1
|
Wang X, Shao Y, Yao C, Huang L, Song W, Yang X, Zhang Z. 2D/2D Co 3O 4/BiOCl nanocomposite with enhanced antibacterial activity under full spectrum: Synergism of mesoporous structure, photothermal effect and photocatalytic reactive oxygen species. J Colloid Interface Sci 2025; 678:30-41. [PMID: 39180846 DOI: 10.1016/j.jcis.2024.08.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The overuse of antibiotics has caused the emergence of drug-resistant bacteria and even superbugs, which makes it imperative to develop promising antibiotic-free alternatives. Herein, a multimodal antibacterial nanoplatform of two dimensional/two dimensional (2D/2D) mesoporous Co3O4/BiOCl nanocomposite is constructed, which possesses the effect of "kill three birds with one stone": (1) the use of mesoporous Co3O4 can enlarge the surface area of the nanocomposite and promote the adsorption of bacteria; (2) Co3O4 displays remarkable full-spectrum absorption and photo-induced self-heating effect, which can raise the temperature of Co3O4/BiOCl and help to kill bacteria; (3) the p-type Co3O4 and n-type BiOCl form a p-n heterojunction, which promotes the separation of photoelectrons and holes, thus producing more reactive oxygen species (ROS) for killing bacteria. The synergism of mesoporous structure, photothermal effect and photocatalytic ROS makes the developed Co3O4/BiOCl a promising antibacterial material, which shows outstanding antibacterial activity with an inhibition rate of nearly 100 % against Escherichia coli (E. coli) within 8 min. This work provides inspiration for designing multimodal synergistic nanoplatform for antibacterial applications.
Collapse
Affiliation(s)
- Xuesheng Wang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Yi Shao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, PR China
| | - Chunxia Yao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, PR China.
| | - Liujuan Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, PR China
| | - Wei Song
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, PR China
| | - Xianli Yang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, PR China
| | - Zhijie Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China.
| |
Collapse
|
2
|
Zhang H, Bao L, Pan Y, Du J, Wang W. Interface reconstruction of MXene-Ti 3C 2 doped CeO 2 nanorods for remarked photocatalytic ammonia synthesis. J Colloid Interface Sci 2024; 675:130-138. [PMID: 38968633 DOI: 10.1016/j.jcis.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Prospective photocatalytic ammonia synthesis process has received more attentions but quite challenging with the low visible light utilization and weak N2 molecule absorption ability around the photocatalysts. Herein, interface reconstruction of MXene-Ti3C2/CeO2 composites with high-concentration active sites through the carbon-doped process are presented firstly, and obvious transition zones with the three-phase reaction interface are formed in the as-prepared catalysts. The optimal co-doped sample demonstrates an excellent photo response in the visible light region, the strongest chemisorption activity and the most active sites. Moreover, much more in-situ extra oxygen defects are also produced under light irradiation. It is expected that the double decorated catalyst shows a remarked ammonia production rate of above 0.76 mmol gcal-1·h-1 under visible-light illumination and a higher apparent quantum efficiency of 1.08 % at 420 nm, which is one of the most completive properties for the photocatalytic N2 fixation at present.
Collapse
Affiliation(s)
- Huaiwei Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China.
| | - Liang Bao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Chen J, Fei M, Ni M, Wang Y, Liu Z, Xie Y, Zhao P, Zhang Z, Fei J. Multilayer Ti 3C 2-CNTs-Au Loaded with Cyclodextrin-MOF for Enhanced Selective Detection of Rutin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310217. [PMID: 38361221 DOI: 10.1002/smll.202310217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Indexed: 02/17/2024]
Abstract
In this work, multi-layer Ti3C2 - carbon nanotubes - gold nanoparticles (Ti3C2-CNTs-Au) and cyclodextrin metal-organic framework - carbon nanotubes (CD-MOF-CNTs) have been prepared by in situ growth method and used to construct the ultra-sensitive rutin electrochemical sensor for the first time. Among them, the large number of metal active sites of Ti3C2, the high electron transfer efficiency of CNTS, and the good catalytic properties of AuNPs significantly enhance the electrochemical properties of the composite carbon nanomaterials. Interestingly, CD-MOF has a unique host-guest recognition and a large number of cavities, molecular gaps, and surface reactive groups, which gives the composite outstanding accumulation properties and selectivity for rutin. Under the optimized conditions, the constructed novel sensor has satisfactory detection performance for rutin in the range of 2 × 10-9 to 8 × 10-7 M with a limit of detection of 6.5 × 10-10 M. In addition, the sensor exhibits amazing anti-interference performance against rutin in some flavonoid compounds and can be used to test natural plant samples (buckwheat, Cymbopogon distans, and flos sophorae immaturus). This work has promising applications in the field of environmental and food analysis, and exploring new directions for the application of Mxene-based composites.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Maoheng Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Meijun Ni
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhifang Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
4
|
Chen H, Wang Y, Chen X, Wang Z, Wu Y, Dai Q, Zhao W, Wei T, Yang Q, Huang B, Li Y. Research Progress on Ti 3C 2T x-Based Composite Materials in Antibacterial Field. Molecules 2024; 29:2902. [PMID: 38930967 PMCID: PMC11206357 DOI: 10.3390/molecules29122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The integration of two-dimensional Ti3C2Tx nanosheets and other materials offers broader application options in the antibacterial field. Ti3C2Tx-based composites demonstrate synergistic physical, chemical, and photodynamic antibacterial activity. In this review, we aim to explore the potential of Ti3C2Tx-based composites in the fabrication of an antibiotic-free antibacterial agent with a focus on their systematic classification, manufacturing technology, and application potential. We investigate various components of Ti3C2Tx-based composites, such as metals, metal oxides, metal sulfides, organic frameworks, photosensitizers, etc. We also summarize the fabrication techniques used for preparing Ti3C2Tx-based composites, including solution mixing, chemical synthesis, layer-by-layer self-assembly, electrostatic assembly, and three-dimensional (3D) printing. The most recent developments in antibacterial application are also thoroughly discussed, with special attention to the medical, water treatment, food preservation, flexible textile, and industrial sectors. Ultimately, the future directions and opportunities are delineated, underscoring the focus of further research, such as elucidating microscopic mechanisms, achieving a balance between biocompatibility and antibacterial efficiency, and investigating effective, eco-friendly synthesis techniques combined with intelligent technology. A survey of the literature provides a comprehensive overview of the state-of-the-art developments in Ti3C2Tx-based composites and their potential applications in various fields. This comprehensive review covers the variety, preparation methods, and applications of Ti3C2Tx-based composites, drawing upon a total of 171 English-language references. Notably, 155 of these references are from the past five years, indicating significant recent progress and interest in this research area.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yilun Wang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Xuguang Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Zihan Wang
- Department of Computer Science and Technology, China Three Gorges University, Yichang 443002, China
| | - Yue Wu
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qiongqiao Dai
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Wenjing Zhao
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Tian Wei
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qingyuan Yang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
5
|
Zhang W, Wen H, Gou Y, Zhao Y, Zhang Z, Qiao Y. Preparation of MXene/BN Composites with Adjustable Microwave Absorption Performance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6752. [PMID: 37895733 PMCID: PMC10608534 DOI: 10.3390/ma16206752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
The challenge of developing a high-efficiency microwave absorbent remains, because of the compatibility between microwave absorption and high-temperature-resistant performance in practical application. Herein, a facile method is used to obtain serial MXene/BN-zxy composites, where zx:y indicates the weight ratio of MXene and boron nitride (BN) in the composites, with adjustable microwave absorption performance (MAP) which can be regulated by the ratio of MXene and the BN nanosheet. In particular, the as-prepared absorbents with supercapacitance-like structure significantly enhanced the MAP and could be served more than 900 °C. The results of MAP reveal that the minimum reflection loss (RL) can reach -20.94 dB with a MXene/BN-101 composite coating thickness of 4.0 mm; the effective attenuation bandwidth (RL< -10 dB, i.e., 90% microwave energy is attenuated) is up to 9.71 GHz (7.94-17.65 GHz). From a detailed analysis, it is observed that attenuation is the critical limiting factor for MAPs rather than impedance mismatch, which can be assigned to the poor MAP of BN nanosheets. In any case, as-prepared absorbents have potential applications in the field of heating components.
Collapse
Affiliation(s)
- Weidong Zhang
- College of Chemical Engineering, Qinghai University, Xining 810016, China (Y.Z.)
| | - Haoliang Wen
- College of Chemical Engineering, Qinghai University, Xining 810016, China (Y.Z.)
| | - Yaping Gou
- College of Chemical Engineering, Qinghai University, Xining 810016, China (Y.Z.)
| | - Yun Zhao
- College of Chemical Engineering, Qinghai University, Xining 810016, China (Y.Z.)
| | - Zhiqiang Zhang
- College of Chemical Engineering, Qinghai University, Xining 810016, China (Y.Z.)
| | - Yali Qiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
6
|
Mishra RP, Mrinalini M, Kumar N, Bastia S, Chaudhary YS. Efficient Photocatalytic CO 2 Reduction with High Selectivity for Ethanol by Synergistically Coupled MXene-Ceria and the Charge Carrier Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14189-14203. [PMID: 37776277 DOI: 10.1021/acs.langmuir.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The primary factors that govern the selectivity and efficacy of CO2 photoreduction are the degree of activation of CO2 on the active surface sites of photocatalysts and charge separation/transfer kinetics. In this context, the rational synthesis of heterostructured MXene-coupled CeO2-based photocatalysts with different loading concentrations of Ti3C2MXene via a one-step hydrothermal approach has been undertaken. These photocatalysts exhibit a shift in X-ray diffraction peaks to higher 2θ values and changes in stretching vibrations of 5 wt % Ti3C2MXene/CeO2(5-TC/Ce) that indicate interaction between Ti3C2MXene and CeO2. Moreover, XPS analysis confirms the presence of the Ce3+/Ce4+ states. A sharp band at 2335 cm-1 observed during the CO2 photoreduction process corresponds to bidentate b-CO32-, which facilitates the adsorption of CO2 at the surface of the catalyst as revealed by the TPD analysis. Furthermore, the Schryvers test and NMR analysis were undertaken to confirm the formaldehyde intermediate formation during CO2 photoreduction to C2H5OH. The decrease in emission intensity, reduced lifetimes (2.68 ns), and lower interfacial resistance, as revealed by PL, TR-PL, and EIS analysis, imply an efficient charge separation and charge transfer in the case of the Ti3C2MXene/CeO2 heterojunction. The decrease in the intensity of peaks in the EPR spectrum in the case of 5-TC/Ce further confirms efficient charge transfer kinetics across the interface. The optimized 5-TC/Ce shows CO2 reduction with a drastically enhanced yield of ethanol on the order of 6127 μmol g-1 at 5 h with 98% selectivity and 7.54% apparent quantum efficiency, which is 6-fold higher than that of ethanol produced by bare CeO2. Herein, CeO2 that acts as a redox couple (Ce3+/Ce4+) when coupled with MXene having a metallic nature that reduces the electron transfer resistance is in unison, enabling an enhanced mobilization of electrons. Thereby, the synergistic coupling of Ti3C2MXene with CeO2 leads to an efficient photoreduction of CO2 under visible light illumination.
Collapse
Affiliation(s)
- Rajashree P Mishra
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Madoori Mrinalini
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
| | - Niharika Kumar
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sweta Bastia
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Yatendra S Chaudhary
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
7
|
Wu H, Quan Y, Liu M, Tian X, Ren C, Wang Z. Synthesis of AgBr/Ti 3C 2@TiO 2 ternary composite for photocatalytic dehydrogenation of 1,4-dihydropyridine and photocatalytic degradation of tetracycline hydrochloride. RSC Adv 2023; 13:21754-21768. [PMID: 37476041 PMCID: PMC10354501 DOI: 10.1039/d3ra02164e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
In this work, AgBr/Ti3C2@TiO2 ternary composite photocatalyst was prepared by a solvothermal and precipitation method with the aims of introducing Ti3C2 as a cocatalyst and TiO2 as a compositing semiconductor. The crystal structure, morphology, elemental state, functional groups and photoelectrochemical properties were studied by XRD, SEM, TEM, XPS, FI-IR and EIS. The photocatalytic performances of the composites were investigated by the photodehydrogenation of diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (1,4-DHP) and the photodegradation of tetracycline hydrochloride (TCH) under visible light irradiation (λ > 400 nm). The AgBr/Ti3C2@TiO2 composite photocatalyst showed enhanced photocatalytic performance in both photocatalytic reactions. The photocatalytic activity of the composite photocatalyst is dependent on the proportional content of Ti3C2@TiO2. With optimized Ti3C2@TiO2 proportion, the photocatalytic ability of the AgBr/Ti3C2@TiO2 composite was 24.5 times as high as that of Ti3C2@TiO2 for photodehydrogenation of 1,4-DHP and 1.9 times as high as that of pure AgBr for photodegradation of TCH. The enhanced photocatalytic performance of the AgBr/Ti3C2@TiO2 composite should be due to the formation of a p-n heterojunction structure between AgBr and Ti3C2@TiO2 and the excellent electronic properties of Ti3C2, which enhanced the visible light absorption capacity, lowered the internal resistance, speeded up the charge transfer and reduced the recombination efficiency of photo-generated carriers. Mechanism studies showed that superoxide free radical (˙O2-) was the main active species. In addition, the composite photocatalyst also displayed good stability, indicating its reutilization in practical application.
Collapse
Affiliation(s)
- Hanliu Wu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Yan Quan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Meiling Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Xuemei Tian
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Chunguang Ren
- College of Life Sciences, Yantai University Yantai 264005 China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| |
Collapse
|
8
|
Liu D, Shu H, Zhou J, Bai X, Cao P. Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review. Biomimetics (Basel) 2023; 8:biomimetics8020200. [PMID: 37218786 DOI: 10.3390/biomimetics8020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Any equipment submerged in the ocean will have its surface attacked by fouling organisms, which can cause serious damage. Traditional antifouling coatings contain heavy metal ions, which also have a detrimental effect on the marine ecological environment and cannot fulfill the needs of practical applications. As the awareness of environmental protection is increasing, new environmentally friendly and broad-spectrum antifouling coatings have become the current research hotspot in the field of marine antifouling. This review briefly outlines the formation process of biofouling and the fouling mechanism. Then, it describes the research progress of new environmentally friendly antifouling coatings in recent years, including fouling release antifouling coatings, photocatalytic antifouling coatings and natural antifouling agents derived from biomimetic strategies, micro/nanostructured antifouling materials and hydrogel antifouling coatings. Highlights include the mechanism of action of antimicrobial peptides and the means of preparation of modified surfaces. This category of antifouling materials has broad-spectrum antimicrobial activity and environmental friendliness and is expected to be a new type of marine antifouling coating with desirable antifouling functions. Finally, the future research directions of antifouling coatings are prospected, which are intended to provide a reference for the development of efficient, broad-spectrum and green marine antifouling coatings.
Collapse
Affiliation(s)
- De Liu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haobo Shu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiangwei Zhou
- School of International Education, Wuhan University of Technology, Wuhan 430070, China
| | - Xiuqin Bai
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
| | - Pan Cao
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|