1
|
Chu L, Dai Y, Hou C, Kang X, Jiang Q, Jiang X, Li J, Qin H. A novel extraction method for three ochratoxins in human urine based on polystyrene/polyethersulfone electrospun nanofibers coated with copper nanoparticles. RSC Adv 2024; 14:27972-27979. [PMID: 39224627 PMCID: PMC11367628 DOI: 10.1039/d4ra04670f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, four types of nanofibers were prepared via electrospinning and characterized through SEM, TEM, EDS, FTIR, TG, XPS and water contact angle analyses, and the novel polystyrene/polyethersulfone nanofibers coated with copper nanoparticles (PS/PES-CuNPs nanofibers) were developed as an ideal adsorbent for the extraction of three ochratoxins from human urine. The solid-phase extractant of sample pretreatment displayed preferable sensitivity and an extraction effect, and the analytical method based on the novel packed-fiber solid-phase extraction strategy followed by high performance liquid chromatography-fluorescence detection (PFSPE-HPLC-FLD) achieved an exceedingly low limit of detection (LOD) and limit of quantification (LOQ) of 0.108-0.162 μg L-1 and 0.658-0.701 μg L-1, respectively; a high spiked recovery of 71.3-92.0% and a lower adsorption time of 7 min, thus demonstrating excellent results compared with other reported adsorbents for ochratoxins from various samples. With the application of this method for the detection of ochratoxins in human urine samples, six in thirty samples were tested positive. This study confirmed that the PS/PES-CuNP nanofibers and PFSPE showed promising potential as a sensitive method for simultaneous extraction and detection of ochratoxins in complex samples.
Collapse
Affiliation(s)
- Lanling Chu
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
- School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Yuqi Dai
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Chen Hou
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Xuejun Kang
- School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Qianqian Jiang
- Yantai Key Laboratory of Special Medical Food (Preparatory), School of Food and Biological Engineering, Yantai Institute of Technology Yantai 264005 Shandong China
| | - Xiaoman Jiang
- Yantai Key Laboratory of Special Medical Food (Preparatory), School of Food and Biological Engineering, Yantai Institute of Technology Yantai 264005 Shandong China
| | - Jing Li
- Yantai Key Laboratory of Special Medical Food (Preparatory), School of Food and Biological Engineering, Yantai Institute of Technology Yantai 264005 Shandong China
| | - Hongyu Qin
- Yantai Key Laboratory of Special Medical Food (Preparatory), School of Food and Biological Engineering, Yantai Institute of Technology Yantai 264005 Shandong China
| |
Collapse
|
2
|
Skandalis A, Sentoukas T, Selianitis D, Balafouti A, Pispas S. Using RAFT Polymerization Methodologies to Create Branched and Nanogel-Type Copolymers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1947. [PMID: 38730753 PMCID: PMC11084462 DOI: 10.3390/ma17091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| |
Collapse
|
3
|
Ge J, Cheng X, Rong LH, Capadona JR, Caldona EB, Advincula RC. 3D Temperature-Controlled Interchangeable Pattern for Size-Selective Nanoparticle Capture. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422547 DOI: 10.1021/acsami.3c17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Patterned surfaces with distinct regularity and structured arrangements have attracted great interest due to their extensive promising applications. Although colloidal patterning has conventionally been used to create such surfaces, herein, we introduce a novel 3D patterned poly(N-isopropylacrylamide) (PNIPAM) surface, synthesized by using a combination of colloidal templating and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization. In order to investigate the temperature-driven 3D morphological variations at a lower critical solution temperature (LCST) of ∼32 °C, multifaceted characterization techniques were employed. Atomic force microscopy confirmed the morphological transformations at 20 and 40 °C, while water contact angle measurements, upon heating, revealed distinct trends, offering insights into the correlation between surface wettability and topography adaptations. Moreover, quartz crystal microbalance with dissipation monitoring and electrochemical measurements were employed to detect the topographical adjustments of the unique hollow capsule structure within the LCST. Tests using different sizes of PSNPs shed light on the size-selective capture-release potential of the patterned PNIPAM, accentuating its biomimetic open-close behavior. Notably, our approach negates the necessity for expensive proteins, harnessing temperature adjustments to facilitate the noninvasive and efficient reversible capture and release of nanostructures. This advancement hopes to pave the way for future innovative cellular analysis platforms.
Collapse
Affiliation(s)
- Jin Ge
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiang Cheng
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Li-Han Rong
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eugene B Caldona
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Chemical and Biomolecular Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|