Photothermal/Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36142-36156. [PMID: 38968001 DOI: 10.1021/acsami.4c06437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.
Collapse
Affiliation(s)
- Sixue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Rui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Xianqiang Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yan Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Lili Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Boyang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jiale Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yu Hao Du
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jun Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Tian Tian Ye
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Shujun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| |
Collapse
|
8
|
Süngü Akdogan Ç, Akbay Çetin E, Onur MA, Önel S, Tuncel A. In Vitro Synergistic Photodynamic, Photothermal, Chemodynamic, and Starvation Therapy Performance of Chlorin e6 Immobilized, Polydopamine-Coated Hollow, Porous Ceria-Based, Hypoxia-Tolerant Nanozymes Carrying a Cascade System. ACS APPLIED BIO MATERIALS 2024; 7:2781-2793. [PMID: 38380497 PMCID: PMC11110068 DOI: 10.1021/acsabm.3c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
A synergistic therapy agent (STA) with photothermal, photodynamic, chemodynamic, and starvation therapy (PTT, PDT, CDT, and ST) functions was developed. Hollow, mesoporous, and nearly uniform CeO2 nanoparticles (H-CeO2 NPs) were synthesized using a staged shape templating sol-gel protocol. Chlorin e6 (Ce6) was adsorbed onto H-CeO2 NPs, and a thin polydopamine (PDA) layer was formed on Ce6-adsorbed H-CeO2 NPs. Glucose oxidase (GOx) was bound onto PDA-coated Ce6-adsorbed H-CeO2 NPs to obtain the targeted STA (H-CeO2@Ce6@PDA@GOx NPs). A reversible photothermal conversion behavior with the temperature elevations up to 34 °C was observed by NIR laser irradiation at 808 nm. A cascade enzyme system based on immobilized GOx and intrinsic catalase-like activity of H-CeO2 NPs was rendered on STA for enhancing the effectiveness of PDT by elevation of ROS generation and alleviation of hypoxia in a tumor microenvironment. Glucose-mediated generation of highly toxic hydroxyl radicals (·OH) was evaluated for CDT. The effectiveness of PDT on glioblastoma T98G cells was markedly enhanced by O2 generation started by the decomposition of glucose. A similar increase in cell death was also observed when ST and CDT functions were enhanced by photothermal action. The viability of T98G cells decreased to 10.6% by in vitro synergistic action including ST, CDT, PDT, and PTT without using any antitumor agent.
Collapse
Affiliation(s)
- Çağıl
Zeynep Süngü Akdogan
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Graduate
School of Science and Engineering, Hacettepe
University, Ankara 06800, Turkey
| | - Esin Akbay Çetin
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Ali Onur
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Selis Önel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| | - Ali Tuncel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
9
|
Huang F, Xue C, Zhao X, Liu Y, Shuai Q. Thermal accelerated urease-driven hyaluronan-targeted melanin nano-missile for bio-radar detection and chemodrug-free phototherapy. Int J Biol Macromol 2024; 267:131286. [PMID: 38583851 DOI: 10.1016/j.ijbiomac.2024.131286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Polymer-based nanomotors are attracting increasing interest in the biomedical field due to their microscopic size and kinematic properties which support overcoming biological barriers, completing cellular uptake and targeted blasting in limited spaces. However, their applications are limited by the complex viscous physiological environment and lack of sufficient biocompatibility. This manuscript firstly reports a natural melanin nano-missile of MNP@HA-EDA@Urease@AIE PS (MHUA) based on photothermally accelerated urease-driven to achieve chemodrug-free phototherapy. Compared to conventional nano-missiles that only provide driving force, this photothermally accelerated urease-driven nanomotor is independent of chemodrug to maximise biocompatibility, and achieve ideal therapeutic effect through targeted PTT/PDT. In particular, the thermal effect can not only boost the catalytic activity of urease but also achieve ideally anti-tumor effect. In addition, guided by and AIE PS, the nanomotor can generate 1O2 to achieve PDT and be traced in real time serving as an effective fluorescent bio-radar for intracellular self-reporting during cancer treatment. Finally, the targeting ability of MUHA is provided by hyaluronan. Taken together, this MHUA platform provides a simple and effective strategy for target/fluorescence radar detective-guided PTT/PDT combination, and achieves good therapeutic results without chemodrug under thermal accelerated strategy, providing a new idea for the construction of chemodrug-free nanomotor-therapy system.
Collapse
Affiliation(s)
- Fubin Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chenglong Xue
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoyu Zhao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
10
|
Chen YH, Liu IJ, Lin TC, Tsai MC, Hu SH, Hsu TC, Wu YT, Tzang BS, Chiang WH. PEGylated chitosan-coated nanophotosensitizers for effective cancer treatment by photothermal-photodynamic therapy combined with glutathione depletion. Int J Biol Macromol 2024; 266:131359. [PMID: 38580018 DOI: 10.1016/j.ijbiomac.2024.131359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Chen Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Ting Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
11
|
Ma Y, Zhao X, Tian P, Xu K, Luo J, Li H, Yuan M, Liu X, Zhong Y, Wei P, Song J, Wen L, Lu C. Laser-Ignited Lipid Peroxidation Nanoamplifiers for Strengthening Tumor Photodynamic Therapy Through Aggravating Ferroptotic Propagation and Sustainable High Immunogenicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306402. [PMID: 37992239 DOI: 10.1002/smll.202306402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Photodynamic therapy (PDT) is extensively investigated for tumor therapy in the clinic. However, the efficacy of PDT is severely limited by the tissue penetrability of light, short effective half-life and radius of reactive oxygen species (ROS), and the weak immunostimulatory effect. In this study, a glutathione (GSH)-activatable nano-photosensitizer is developed to load with arachidonic acid (AA) and camouflage by erythrocyte membrane, which serves as a laser-ignited lipid peroxidation nanoamplifier (MAR). The photosensitive effect of MAR is recovered accompanied by the degradation in the tumor microenvironment and triggers the peroxidation of AA upon laser excitation. Interestingly, it aggravates the propagation of ferroptosis among cancer cells by driving the continuous lipid peroxidation chain reactions with the participation of the degradation products, ferrous ions (Fe2+), and AA. Consequently, even the deep-seated tumor cells without illumination also undergo ferroptosis owing to the propagation of ferroptotic signal. Moreover, the residual tumor cells undergoing ferroptosis still maintain high immunogenicity after PDT, thus continuously triggering sufficient tumor-associated antigens (TAAs) release to remarkably promote the anti-tumor immune response. Therefore, this study will provide a novel "all-in-one" nano-photosensitizer that not only amplifies the damaging effect and expands the effective range of PDT but also improves the immunostimulatory effect after PDT.
Collapse
Affiliation(s)
- Yunong Ma
- Medical College, Guangxi University, Nanning, 530004, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Xi Zhao
- Medical College, Guangxi University, Nanning, 530004, China
| | - Peilin Tian
- Medical College, Guangxi University, Nanning, 530004, China
| | - Kexin Xu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical College, Guangxi University, Nanning, 530004, China
| | - Honghui Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Mingqing Yuan
- Medical College, Guangxi University, Nanning, 530004, China
| | - Xu Liu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Yanping Zhong
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Pingzhen Wei
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| |
Collapse
|
12
|
Acter S, Moreau M, Ivkov R, Viswanathan A, Ngwa W. Polydopamine Nanomaterials for Overcoming Current Challenges in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1656. [PMID: 37242072 PMCID: PMC10223368 DOI: 10.3390/nano13101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
In efforts to overcome current challenges in cancer treatment, multifunctional nanoparticles are attracting growing interest, including nanoparticles made with polydopamine (PDA). PDA is a nature-inspired polymer with a dark brown color. It has excellent biocompatibility and is biodegradable, offering a range of extraordinary inherent advantages. These include excellent drug loading capability, photothermal conversion efficiency, and adhesive properties. Though the mechanism of dopamine polymerization remains unclear, PDA has demonstrated exceptional flexibility in engineering desired morphology and size, easy and straightforward functionalization, etc. Moreover, it offers enormous potential for designing multifunctional nanomaterials for innovative approaches in cancer treatment. The aim of this work is to review studies on PDA, where the potential to develop multifunctional nanomaterials with applications in photothermal therapy has been demonstrated. Future prospects of PDA for developing applications in enhancing radiotherapy and/or immunotherapy, including for image-guided drug delivery to boost therapeutic efficacy and minimal side effects, are presented.
Collapse
Affiliation(s)
- Shahinur Acter
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
13
|
Zhang Y, Zhang K, Yang H, Hao Y, Zhang J, Zhao W, Zhang S, Ma S, Mao C. Highly Penetrable Drug-Loaded Nanomotors for Photothermal-Enhanced Ferroptosis Treatment of Tumor. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36883991 DOI: 10.1021/acsami.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A kind of drug-loaded nanomotors with deep penetration was developed to improve the therapeutic effect of ferroptosis on tumor. The nanomotors were constructed by co-loading hemin and ferrocene (Fc) on the surface of bowl-shaped polydopamine (PDA) nanoparticles. The near-infrared response of PDA makes the nanomotor have high tumor penetration capability. In vitro experiments show that the nanomotors can exhibit good biocompatibility, high light to heat conversion efficiency, and deep tumor permeability. It is worth noting that under the catalysis of H2O2 overexpressed in the tumor microenvironment, the Fenton-like reagents hemin and Fc loaded on the nanomotors can increase the concentration of toxic •OH. Furthermore, hemin can consume glutathione in tumor cells and trigger the up-regulation of heme oxygenase-1, which can efficiently decompose hemin to Fe2+, thus producing the Fenton reaction and causing a ferroptosis effect. Notably, thanks to the photothermal effect of PDA, it can enhance the generation of reactive oxygen species and thus intervene in the Fenton reaction process, thereby enhancing the ferroptosis effect photothermally. In vivo antitumor results show that the drug-loaded nanomotors with high penetrability showed an effective antitumor therapeutic effect.
Collapse
Affiliation(s)
- Yawen Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Ke Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310006, China
| | - Hongna Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yijie Hao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jinzha Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, School of Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Shenglin Ma
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310006, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
14
|
An Y, Chen W, Li Y, Zhao H, Ye D, Liu H, Wu K, Ju H. Crosslinked albumin-manganese nanoaggregates with sensitized T1 relaxivity and indocyanine green loading for multimodal imaging and cancer phototherapy. J Mater Chem B 2023; 11:2157-2165. [PMID: 36779282 DOI: 10.1039/d2tb02529a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Albumin-manganese-based nanocomposites (AMNs) characterized by simple preparation and good biocompatibility have been widely used for in vivo T1-weighted magnetic resonance imaging (MRI) and cancer theranostics. Herein, an aggregation and crosslinking assembly strategy was proposed to achieve the sensitization to T1 relaxivity of the albumin-manganese nanocomposite. At a relatively low Mn content (0.35%), the aggregation and crosslinking of bovine serum albumin-MnO2 (BM) resulted in a dramatic increase of T1 relaxivity from 5.49 to 67.2 mM-1 s-1. Upon the loading of indocyanine green (ICG) into the crosslinked BM nanoaggregates (C-BM), the T1 relaxivity of the C-BM/ICG nanocomposite (C-BM/I) was further increased to 97.3 mM-1 s-1, which was much higher than those reported previously even at high Mn contents. Moreover, the presence of C-BM greatly enhanced the photoacoustic (PA) and photothermal effects of ICG at 830 and 808 nm, respectively, and the second near infrared fluorescence (NIR-II FL) of ICG also showed better stability. Therefore, the synthesized C-BM/ICG nanocomposite exhibited remarkable performance in in vivo multimodal imaging of tumors, such as T1-weighted MRI, NIR-II FL imaging and PA imaging, and cancer phototherapy with little side effects. This work provided a highly efficient and promising multifunctional nanoprobe for breaking through the limits of cancer theranostics, and opened a new avenue for the development of high-relaxivity AMNs and multimodal imaging methodology.
Collapse
Affiliation(s)
- Ying An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weiwei Chen
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Kun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|