1
|
Guo W, Chai DF, Li J, Yang X, Fu S, Sui G, Zhuang Y, Guo D. Strain Engineering for Electrocatalytic Overall Water Splitting. Chempluschem 2024; 89:e202300605. [PMID: 38459914 DOI: 10.1002/cplu.202300605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
Strain engineering is a novel method that can achieve superior performance for different applications. The lattice strain can affect the performance of electrochemical catalysts by changing the binding energy between the surface-active sites and intermediates and can be affected by the thickness, surface defects and composition of the materials. In this review, we summarized the basic principle, characterization method, introduction strategy and application direction of lattice strain. The reactions on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are focused. Finally, the present challenges are summarized, and suggestions for the future development of lattice strain in electrocatalytic overall water splitting are put forward.
Collapse
Affiliation(s)
- Wenxin Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Yan Zhuang
- Mat Sci & Engn, Jiamusi, 154007, Heilongjiang, Peoples R China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
2
|
Sam DK, Cao Y. Iron-Cobalt Nanoparticles Embedded in B,N-Doped Chitosan-Derived Porous Carbon Aerogel for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32311-32321. [PMID: 38870486 DOI: 10.1021/acsami.4c06141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Given their intriguing properties, porous carbons have surfaced as promising electrocatalysts for various energy conversion reactions. This study presents a unique approach where iron-cobalt (FeCo) is confined in a boron, nitrogen-doped chitosan-derived porous carbon aerogel (BNPC-FeCo) to serve as an electrocatalyst for the hydrogen evolution and oxygen evolution reactions (HER and OER). The BNPC-FeCo-900 electrocatalyst demonstrates excellent catalyst activity, with very low overpotentials of 186 and 320 mV at 10 mA cm-2, low Tafel slopes of 82 and 55 mV dec-1, and low charge transfer resistance of 2.68 and 9.25 Ω for HER and OER, respectively. Density functional theory (DFT) calculations further reveal that the cooperation between the boron, nitrogen codoped porous carbon, and the FeCo nanoparticles reduces intermediates' energy barriers, significantly enhancing the HER and OER performance. In conclusion, this work offers significant and informative perspectives into the potential of porous carbon materials as dual-purpose electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Daniel Kobina Sam
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yan Cao
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
3
|
Cheng Y, Chen H, Zhang L, Xu X, Cheng H, Yan C, Qian T. Evolution of Grain Boundaries Promoted Hydrogen Production for Industrial-Grade Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313156. [PMID: 38242541 DOI: 10.1002/adma.202313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The development of efficient and durable high-current-density hydrogen production electrocatalysts is crucial for the large-scale production of green hydrogen and the early realization of hydrogen economic blueprint. Herein, the evolution of grain boundaries through Cu-mediated NiMo bimetallic oxides (MCu-BNiMo), which leading to the high efficiency of electrocatalyst for hydrogen evolution process (HER) in industrial-grade current density, is successfully driven. The optimal MCu0.10-BNiMo demonstrates ultrahigh current density (>2 A cm-2) at a smaller overpotential in 1 m KOH (572 mV), than that of BNiMo, which does not have lattice strain. Experimental and theoretical calculations reveal that MCu0.10-BNiMo with optimal lattice strain generated more electrophilic Mo sites with partial oxidation owing to accelerated charge transfer from Cu to Mo, which lowers the energy barriers for H* adsorption. These synergistic effects lead to the enhanced HER performance of MCu0.10-BNiMo. More importantly, industrial application of MCu0.10-BNiMo operated in alkaline electrolytic cell is also determined, with its current density reached 0.5 A cm-2 at 2.12 V and 0.1 A cm-2 at 1.79 V, which is nearly five-fold that of the state-of-the-art HER electrocatalyst Pt/C. The strategy provides valuable insights for achieving industrial-scale hydrogen production through a highly efficient HER electrocatalyst.
Collapse
Affiliation(s)
- Yu Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Huanyu Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Xinnan Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Huili Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, P. R. China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| |
Collapse
|