1
|
Ariga K. Materials Nanoarchitectonics for Advanced Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5918. [PMID: 39685353 DOI: 10.3390/ma17235918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Advances in nanotechnology have made it possible to observe and evaluate structures down to the atomic and molecular level. The next step in the development of functional materials is to apply the knowledge of nanotechnology to materials sciences. This is the role of nanoarchitectonics, which is a concept of post-nanotechnology. Nanoarchitectonics is defined as a methodology to create functional materials using nanounits such as atoms, molecules, and nanomaterials as building blocks. Nanoarchitectonics is very general and is not limited to materials or applications, and thus nanoarchitecture is applied in many fields. In particular, in the evolution from nanotechnology to nanoarchitecture, it is useful to consider the contribution of nanoarchitecture in device applications. There may be a solution to the widely recognized problem of integrating top-down and bottom-up approaches in the design of functional systems. With this in mind, this review discusses examples of nanoarchitectonics in developments of advanced devices. Some recent examples are introduced through broadly dividing them into organic molecular nanoarchitectonics and inorganic materials nanoarchitectonics. Examples of organic molecular nanoarchitecture include a variety of control structural elements, such as π-conjugated structures, chemical structures of complex ligands, steric hindrance effects, molecular stacking, isomerization and color changes due to external stimuli, selective control of redox reactions, and doping control of organic semiconductors by electron transfer reactions. Supramolecular chemical processes such as association and intercalation of organic molecules are also important in controlling device properties. The nanoarchitectonics of inorganic materials often allows for control of size, dimension, and shape, and their associated physical properties can also be controlled. In addition, there are specific groups of materials that are suitable for practical use, such as nanoparticles and graphene. Therefore, nanoarchitecture of inorganic materials also has a more practical aspect. Based on these aspects, this review finally considers the future of materials nanoarchitectonics for further advanced devices.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
2
|
Lombardi L, Granger LA, Shattock RJ, Williams DR. Advancements in Loop Cyclization Approaches for Enhanced Peptide Therapeutics for Targeting Protein-Protein Interactions. J Org Chem 2024. [PMID: 39611613 DOI: 10.1021/acs.joc.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Protein-protein interactions (PPIs) are pivotal in regulating cellular functions and life processes, making them promising therapeutic targets in modern medicine. Despite their potential, developing PPI inhibitors poses significant challenges due to their large and shallow interfaces that complicate ligand binding. This study focuses on mimicking peptide loops as a strategy for PPI inhibition, utilizing synthetic peptide loops for replicating critical binding regions. This work explores turn-inducing elements and highlights the importance of proline in promoting favorable conformations for lactamization, yielding high-purity cyclic peptides. Notably, our one-pot method offers enhanced versatility and represents a robust strategy for efficient and selective macrolactamization, expanding the scope of peptide synthesis methodologies. This approach, validated through the synthesis of AAV capsid-derived loops, offers a robust platform for developing peptide-based therapeutics and highlights the potential of peptide macrocycles in overcoming PPI drug discovery challenges and advancing the development of new therapeutics.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
- Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Luke A Granger
- Department of Infectious Disease, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
| | - Robin J Shattock
- Department of Infectious Disease, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
| | - Daryl R Williams
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
3
|
Lombardi L, Li J, Williams DR. Peptide-Based Biomaterials for Combatting Infections and Improving Drug Delivery. Pharmaceutics 2024; 16:1468. [PMID: 39598591 PMCID: PMC11597775 DOI: 10.3390/pharmaceutics16111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the potential of peptide-based biomaterials to enhance biomedical applications through self-assembly, biological responsiveness, and selective targeting. Peptides are presented as versatile agents for antimicrobial activity and drug delivery, with recent approaches incorporating antimicrobial peptides into self-assembling systems to improve effectiveness and reduce resistance. The review also covers peptide-based nanocarriers for cancer drug delivery, highlighting their improved stability, targeted delivery, and reduced side effects. The focus of this work is on the bioactive properties of peptides, particularly in infection control and drug delivery, rather than on their structural design or material characteristics. Additionally, it examines the role of peptidomimetics in broadening biomaterial applications and enhancing resistance to enzymatic degradation. Finally, the review discusses the commercial prospects and challenges of translating peptide biomaterials into clinical applications.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
4
|
Liu C, Mao Y, Wang Y, Liu Y, Dong Y, Niu Z, Shi K. Oligopeptide template-guided nanoconfined in situ mineralization of nanotherapeutics boosts self-sufficient immunogenic phototherapy. J Control Release 2024; 377:1-16. [PMID: 39549728 DOI: 10.1016/j.jconrel.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
As a promising cancer treatment modality that has emerged, photodynamic / photothermal therapy can harness antitumor immunity by triggering immunogenic cell death in addition to direct cell ablation. However, the efficacy of this phototherapy is always limited due to the hypoxic tumor microenvironment, and the induccd immune stimulation is insufficient to achieve satisfactory cancer eradication. We herein address the above issues by nanoconfined in situ mineralization of manganese oxide (MnO2) guided with an oligopeptide as template. The synthetic nanocomposites can be co-assembled efficiently with the photosensitiser through π-π stacking interactions. Crucially, the mineralised MnO2 composition catalytically decomposes tumor-derived hydrogen peroxide to alleviate the hypoxic microenvironment, thereby improving the efficacy of the photosensitiser in ROS generation. In the murine model of 4 T1 xenograft tumors, the fabricated nanotherapeutics elicited robust antitumor immune responses and boost immunogenic phototherapy toward malignant tumors.
Collapse
Affiliation(s)
- Chang Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Liaoning 110016, PR China
| | - Yuanzhao Mao
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Yaru Dong
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Zixian Niu
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
5
|
O'Brien AM, Pileski GC, Henry MP, Soika DQM, Deutsch AW, Hornak JP, Schmitthenner HF. Self-Assembling Peptide-Based High-Relaxivity Targeted MRI Contrast Agents. ChemMedChem 2024; 19:e202400391. [PMID: 38830117 DOI: 10.1002/cmdc.202400391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Concentration-dependent increases in relaxivity (r1) were found to be induced by self-assembly when Fmoc is adjacent to tryptophan in peptide-based MRI contrast agents featuring Gd-DOTA. A series of di- and tri-peptides were synthesized to test the effect of ionic strength, N-terminal substituent, peptide length, net charge, and relative location of Fmoc and tryptophan on r1 and critical aggregation concentration (CAC) at 1.0 Tesla. Compared to nominal r1 values of 3.5-7.4 mM-1 s-1 per Gd(III), r1 values increased dramatically to 13.2-16.9 mM-1 s-1 per Gd(III) upon self-assembly, with CACs between 0.22 and 2.59 mM when tested in H2O or PBS. When tested in fetal bovine serum (FBS), the compounds maintained high r1 values of 11.2-13.0 mM-1 s-1, but had dramatically lower CAC values below 25 μM. These findings guided the synthesis of two targeted, high-relaxivity MRI contrast agents that contained PSMA-binding ligand, DCL. Their r1 values in H2O or PBS increased from 5.9-7.4 mM-1 s-1 to 13.5-14.8 mM-1 s-1 with CAC values of 1.65-2.70 mM. In FBS, their r1 values were found to be 11.2-11.9 mM-1 s-1, with CAC values below 25 μM. By the conjugation of targeting agents in the last step of synthesis, a broadly applicable route to targeted, high-relaxivity MRI contrast agents is offered.
Collapse
Affiliation(s)
- Andrew M O'Brien
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Griffin C Pileski
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Matthew P Henry
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Dana Q M Soika
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Alex W Deutsch
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Joseph P Hornak
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY-14623
| | - Hans F Schmitthenner
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY-14623
| |
Collapse
|
6
|
Wang Z, Xie X, Hao A, Xing P. Multiple-State Control over Supramolecular Chirality through Dynamic Chemistry Mediated Molecular Engineering. Angew Chem Int Ed Engl 2024; 63:e202407182. [PMID: 38757553 DOI: 10.1002/anie.202407182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Dynamic chemistry utilizing both covalent and noncovalent bonds provides valid protocols in manipulating properties of self-assemblies and functions. Here we employ dynamic chemistry to realize multiple-route control over supramolecular chirality up to five states. N-protected fluorinated phenylalanine in the carboxylate state self-assembled into achiral nanoparticles ascribed to the amphiphilicity. Protonation promoted one-dimensional growth into helices with shrunk hydrophilicity, which in the presence of disulfide pyridine undergo chirality inversion promoted by the hydrogen bonding-directed coassembly. Further interacting with the water-soluble reductant cleavages the disulfide bond to initiate the rearrangement of coassemblies with a chirality inversion as well. Finally, by tuning the pH environments, aromatic nucleophilic substitution reaction between reduced products and perfluorinated phenylalanine occurs, giving distinct chiral nanoarchitectures with emerged luminescence and circularly polarized luminescence. We thus realized a particular five-state control by combining dynamic chemistry at one chiral compound, which greatly enriches the toolbox in fabricating responsive chiroptical materials.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Xufeng Xie
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
7
|
Cai X, Xu W, Ren C, Zhang L, Zhang C, Liu J, Yang C. Recent progress in quantitative analysis of self-assembled peptides. EXPLORATION (BEIJING, CHINA) 2024; 4:20230064. [PMID: 39175887 PMCID: PMC11335468 DOI: 10.1002/exp.20230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 08/24/2024]
Abstract
Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.
Collapse
Affiliation(s)
- Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Wei Xu
- Department of PathologyCharacteristic Medical Center of Chinese People's Armed Police ForcesTianjinP. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Congrou Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
8
|
Ariga K. Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics. Molecules 2024; 29:3168. [PMID: 38999120 PMCID: PMC11243083 DOI: 10.3390/molecules29133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
9
|
Wang Y, Geng Q, Lyu H, Sun W, Fan X, Ma K, Wu K, Wang J, Wang Y, Mei D, Guo C, Xiu P, Pan D, Tao K. Bioinspired Flexible Hydrogelation with Programmable Properties for Tactile Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401678. [PMID: 38678380 DOI: 10.1002/adma.202401678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Tactile sensing requires integrated detection platforms with distributed and highly sensitive haptic sensing capabilities along with biocompatibility, aiming to replicate the physiological functions of the human skin and empower industrial robotic and prosthetic wearers to detect tactile information. In this regard, short peptide-based self-assembled hydrogels show promising potential to act as bioinspired supramolecular substrates for developing tactile sensors showing biocompatibility and biodegradability. However, the intrinsic difficulty to modulate the mechanical properties severely restricts their extensive employment. Herein, by controlling the self-assembly of 9-fluorenylmethoxycarbonyl-modifid diphenylalanine (Fmoc-FF) through introduction of polyethylene glycol diacrylate (PEGDA), wider nanoribbons are achieved by untwisting from well-established thinner nanofibers, and the mechanical properties of the supramolecular hydrogels can be enhanced 10-fold, supplying bioinspired supramolecular encapsulating substrate for tactile sensing. Furthermore, by doping with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and 9-fluorenylmethoxycarbonyl-modifid 3,4-dihydroxy-l-phenylalanine (Fmoc-DOPA), the Fmoc-FF self-assembled hydrogels can be engineered to be conductive and adhesive, providing bioinspired sensing units and adhesive layer for tactile sensing applications. Therefore, the integration of these modules results in peptide hydrogelation-based tactile sensors, showing high sensitivity and sustainable responses with intrinsic biocompatibility and biodegradability. The findings establish the feasibility of developing programmable peptide self-assembly with adjustable features for tactile sensing applications.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Hao Lyu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Wuxuepeng Sun
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Kang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Kai Wu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Jinhe Wang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dingyi Pan
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Joint Laboratory of Bio-Organic Dielectrics, Hangzhou, 310058, China
| |
Collapse
|
10
|
Reyes C, Patarroyo MA. Self-assembling peptides: Perspectives regarding biotechnological applications and vaccine development. Int J Biol Macromol 2024; 259:128944. [PMID: 38145690 DOI: 10.1016/j.ijbiomac.2023.128944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Self-assembly involves a set of molecules spontaneously interacting in a highly coordinated and dynamic manner to form a specific supramolecular structure having new and clearly defined properties. Many examples of this occur in nature and many more came from research laboratories, with their number increasing every day via ongoing research concerning complex biomolecules and the possibility of harnessing it when developing new applications. As a phenomenon, self-assembly has been described on very different types of molecules (biomolecules including), so this review focuses on what is known about peptide self-assembly, its origins, the forces behind it, how the properties of the resulting material can be tuned in relation to experimental considerations, some biotechnological applications (in which the main protagonists are peptide sequences capable of self-assembly) and what is yet to be tuned regarding their research and development.
Collapse
Affiliation(s)
- César Reyes
- PhD Biotechnology Programme, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia; Structure Analysis Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá DC 111321, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222#55-37, Bogotá DC 111166, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá DC 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia.
| |
Collapse
|
11
|
Hu T, Zhang Z, Reches M. A self-standing superhydrophobic material formed by the self-assembly of an individual amino acid. J Colloid Interface Sci 2024; 655:899-908. [PMID: 37979295 DOI: 10.1016/j.jcis.2023.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
HYPOTHESIS There is a growing interest in designing superhydrophobic materials for many applications including self-clean surfaces, separation systems, and antifouling solutions. Peptides and amino acids offer attractive building blocks for these materials since they are biocompatible and biodegradable and can self-assemble into complex ordered structures. EXPERIMENTS AND SIMULATIONS We designed a self-standing superhydrophobic material through the self-assembly of an individual functionalized aromatic amino acid, Cbz-Phe(4F). The self-assembly of Cbz-Phe(4F) was investigated by experimental and computational methods. Moreover, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. The mechanical properties and chemical stability of this self-standing superhydrophobic material were demonstrated. FINDINGS The designed Cbz-Phe(4F) self-assembled into fibrous structures in solution. Molecular dynamics (MD) simulations revealed that the fibrous backbone of Cbz-Phe(4F) aggregations was stabilized through hydrogen bonds, whereas the isotropic growth of the aggregates was driven by hydrophobic interactions. Importantly, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. Moreover, this material had a high mechanical strength, with a Young's modulus of 53 GPa, resistance to enzymatic degradation, and thermal stability up to 200 ℃. This study provides a simple strategy to generate smart and functional materials by the simple self-assembly of functional individual amino acids.
Collapse
Affiliation(s)
- Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhuo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
12
|
Li Y, Zheng T, Du Y, Zhao B, Patel HP, Boldt R, Auernhammer GK, Fery A, Li J, Thiele J. Titanium dioxide nanoparticles embedded in assembled dipeptide hydrogels for microfluidic photodegradation. J Colloid Interface Sci 2024; 654:405-412. [PMID: 37852026 DOI: 10.1016/j.jcis.2023.09.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
Dipeptides can be self-assembled via non-covalent bonds towards functional nanostructures for diverse applications in nanotechnology. Here, we introduce a convenient microfluidics-guided dipeptide design as a platform for photodegradation of contaminants in water. Titanium dioxide (TiO2) nanoparticles (NPs) are chosen as photocatalysts due to their vastly studied properties. By using a well-defined microchannel architecture, the dipeptide N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) and TiO2 NPs are efficiently mixed leading to a self-assembled Fmoc-FF hydrogel with embedded TiO2. Owing to shear-thinning and rapid self-healing of Fmoc-FF hydrogels, we can transfer and inject Fmoc-FF/TiO2 hydrogels into any other microdevice for specific applications, where these low-molecular-weight-gelator- (LMWG-)based Fmoc-FF hydrogels fill out the microchannel volume. Different morphologies of Fmoc-FF/TiO2 hydrogels are obtained by simple concentration screening of TiO2 NPs and Fmoc-FF. Owing to the density of the three-dimensionally twined Fmoc-FF nanofibers, solutions swelling the dipeptide hydrogel can be exchanged without leaching out TiO2 NPs. By further analysis, our hydrogel-filled flow cell can be employed for continuous-flow photodegradation in water under light irradiation. Especially, compared to the TiO2 NPs suspension, Fmoc-FF/TiO2 hydrogels with relatively low concentrations of TiO2 exhibit enhanced photodegradation capabilities due to better dispersion of nanoparticles. Such strategy provides a versatile platform for embedment of small inorganic catalysts or enzymes for (bio-)chemical conversion of solutes passing through the hydrogel network.
Collapse
Affiliation(s)
- Yue Li
- School of Life Sciences, Jilin University, 130012 Changchun, PR China; Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany.
| | - Tianfang Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, 130012 Changchun, PR China
| | - Yixuan Du
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Binyu Zhao
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Himanshu P Patel
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Regine Boldt
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | | | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, PR China.
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany; Institute of Chemistry, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
13
|
Ye S, Zhang W, Zhai Z, Shang S, Huang L, Song Z, Jiang J. CO 2-Responsive Rosin-Based Supramolecular Hydrogels: Diverse Chiral Nanostructures and Their Application in In Situ Synthesis of Chiral Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:647-656. [PMID: 38153972 DOI: 10.1021/acs.langmuir.3c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Natural small molecules have demonstrated tremendous potential for the construction of supramolecular chiral nanostructures owing to their unique molecular structures and chirality. In this study, novel CO2-responsive supramolecular hydrogels were constructed using a series of rosin-based surfactants (CnMPAN, n = 10, 12, and 14). The macroscopic properties, rheological properties, nanostructures, and intermolecular interactions of the hydrogels were investigated using differential scanning calorimetry, rotational rheometry, cryogenic transmission electron microscopy, and Fourier transform infrared spectroscopy. Interestingly, diverse nanostructures containing helical nanofibers, interwoven nanofibers, and twisted nanoribbons were formed in the hydrogels, which were rarely observed in reported supramolecular hydrogels, and the strength of the hydrogels was significantly enhanced by increasing the CnMPAN concentration and the alkyl chain length. The obtained hydrogels exhibited excellent CO2-responsiveness, with no obvious variation in the nanostructures and rheological properties after response to CO2/N2 for five cycles. Taking advantage of the chiral nanostructures of hydrogels, gold nanoparticles (GNPs) were further prepared. The average particle sizes of the resulting GNPs were as low as 2.5 nm, and the GNPs also had a chiral structure. It is worth noting that no additional reductants and UV-light irradiation were used during the reduction process of GNPs. This study emphasizes that the unique molecular structure and chirality of rosin are critical for the preparation of hydrogels with chiral nanostructures. In addition, this study enriches the applications of forest resources.
Collapse
Affiliation(s)
- Shengfeng Ye
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Wenjing Zhang
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Zhaolan Zhai
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Shibin Shang
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Lixin Huang
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Zhanqian Song
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Jianxin Jiang
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Sahu I, Chakraborty P. A repertoire of nanoengineered short peptide-based hydrogels and their applications in biotechnology. Colloids Surf B Biointerfaces 2024; 233:113654. [PMID: 38000121 DOI: 10.1016/j.colsurfb.2023.113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Peptide nanotechnology has currently bridged the gap between materials and biological worlds. Bioinspired self-assembly of short-peptide building blocks helps take the leap from molecules to materials by taking inspiration from nature. Owing to their intrinsic biocompatibility, high water content, and extracellular matrix mimicking fibrous morphology, hydrogels engineered from the self-assembly of short peptides exemplify the actualization of peptide nanotechnology into biomedical products. However, the weak mechanical property of these hydrogels jeopardizes their practical applications. Moreover, their functional diversity is limited since they comprise only one building block. Nanoengineering the networks of these hydrogels by incorporating small molecules, polymers, and inorganic/carbon nanomaterials can augment the mechanical properties while retaining their dynamic supramolecular nature. These additives interact with the peptide building blocks supramolecularly and may enhance the branching of the networks via coassembly or crystallographic mismatch. This phenomenon expands the functional diversity of these hydrogels by synergistically combining the attributes of the individual building blocks. This review highlights such nanoengineered peptide hydrogels and their applications in biotechnology. We have included exemplary works on supramolecular modification of the peptide hydrogel networks by integrating other small molecules, synthetic/biopolymers, conductive polymers, and inorganic/carbon nanomaterials and shed light on their various utilities focusing on biotechnology. We finally envision some future prospects in this highly active field of research.
Collapse
Affiliation(s)
- Ipsita Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
15
|
Gallo E, Diaferia C, Giordano S, Rosa E, Carrese B, Piccialli G, Borbone N, Morelli G, Oliviero G, Accardo A. Ultrashort Cationic Peptide Fmoc-FFK as Hydrogel Building Block for Potential Biomedical Applications. Gels 2023; 10:12. [PMID: 38247735 PMCID: PMC10815546 DOI: 10.3390/gels10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Fmoc-diphenylalanine (Fmoc-FF) is a low-molecular-weight peptide hydrogelator. This simple all-aromatic peptide can generate self-supporting hydrogel materials, which have been proposed as novel materials for diagnostic and pharmaceutical applications. Our knowledge of the molecular determinants of Fmoc-FF aggregation is used as a guide to design new peptide-based gelators, with features for the development of improved tools. Here, we enlarge the plethora of Fmoc-FF-based hydrogelated matrices by studying the properties of the Fmoc-FFK tripeptide, alone or in combination with Fmoc-FF. For multicomponent matrices, the relative weight ratios between Fmoc-FFK and Fmoc-FF (specifically, 1/1, 1/5, 1/10, and 1/20 w/w) are evaluated. All the systems and their multiscale organization are studied using different experimental techniques, including rheology, circular dichroism, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM). Preliminary profiles of biocompatibility for the studied systems are also described by testing them in vitro on HaCaT and 3T3-L1 cell lines. Additionally, the lysine (K) residue at the C-terminus of the Fmoc-FF moiety introduces into the supramolecular material chemical functions (amino groups) which may be useful for modification/derivatization with bioactive molecules of interest, including diagnostic probes, chelating agents, active pharmaceutical ingredients, or peptide nucleic acids.
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (S.G.); (B.C.)
| | - Carlo Diaferia
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Sabrina Giordano
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (S.G.); (B.C.)
| | - Elisabetta Rosa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (S.G.); (B.C.)
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Nicola Borbone
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Antonella Accardo
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| |
Collapse
|
16
|
Janipour Z, Najafi H, Abolmaali SS, Heidari R, Azarpira N, Özyılmaz ED, Tamaddon AM. Simvastatin-Releasing Nanofibrous Peptide Hydrogels for Accelerated Healing of Diabetic Wounds. ACS APPLIED BIO MATERIALS 2023; 6:4620-4628. [PMID: 37904513 DOI: 10.1021/acsabm.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Wound healing is one of the major global health concerns in diabetic patients. Simvastatin (SMV) is a poorly soluble oral cholesterol-lowering drug that may aid diabetic wound healing. In the current study, a thixotropic peptide hydrogel of Fmoc-diphenylalanine (FmocFF) containing SMV was designed to accelerate skin wound healing effectively and safely in diabetic mice. FmocFF hydrogels were prepared at various concentrations by using the solvent-triggering technique and characterized by spectroscopic methods such as attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy and fluorimetry. Mechanical behaviors were explored by oscillatory rheology. In model mice, the regenerative potential of the FmocFF-SMV hydrogel was evaluated in terms of wound contraction and closure, tissue regeneration, acute and chronic inflammation, granulation, and re-epithelization. The results showed that FmocFF-SMV hydrogels had an entangled nanofibrous microstructure and shear-thinning characteristics. FmocFF-SMV demonstrated a sustained drug release over 7 days. Compared to the unloaded FmocFF hydrogel, treatment with FmocFF-SMV led to superior diabetic wound recovery and reduced inflammation. Therefore, the utilization of the sustained-release FmocFF-SMV hydrogel formulation could become an attractive choice for topical wound therapy in diabetes patients.
Collapse
Affiliation(s)
- Zahra Janipour
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz PO Box 7146864685, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 7146864685, Iran
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz PO Box 7146864685, Iran
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 7146864685, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz PO Box 7146864685, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz PO Box 7193711351, Iran
| | - Emine Dilek Özyılmaz
- Eastern Mediterranean University, Faculty of Pharmacy, Famagusta PO Box 99628, North Cyprus, Turkey
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz PO Box 7146864685, Iran
| |
Collapse
|
17
|
Giordano S, Gallo E, Diaferia C, Rosa E, Carrese B, Borbone N, Scognamiglio PL, Franzese M, Oliviero G, Accardo A. Multicomponent Peptide-Based Hydrogels Containing Chemical Functional Groups as Innovative Platforms for Biotechnological Applications. Gels 2023; 9:903. [PMID: 37998993 PMCID: PMC10671135 DOI: 10.3390/gels9110903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Multicomponent hydrogels (HGs) based on ultrashort aromatic peptides have been exploited as biocompatible matrices for tissue engineering applications, the delivery of therapeutic and diagnostic agents, and the development of biosensors. Due to its capability to gel under physiological conditions of pH and ionic strength, the low molecular-weight Fmoc-FF (Nα-fluorenylmethoxycarbonyl-diphenylalanine) homodimer is one of the most studied hydrogelators. The introduction into the Fmoc-FF hydrogel of additional molecules like protein, organic compounds, or other peptide sequences often allows the generation of novel hydrogels with improved mechanical and functional properties. In this perspective, here we studied a library of novel multicomponent Fmoc-FF based hydrogels doped with different amounts of the tripeptide Fmoc-FFX (in which X= Cys, Ser, or Thr). The insertion of these tripeptides allows to obtain hydrogels functionalized with thiol or alcohol groups that can be used for their chemical post-derivatization with bioactive molecules of interest like diagnostic or biosensing agents. These novel multicomponent hydrogels share a similar peptide organization in their supramolecular matrix. The hydrogels' biocompatibility, and their propensity to support adhesion, proliferation, and even cell differentiation, assessed in vitro on fibroblast cell lines, allows us to conclude that the hybrid hydrogels are not toxic and can potentially act as a scaffold and support for cell culture growth.
Collapse
Affiliation(s)
- Sabrina Giordano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Carlo Diaferia
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Elisabetta Rosa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Nicola Borbone
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | | | - Monica Franzese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Antonella Accardo
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| |
Collapse
|
18
|
Tiwari OS, Rencus-Lazar S, Gazit E. Peptide- and Metabolite-Based Hydrogels: Minimalistic Approach for the Identification and Characterization of Gelating Building Blocks. Int J Mol Sci 2023; 24:10330. [PMID: 37373477 DOI: 10.3390/ijms241210330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Minimalistic peptide- and metabolite-based supramolecular hydrogels have great potential relative to traditional polymeric hydrogels in various biomedical and technological applications. Advantages such as remarkable biodegradability, high water content, favorable mechanical properties, biocompatibility, self-healing, synthetic feasibility, low cost, easy design, biological function, remarkable injectability, and multi-responsiveness to external stimuli make supramolecular hydrogels promising candidates for drug delivery, tissue engineering, tissue regeneration, and wound healing. Non-covalent interactions such as hydrogen bonding, hydrophobic interactions, electrostatic interactions, and π-π stacking interactions play key roles in the formation of peptide- and metabolite-containing low-molecular-weight hydrogels. Peptide- and metabolite-based hydrogels display shear-thinning and immediate recovery behavior due to the involvement of weak non-covalent interactions, making them supreme models for the delivery of drug molecules. In the areas of regenerative medicine, tissue engineering, pre-clinical evaluation, and numerous other biomedical applications, peptide- and metabolite-based hydrogelators with rationally designed architectures have intriguing uses. In this review, we summarize the recent advancements in the field of peptide- and metabolite-based hydrogels, including their modifications using a minimalistic building-blocks approach for various applications.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|