1
|
Zhang Y, Jia Y, Li Y, Xu H, Wang J, Wei M, Zhang Y, Yuan H, Gao M. Doping-induced band-gap shrinkage to modify the electronic structure of MoS 2 for organic wastewater management. Dalton Trans 2024; 54:318-327. [PMID: 39540628 DOI: 10.1039/d4dt00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MoS2, with its high specific surface area and tunable electronic structure, has received much interest in the fields of sensing and environmental remediation. Nevertheless, pure MoS2 has the disadvantages of easy aggregation and high electron-hole pair complexity, which affect its SERS and photocatalytic performance. In this work, a band-gap shrinkage strategy was used to improve MoS2 performance for SERS and photocatalytic applications. It exhibited high SERS activity (enhancement factor (EF) = 3.61 × 108), great stability (4 mth), broad applicability (CV, CR and R6G), and excellent reusability (with a recovery of 95% after 5 cycles). In addition, the interfacial dipole-dipole interaction and charge transfer (CT) process caused by doping Ru together enhanced the SERS sensitivity, reducing the limit of detection of CV to 1011 M. The degradation rate of 10-5 M CV was up to 99% after 60 min of Ru-MoS2 photocatalytic degradation under visible light. This study investigated the effect of doping-induced bandgap shrinkage on charge transfer (CT), providing new insights into improving the sensitivity of semiconductor SERS substrates for efficient low-concentration SERS detection and low-cost sustainable wastewater remediation.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Yuehan Jia
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Yanjie Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Hongquan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Jingsu Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Maobin Wei
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Yong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Hui Yuan
- State Key Laboratory of Catalytic Materials and Reaction Engineering, SINOPEC Research Institute of Petroleum Processing Co. Ltd., Beijing, 100083, China.
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| |
Collapse
|
2
|
Yu H, Chen Y, Wen Z, Wang R, Jia S, Zhu W, Song Y, Sun H, Liu B. Selective SERS Sensing of R6G Molecules Using MoS 2 Nanoflowers under Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21804-21813. [PMID: 39364594 DOI: 10.1021/acs.langmuir.4c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Pressure-induced surface-enhanced Raman spectroscopy (PI-SERS) has garnered significant attention as a subfield of SERS detection due to its capacity to regulate the band gap between molecules and substrates through pressure modulation. Currently, SERS detection primarily focuses on single molecules at atmospheric pressure with limited investigations conducted under high pressure conditions. Herein, we employed rose-shaped MoS2 nanoflowers as the SERS substrate and realized selective PI-SERS enhancement of R6G molecules in the binary (MV+R6G) and ternary (MV+R6G+RhB) systems. The MoS2 demonstrated an exceptionally low SERS detection limit of 5 × 10-6 M in binary and ternary systems with equimolar amounts of molecules. High-pressure experimental results indicate that MoS2 displays selective enhancement for R6G molecules, as evidenced by the comparison of the PI-SERS peak intensity ratio between MoS2 and the probe molecules. The proposed enhancement mechanism in binary and ternary SERS systems under high pressure involves pressure-induced changes in both the band structures of the MoS2 substrate and molecules, thereby influencing their charge transfer dynamics. Consequently, this approach holds great promise for practical applications in complex SERS systems operating under extreme conditions.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yongxue Chen
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Zhenyu Wen
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Rensheng Wang
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Sisi Jia
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Wenjie Zhu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yanping Song
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Huanhuan Sun
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
3
|
Majumdar D. 2D Material-Based Surface-Enhanced Raman Spectroscopy Platforms (Either Alone or in Nanocomposite Form)-From a Chemical Enhancement Perspective. ACS OMEGA 2024; 9:40242-40258. [PMID: 39346812 PMCID: PMC11425813 DOI: 10.1021/acsomega.4c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique with molecular fingerprinting capability and high sensitivity, even down to the single-molecule level. As it is 50 years since the observation of the phenomenon, it has now become an important task to discuss the challenges in this field and determine the areas of development. Electromagnetic enhancement has a mature theoretical explanation, while a chemical mechanism which involves more complex interactions has been difficult to elucidate until recently. This article focuses on the 2D material-based platforms where chemical enhancement (CE) is a significant contributor to SERS. In the context of a diverse range (transition metal dichalcogenides, MXenes, etc.) and categories (insulating, semiconducting, semimetallic, and metallic) of 2D materials, the review aims to realize the influence of various factors on SERS response such as substrates (layer thickness, structural phase, etc.), analytes (energy levels, molecular orientation, etc.), excitation wavelengths, molecular resonances, charge-transfer transitions, dipole interactions, etc. Some examples of special treatments or approaches have been outlined for overcoming well-known limitations of SERS and include how CE benefits from the defect-induced physicochemical changes to 2D materials mostly via the charge-transport ability or surface interaction efficiency. The review may help readers understand different phenomena involved in CE and broaden the substrate-designing approaches based on a diverse set of 2D materials.
Collapse
Affiliation(s)
- Dipanwita Majumdar
- Satyendra Nath Bose National Centre
for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
4
|
Song X, Li Y, Yin M, Yi W, Liu W, Li J, Xi G. Two-Orders-of-Magnitude Enhancement of SERS Activity via a Simple Surface Engineering of Quasi-Metal Single-Crystal Frameworks. NANO LETTERS 2024; 24:11683-11689. [PMID: 39225553 DOI: 10.1021/acs.nanolett.4c03309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Beyond noble metals and semiconductors, quasi-metals have recently been shown to be noteworthy substrates for surface enhanced Raman spectroscopy, and their excellent quasi-metal surface-enhanced Raman spectroscopy (SERS) sensing has demonstrated a wider range of application scenarios. However, the underlying mechanism behind the enhanced Raman activity is still unclear. Here, we demonstrate that surface hydroxyls play a crucial role in the enhancement of the SERS activity of quasi-metal nanostructures. As a demonstration material, quasi-metallic MoO2 single-crystal frameworks rich in surface hydroxyls have been shown to have 100 times higher SERS activity than MoO2 single-crystal frameworks without hydroxyl functionalization, with a Raman enhancement factor of up to 7.6 × 107. Experimental and first-principles density-functional theory calculation results show that the enhanced Raman activity can be attributed to an effective interfacial charge transfer within the MoO2/OH/molecule system.
Collapse
Affiliation(s)
- Xiaoyu Song
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Yahui Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Meng Yin
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Wencai Yi
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wei Liu
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Junfang Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Guangcheng Xi
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|
5
|
Jia BZ, Chen FY, Yang XX, Hongsibsong S, Wang XX, Xu ZL, Luo L. De novo synthesis of a novel hapten and development of a monoclonal antibody-based immunoassay for the detection of dichlorvos and trichlorfon. Food Chem 2024; 452:139580. [PMID: 38744129 DOI: 10.1016/j.foodchem.2024.139580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The absence of high-affinity antibodies has hindered the development of satisfactory immunoassays for dichlorvos (DDVP) and trichlorfon (TCP), two highly toxic organophosphorus pesticides. Herein, the de novo synthesis of a novel anti-DDVP hapten was introduced. Subsequently, a specific anti-DDVP monoclonal antibody (Mab) was produced with satisfying affinity to DDVP (IC50: 12.4 ng mL-1). This Mab was highly specific to DDVP, and TCP could readily convert into DDVP under mild alkaline conditions. Leveraging this insight, an indirect competitive ELISA was successfully developed for simultaneous detection of DDVP and TCP. The limit of detection in rice, cabbage and apple for DDVP /TCP was found to be 12.1/14.6 μg kg-1, 7.3/8.8 μg kg-1 and 6.9/8.3 μg kg-1, respectively. This study not only provides an effective strategy for producing a high-quality anti-DDVP Mab but also affords a reliable and cost-effective tool suitable for high-throughput detection of DDVP and TCP in food samples.
Collapse
Affiliation(s)
- Bao-Zhu Jia
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Feng-Yan Chen
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Yang
- Shenzhen Bioeasy Biotechnology Co., Ltd., Shenzhen 518101, China
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Xing-Xing Wang
- Shenzhen Total-Testing Technology Co., Ltd., Shenzhen 518038, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Chen J, Li M, Yang Y, Liu H, Zhao B, Ozaki Y, Song W. In-situ surface enhanced Raman spectroscopy revealing the role of metal-organic frameworks on photocatalytic reaction selectivity on highly sensitive and durable Cu-CuBr substrate. J Colloid Interface Sci 2024; 660:669-680. [PMID: 38271803 DOI: 10.1016/j.jcis.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Photocatalytic reactions using copper-based nanomaterials have emerged as a new paradigm in green technology. Selective photocatalysis is very important for improving energy utilization efficiency, and in order to directional improve catalytic selectivity, it is necessary to understand the mechanism of interfacial reactions at the molecular level. Therefore, a unique bifunctional Cu-CuBr substrate is first fabricated via an electrochemical method, which overcomes the instability of traditional copper-based materials and endows high surface-enhanced Raman spectroscopy (SERS) sensitivity and photocatalytic performance and can be stored stably for more than a year. Further modification of the surface with Metal-Organic Frameworks (MOFs) containing carboxyl functional groups can significantly tune the surface properties of the substrate. This increases the adsorption of cationic dyes to improve the SERS effect, and 10-10 M methylene blue can easily be detected with this substrate. Surprisingly, in-situ SERS monitoring of the interfacial photocatalytic dehalogenation reaction of aromatic halides through its intrinsic SERS effect reveal two competing selective reaction pathways, self-coupling and hydrogenation. Typically, the SERS spectra reveal that the latter's selectivity was greatly enhanced after MOFs modification, and the yield rate of the hydrogenated product increased from 27.6 % to 46.9 % (selectivity increased from 32.7 % to 51.5 %). This proves that the surface properties of catalysts, especially the affinity for reaction intermediates, can effectively regulate catalytic selectivity.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yumei Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
7
|
Xu H, Zhang Y, Wang Z, Jia Y, Yang X, Gao M. Design superhydrophobic no-noble metal substrates for highly sensitive and signal stable SERS sensing. J Colloid Interface Sci 2024; 660:42-51. [PMID: 38241870 DOI: 10.1016/j.jcis.2024.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an analytical technique with a broad range of potential applications in fields such as biomedicine, electrochemistry, and hazardous chemicals. However, it is challenging to develop SERS substrates that are both good sensitive and signal stable. Here we designed a superhydrophobic Nd doped MoS2 uniformly assembled on the activated carbon fiber cloth (CFC) to avoid the coffee ring effect and enrich the analyte, improving the enhancement factor (EF) to 3.9 × 109 and pesticide endosulfan (<10-10) analyte detection. We demonstrate our strategy by density-functional theory (DFT) calculations confirming that both adsorption energy and density of states are enhanced after doping Nd leading to SERS enhancement. Beside DFT calculations, our experiments also provide an effective means to demonstrate that the high SERS sensitivity is based on multiple charge transfer processes combined with the activated carbon cloth. Our results address the limitations of low sensitivity and limit of detection (LOD) of semiconductor SERS substrates for trace analysis and are a step towards practical applications.
Collapse
Affiliation(s)
- Hongquan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Yuchen Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Zhong Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Yuehan Jia
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Xiaotian Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China.
| |
Collapse
|
8
|
Wang C, Han J, Xue D, Gu C, Zeng S, Jiang J, Jiang T, Li X, Wu K. SERS-active immunoassay kit for SARS-CoV‑2 mediated by the cooperative chemical and electromagnetic effects of MXene modified with gold nanowires. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123445. [PMID: 37757541 DOI: 10.1016/j.saa.2023.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Surface-enhanced Raman scattering (SERS) technique with high sensitivity, reliable specificity, and rapid recognition ability exhibits attractive promise for the effective fast-monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, a novel SERS-active immunoassay kit for SARS-CoV-2 nucleocapsid (N) protein was prepared by in-situ growing gold (Au) nanowire forests (NFs) onto Ti3C2Tx, which was then modified onto polymethyl methacrylate (PMMA) matrix and encapsulated into kit. It was noted that the Au nanowires with fibrous structures which vertically anchored on Ti3C2Tx served as perfect channels to promote photo-induced charge transfer. The synergistic action of electromagnetic and chemical effects resulted in an enhancement factor (EF) of 1.27 × 107. Furthermore, the unreliable fluctuation of the enhanced signal was eliminated by using the intrinsic Raman signal of the flexible PMMA platform, achieving an improved correlation coefficient (R2) value from 0.950 to 0.990. Moreover, the as-designed immunoassay kit with both high sensitivity and remedied quantitative ability rendered by the Ti3C2Tx@Au NFs-PMMA composite exhibited a powerful performance in the practical detection of N-protein with concentration low to 5.0 × 10-8 mg/mL.
Collapse
Affiliation(s)
- Chucheng Wang
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Junshan Han
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Danni Xue
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Shuwen Zeng
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 87060 Limoges, France
| | - Junhui Jiang
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, Zhejiang, PR China
| | - Tao Jiang
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Xing Li
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Kerong Wu
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, Zhejiang, PR China.
| |
Collapse
|
9
|
Jin S, Zhang D, Yang B, Guo S, Chen L, Jung YM. Noble metal-free SERS: mechanisms and applications. Analyst 2023; 149:11-28. [PMID: 38051259 DOI: 10.1039/d3an01669b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a very important tool in vibrational spectroscopy. The coupling of nanomaterials induces local surface plasmon resonance (LSPR), which contributes greatly to SERS. Due to its remarkable sensitivity in trace detection, SERS has gained prominence in the fields of catalysis, biosensors, drug tracking, and optoelectronic devices. SERS activity is believed to be closely related to the LSPR and charge transfer (CT) of the material. Noble metal nanostructures have been commonly used as SERS-active substrates due to their strong local electric fields and relatively mature preparation, application, and enhancement mechanisms. In recent years, SERS research based on semiconductor materials has attracted significant attention because semiconductor materials have advantages such as repeatable preparation, simple pretreatment, stable SERS spectra and superior biocompatibility, stability, and reproducibility. Semiconductor-based SERS has the potential to enrich SERS theory and applications. Thus, the development of semiconductor materials will introduce a new epoch for SERS-based research. In this review, we outline the two main kinds of semiconductor SERS-active substrates: inorganic and organic semiconductor SERS-active substrates. We also provide an overview of the SERS mechanism for different kinds of materials and SERS-based applications.
Collapse
Affiliation(s)
- Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, USA
| | - Daxin Zhang
- College of Science, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Bo Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China.
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Lei Chen
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|