1
|
Zeng D, Shen T, Hu Y, Liu F, Liu Z, Song J, Guan R, Zhou C. ZnIn 2S 4-based multi-interface coupled photocatalyst for efficient photothermal synergistic catalytic hydrogen evolution. J Colloid Interface Sci 2024; 670:395-408. [PMID: 38772256 DOI: 10.1016/j.jcis.2024.05.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Photothermal synergistic catalysis is a novel technology that converts energy. In this study, ZnIn2S4 with S-vacancy (ZIS-Vs) is combined with Nickel, Nickle Oxide and Carbon Nanofiber aggregates (Ni-NiO@CNFs) to create a multi-interface coupled photocatalyst with double Schottky barrier, double channel and mixed photothermal conversion effect. Theoretical calculation confirms that the Gibbs free energy (ΔG*H) of the S-scheme heterojunction in the composite material is -0.07 eV, which is close to 0. This promotes the adsorption of H* and accelerates the formation of H2. Internal photothermal catalysis is achieved by visible-near infrared (Vis-NIR, RT) irradiation. The internal photothermal catalytic hydrogen production rate of the best sample (0.9Ni-NiO@CNFs/ZIS-Vs) is as high as 17.24 mmol·g-1·h-1, and its photothermal conversion efficiency (η) is as high as 61.42 %. Its hydrogen production efficiency is 20.52 times that of ZIS-Vs (0.84 mmol·g-1·h-1) under visible light (Vis, RT) conditions. When the Vis-NIR light source is combined with external heating (75 ℃), the hydrogen production efficiency is further improved, and the hydrogen production efficiency (29.16 mmol·g-1·h-1) is 26.75 times that of ZIS-Vs (1.09 mmol·g-1·h-1, Vis-NIR, RT). Further analysis shows that the increase in hydrogen production resulted from the apparent activation energy (Ea) of the catalyst decreasing from 16.7 kJ·mol-1 to 9.28 kJ·mol-1. This study provides a valuable prototype for the design of an efficient photothermal synergistic catalytic system.
Collapse
Affiliation(s)
- Danni Zeng
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Tingzhe Shen
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Yadong Hu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China; School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Fengjiao Liu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Ze Liu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Jun Song
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Rongfeng Guan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China.
| | - Changjian Zhou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jiangsu, China.
| |
Collapse
|
2
|
Wei G, Chen J, Yue Q, Guo C, Qu F, Lin H. The loading of Fe ions on N-doped carbon nanosheets to boost photocatalytic cascade for water disinfection. J Colloid Interface Sci 2024; 664:992-1001. [PMID: 38508034 DOI: 10.1016/j.jcis.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
The pervasive presence of pathogenic bacteria in water environment poses a serious threat to public health. Here, a photocatalytic cascade was developed to reveal great water disinfection. Firstly, N-doped carbon nanosheets (N-CNSs) about 30-50 nm in size were synthesized by a hydrothermal strategy. It revealed wide-spectrum photocatalysis for H2O2 generation via a typical two-step single-electron process. A Fenton agent (Fe ion) was loaded, N-CNSs-Fe can in-situ convert photocatalytic H2O2 into ·OH with high oxidation potential. Moreover, its Fenton active is three times greater than pure Fe2+ owing to electron enrichment from N-CNSs to Fe for Fe3+/Fe2+ cycle. Further investigation displayed that Fe loading also could decrease bad gap and promote charge separation to boost photocatalysis. In addition, N-CNSs-Fe possesses positive surface potential to exhibit strong interaction with negative bacteria, facilitating the capture. Therefore, the nanocomposite can effectively inactivate E. coli with a lethality rate of 99.7 % under stimulated sunlight irradiation. In addition, it also was employed to treat a complex lake water sample, revealing great antibacterial (95.1 %) and dye-decolored (92.3 %) efficiency at the same time. With novel biocompatibility and antibacterial ability, N-CNSs-Fe possessed great potential for water disinfection.
Collapse
Affiliation(s)
- Guoyu Wei
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jiaxin Chen
- College of life sciences and technology, Harbin Normal University, Harbin 150025, China
| | - Qunfeng Yue
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Changhong Guo
- College of life sciences and technology, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
3
|
Fu S, Chu Z, Huang Z, Dong X, Bie J, Yang Z, Zhu H, Pu W, Wu W, Liu B. Construction of Z-scheme AgCl/BiOCl heterojunction with oxygen vacancies for improved pollutant degradation and bacterial inactivation. RSC Adv 2024; 14:3888-3899. [PMID: 38283591 PMCID: PMC10811567 DOI: 10.1039/d3ra08514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
A facile Z-scheme AgCl/BiOCl heterojunction photocatalyst with oxygen vacancies was fabricated by a water-bath method. The structural, morphological, optical and electronic properties of as-synthesized samples were systematically characterized. The oxygen vacancies were confirmed by EPR, which could optimize the band-gap of the AgCl/BiOCl heterojunction and improve the photo-induced electron transfer. The optimized AgCl/BiOCl heterojunction showed excellent photocatalytic degradation efficiency (82%) for tetracycline (TC). Simultaneously, E. coli was completely inactivated within 60 min due to the AgCl/BiOCl heterojunction. The elevated catalytic activity of the optimal AgCl/BiOCl heterojunction was ascribed to the synergistic effect of the enhanced light absorption and effective photoinduced charge carrier separation and transfer. Moreover, the degradation efficiency of the AgCl/BiOCl heterojunction towards ofloxacin, norfloxacin and Lanasol Red 5B was 73%, 74% and 96%, respectively. The experimental factors for the degradation efficiency of TC were also studied. Furthermore, active species trapping experiments indicated that superoxide radicals (˙O2-) were the main reactive species, and the Z-scheme charge transfer mechanism helped to improve the photocatalytic activity.
Collapse
Affiliation(s)
- Shuai Fu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
- Henan Engineering Research Center of Water Quality Safety in the Middle-lower Yellow River, Henan Green Technology Innovation Demonstration Base Luoyang 471023 Henan PR China
| | - Zhiliang Chu
- The 989th Hospital, Department of Central Laboratory Luoyang 471031 Henan PR China
| | - Zhiquan Huang
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
- Henan Engineering Research Center of Water Quality Safety in the Middle-lower Yellow River, Henan Green Technology Innovation Demonstration Base Luoyang 471023 Henan PR China
| | - Xiaomei Dong
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
| | - Junhong Bie
- Henan Communications Planning & Design Institute Co., Ltd Zhengzhou 450046 Henan PR China
| | - Zhe Yang
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
- Henan Engineering Research Center of Water Quality Safety in the Middle-lower Yellow River, Henan Green Technology Innovation Demonstration Base Luoyang 471023 Henan PR China
| | - Huijie Zhu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
- Henan Engineering Research Center of Water Quality Safety in the Middle-lower Yellow River, Henan Green Technology Innovation Demonstration Base Luoyang 471023 Henan PR China
| | - Wanyu Pu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
| | - Wanzhe Wu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
| | - Bo Liu
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 Shandong PR China
| |
Collapse
|
4
|
Lv M, Wang K, Liang X, Chen Y, Tang X, Liu R, Chen W. Principle of CoS 2/ZnIn 2S 4 heterostructure effect and its mechanism of action in a visible light-catalyzed antibacterial process. J Colloid Interface Sci 2024; 653:879-893. [PMID: 37774652 DOI: 10.1016/j.jcis.2023.09.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
The development of visible-light-driven catalytic antimicrobial technology is a significant challenge. In this study, heterojunctions were constructed for the appropriate modification of semiconductor-based photocatalysts. A simple hydrothermal method was used for material reconstruction, and smaller CoS2 nanoparticles were deposited and in situ grown on two-dimensional nanoflower-like ZnIn2S4 carriers to form CoS2/ZnIn2S4 (CS/ZIS) Schottky heterojunctions. Systematic study via characterization techniques and density functional theory calculations indicated that the excellent photocatalytic activity of CS/ZIS stemmed from the solid interfacial coupling between the two solid-phase materials. These materials acted as co-catalysts to increase the number of active reaction sites, enhance charge transfer, drive unidirectional electron movement, and improve charge separation efficiency, which effectively facilitated the production of reactive oxygen species (ROS). The optimized CS/ZIS heterojunction exhibited excellent performance for the efficient photocatalytic degradation of organic matter and inactivation of Escherichia coli (E. coli) compared with the ZnIn2S4 photocatalyst. Moreover, the antibacterial mechanism of the heterojunction photocatalyst and the extent of damage to the cell membrane and internal cytoplasm were explored by performing various assays. It was demonstrated that superoxide radicals are the predominant active species and multiple ROS act together to cause oxidative stress damage and cell inactivation.
Collapse
Affiliation(s)
- Meiru Lv
- Faculty of Chemical Engineering Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Kangfu Wang
- Faculty of Chemical Engineering Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Xingkun Liang
- Faculty of Chemical Engineering Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Yuanyuan Chen
- Faculty of Chemical Engineering Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Xiaoning Tang
- Faculty of Chemical Engineering Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Rongliang Liu
- Zhuhai Painter Science and Technology Co., LTD., Zhuhai, 519090, Guangdong, China.
| | - Wei Chen
- Zhuhai Painter Science and Technology Co., LTD., Zhuhai, 519090, Guangdong, China.
| |
Collapse
|
5
|
Li B, Zhao X, Huang Y, Lu X, Jia H, Li M. Dual Z-scheme BiOI/Bi 2S 3/MgIn 2S 4 composite photocatalyst for effective photocatalytic degradation of Congo red. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122537-122549. [PMID: 37973781 DOI: 10.1007/s11356-023-30909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The demand and use of dyes in modern life are increasing, and dye pollution has become a widespread concern worldwide; therefore, it is essential to develop novel environmentally friendly materials to deal with dye wastewater. Herein, a novel visible-light-driven ternary catalyst (BiOI/Bi2S3/MgIn2S4) was fabricated by employing the hydrothermal method. Compared to BiOI, the synthesized ternary catalyst exhibited better photocatalytic performance to decompose Congo red under visible light. Congo red was completely degraded after 0.5 h (0.5 g/L photocatalyst BiOI/Bi2S3/MIS-1) in the presence of visible light, which was 16.83 and 9.94 times of that of pure BiOI and MgIn2S4, respectively. A repetitive experiment showed that the BiOI/Bi2S3/MIS-1 could be reusable to degrade Congo red, demonstrating that it has excellent mechanical properties. The enhanced photocatalytic capability was due to addition of BiOI and Bi2S3, which increased the charge separation as well as suppressed the recombination of photo-induced holes and electrons. Electron paramagnetic resonance technique and free radical trapping tests were employed to determine the radicals produced in BiOI/Bi2S3/MgIn2S4 in the presence of visible light, indicating that ·O2- and h+ were major active species to decompose Congo red under photocatalytic process. Seventeen main intermediates or reaction products were identified by UPLC-MS. The tentative degradation pathway of Congo red was also proposed.
Collapse
Affiliation(s)
- Borui Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xingze Zhao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yajie Huang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xiaohui Lu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hao Jia
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ming Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Gao D, Zhong W, Zhang X, Wang P, Yu H. Free-Electron Inversive Modulation to Charge Antibonding Orbital of ReS 2 Cocatalyst for Efficient Photocatalytic Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309123. [PMID: 37948440 DOI: 10.1002/smll.202309123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The free electron transfer between cocatalyst and photocatalyst has a great effect on the bonding strength between the active site and adsorbed hydrogen atom (Hads ), but there is still a lack of effective means to purposely manipulate the electron transfer in a beneficial direction of H adsorption/desorption activity. Herein, when ReSx cocatalyst is loaded on TiO2 surface, a spontaneous free-electron transfer from ReSx to TiO2 happens due to the smaller work function of ReSx , causing an over-strong S-Hads bond. To prevent the over-strong S-Hads bonds of ReSx in the ReSx /TiO2 , a free-electron reversal transfer strategy is developed to weaken the strong S-Hads bonds via increasing the work function of ReSx by incorporating O to produce ReOSx cocatalyst. Research results attest that a larger work function of ReOSx than that of TiO2 can induce reversal transfer of electrons from TiO2 to ReOSx to produce electron-rich S(2+δ)- , causing the increased antibonding-orbital occupancy of S-Hads in ReOSx /TiO2 . Accordingly, the stability of adsorbed H on S sites is availably decreased, thus weakening the S-Hads of ReOSx . In this case, an electron-rich S(2+δ)- -mediated "capture-hybridization-conversion" mechanism is raised . Benefiting from such property, the resultant ReOSx /TiO2 photocatalyst exhibits a superior H2 -evolution rate of 7168 µmol h-1 g-1 .
Collapse
Affiliation(s)
- Duoduo Gao
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Wei Zhong
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Xidong Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Ping Wang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
7
|
Song MS, Patil RP, Hwang IS, Mahadik MA, Jang TH, Oh BT, Chae WS, Choi SH, Lee HH, Jang JS. In situ fabrication of Ag decorated porous ZnO photocatalyst via inorganic-organic hybrid transformation for degradation of organic pollutant and bacterial inactivation. CHEMOSPHERE 2023; 341:140057. [PMID: 37673185 DOI: 10.1016/j.chemosphere.2023.140057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
In this study, in situ silver (Ag) - porous ZnO photocatalysts were synthesized via solvothermal and post-annealing treatment. The formation of the porous ZnO structure due to the removal of organic moieties from the inorganic-organic hybrids Ag-ZnS(en)0.5 during the annealing process. The optimal Ag-ZnO photocatalyst showed excellent photocatalytic degradation activity, with 95.5% orange II dye and 97.2% bisphenol A (BPA) degradation under visible light conditions. Additionally, the photocatalytic inactivation of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) led to a 97% inactivation rate after 2 h under dark conditions. Trapping experiments suggest that the superoxide anion (O2-) radicals are the main active species to degrade the organic dye. The improved photocatalytic dye degradation activity and inactivation of bacteria were attributed to the synergistic effect of Ag and porous ZnO structure, increased surface area, and efficiently separated the photoexcited charge carriers. This work could provide an effective strategy for the synthesis of porous structures toward organic pollutant degradation and bacterial inactivation in wastewater.
Collapse
Affiliation(s)
- Min Seok Song
- Division of Biotechnology, Safety, Environment, and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Ruturaj P Patil
- Division of Biotechnology, Safety, Environment, and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - In Seon Hwang
- Division of Biotechnology, Safety, Environment, and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Mahadeo A Mahadik
- Division of Biotechnology, Safety, Environment, and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Tae-Hu Jang
- Division of Biotechnology, Safety, Environment, and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Byung Taek Oh
- Division of Biotechnology, Safety, Environment, and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Weon-Sik Chae
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu, 702-701, Republic of Korea
| | - Sun Hee Choi
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyun Hwi Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Jum Suk Jang
- Division of Biotechnology, Safety, Environment, and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|