1
|
Guo T, Sun H, Liu C, Yang F, Hou D, Zheng Y, Gao H, Shi R, He X, Lin X. Twisted Structure Induced Solid-State Fluorescence and Room-Temperature Phosphorescence from Furan-Based Carbon Dots. Inorg Chem 2024; 63:19939-19948. [PMID: 39385452 DOI: 10.1021/acs.inorgchem.4c03445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Boron doping can effectively induce solid-state fluorescence (SSF) in carbon dots (CDs); however, research on the intrinsic mechanism underlying this phenomenon is lacking. Herein, a design strategy for boron-doped furan-based CDs is proposed, CDs with aggregation-induced emission (AIE) properties are synthesized, and the mechanism by which boron atom dopants induces SSF and room-temperature phosphorescence (RTP) is elucidated. The morphology and structural characterization of the CDs indicate that boron doping leads to structural twisting of the CDs. The AIE phenomenon of CDs arises from the inhibition of the twisted structure motions and a reduction in the nonradiative relaxation rate during the aggregation process. In addition, CDs with twisted structures exhibit a smaller overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), effectively reducing the singlet-triplet splitting energy (ΔEST). CDs embedded in microcrystalline cellulose (MCC) exhibit green RTP because the nonradiative transitions are suppressed, and the excited triplet species remain stable. For the first time, this study reveals the structure-activity relationship between the twisted structure and optical properties of CDs, providing a new approach for the preparation of solid-state light-emitting CDs.
Collapse
Affiliation(s)
- Tingxuan Guo
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Hao Sun
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Fulin Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Hui Gao
- Yunnan University of Chinese Medicine, University City of Chenggong, 1076, Yuhua Road, Kunming, Yunnan Province 650500, China
| | - Rui Shi
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| |
Collapse
|
2
|
Zhang S, Li J, Zhou J, Xu P, Li Y, Zhang Y, Wu S. Modulating carbon dots from aggregation-caused quenching to aggregation-induced emission and applying them in sensing, imaging and anti-counterfeiting. Talanta 2024; 282:126983. [PMID: 39395306 DOI: 10.1016/j.talanta.2024.126983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Aggregation Induced Emission Carbon Dots (AIE-CDs) address the problem of conventional CDs being quenched in the solid-state. However, there are still challenges in comprehending the luminescence mechanism. This work proposed a strategy for preparing green, yellow, and near-infrared CDs by modifying the functional groups on the precursor from hydroxyl and amino to p-methylenediamine, in which electronic supply capacity determined the redshift. Additionally, The CDs' properties transformed from Aggregation-Caused Quenching (ACQ) to AIE was realized by substituting non-rotatable hydroxyl or amino groups with the rotatable p-methylenediamine on the precursor. The resulting CDs were then applied in multifield. C-CDs was used for ratiometric detection of Al3+ and F- in pure water through three methods including fluorometer, test strip and smartphone. R-CDs was used for imaging cell nucleus and zebrafish. NIR-CDs (λem = 676 nm) exhibits dual emission, AIE and phosphorescent characteristics was used for triple anti-counterfeiting and binary information encryption. In summary, our finding presented a strategy for preparing multicolor CDs, proposed a mechanism for the transition of CDs from ACQ to AIE, and explore their multiple applications in anti-counterfeiting, information encapsulation, sensing and imaging.
Collapse
Affiliation(s)
- Shengtao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Jinhong Li
- Shaanxi Hantang Pharmaceutical Co., Ltd, Xi'an, 710021, PR China
| | - Jieyu Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Pengyue Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China.
| |
Collapse
|
3
|
Fu Q, Lu K, Sun S, Dong Z. Recent advances in fluorescence and afterglow of CDs in matrices. NANOSCALE HORIZONS 2024; 9:1072-1098. [PMID: 38655703 DOI: 10.1039/d4nh00093e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Carbon dots (CDs) are novel nanomaterials with dimensions less than 10 nm that have attracted much attention due to their outstanding optical properties. However, the development of solid-state fluorescence and afterglow methods has been relatively slow, although the properties of these materials under liquid conditions have been extensively studied. In recent years, embedding CDs in a matrix has been shown to prevent aggregation quenching and inhibit nonradiative transitions, thus realizing solid-state fluorescence and afterglow, which has greatly broadened the research and application areas of CDs. In terms of hydrogen bonding, ionic bonding, covalent bonding and spatial confinement, the interactions between CDs and matrices can effectively realize and improve the solid-state fluorescence and afterglow effects of CDs. Recent applications of CDs in matrices in optoelectronics, information security, sensing, biotherapeutics and imaging are also summarized. Finally, we summarize the challenges and developments of CDs in matrices.
Collapse
Affiliation(s)
- Qiang Fu
- College of Engineering, Qufu Normal University, Rizhao, Shandong, 276826, People's Republic of China.
| | - Kangzhi Lu
- College of Engineering, Qufu Normal University, Rizhao, Shandong, 276826, People's Republic of China.
| | - Shouhong Sun
- College of Engineering, Qufu Normal University, Rizhao, Shandong, 276826, People's Republic of China.
| | - Zhanhua Dong
- College of Engineering, Qufu Normal University, Rizhao, Shandong, 276826, People's Republic of China.
| |
Collapse
|
4
|
Zhang L, Bian Z, Hu G. A carbon dot-based time-dependent color-changing room temperature phosphorescent material with facile synthesis. LUMINESCENCE 2024; 39:e4779. [PMID: 38769873 DOI: 10.1002/bio.4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Carbon dots have attracted widespread attention due to their excellent optical properties and so on and are therefore used in various fields such as anti-counterfeiting. There are many reports on carbon dot-based room-temperature phosphorescent materials, but there are still fewer reports on carbon dot-based room-temperature phosphorescent materials with time-dependent color-changing properties. In this work, a time-dependent color-changing carbon dot-based room-temperature phosphorescent material with the ability to change from green to blue was successfully prepared by a simple one-pot heating method using hydroxyurea as the only raw material. In this process, hydroxyurea is used as both a carbon and nitrogen source, and in the process of material formation, hydroxyurea also partially forms cyanuric acid as a matrix to make the carbon dots uniformly dispersed in it. By blending the ratio of the dual emission centers of the carbon dots themselves, the final effect of time-dependent color-changing is achieved by taking advantage of the intensity changes and color differences of each emission center. The present work provides new ideas for the preparation of time-dependent color-changing carbon dot-based room-temperature phosphorescent materials.
Collapse
Affiliation(s)
- Le Zhang
- Chemical Technology, Institute of Chemical Technology, China University of Mining & Technology, Xuzhou, China
| | - Zhentao Bian
- Chemical Technology, Institute of Chemical Technology, China University of Mining & Technology, Xuzhou, China
| | - Guangzhou Hu
- Chemical Technology, Institute of Chemical Technology, China University of Mining & Technology, Xuzhou, China
| |
Collapse
|
5
|
Li Y, Chen L, Yang S, Wei G, Ren X, Xu A, Wang H, He P, Dong H, Wang G, Ye C, Ding G. Symmetry-Triggered Tunable Phosphorescence Lifetime of Graphene Quantum Dots in a Solid State. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313639. [PMID: 38353607 DOI: 10.1002/adma.202313639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Studying the phosphorescent mechanisms of carbon nanostructures synthesized by the "bottom-up" approach is key to understanding the structure modulation and the interfacial properties of carbon nanostructures. In this work, the relationships among symmetry of precursors in the "bottom-up" synthesis, structures of products, and phosphorescence lifetimes of graphene quantum dots (GQDs) are studied. The symmetry matching of precursors in the formation of a D6h graphene-like framework is considered the key factor in controlling the separability of sp2 domains in GQDs. As the separability of sp2 domains in GQDs increases, the phosphorescence lifetimes (14.8-125.5 ms) of GQDs in the solid state can be tuned. Machine learning is used to define the degree of disorder (S) of the GQD structure, which quantitatively describes the different space groups of precursors. The negative correlation between S and the oscillator strength of GQDs is uncovered. Therefore, S can be recognized as reflective of oscillator strength in the GQD structure. Finally, based on the correlations found between the structures and phosphorescence lifetimes of GQDs, GQDs with an ultralong phosphorescence lifetime (28.5 s) are obtained. Moreover, GQDs with visible phosphorescence emission (435-618 nm) are synthesized.
Collapse
Affiliation(s)
- Yongqiang Li
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangfeng Chen
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siwei Yang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Genwang Wei
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xue Ren
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Anli Xu
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hang Wang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Guqiao Ding
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Zhang X, Liu X, Liu P, Li B, Xu Y. Ultralong afterglow of heavy-atom-free carbon dots with a phosphorescence lifetime of up to 3.7 s for encryption and fingerprinting description. Dalton Trans 2024; 53:4671-4679. [PMID: 38358363 DOI: 10.1039/d4dt00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Metal-free room-temperature phosphorescent (RTP) materials with changeable colors have attracted great attention in anti-counterfeiting information encryption. Most ultralong-lifetime RTP (URTP) luminophores are traditionally obtained through heavy atom effects via enhancing the spin-orbit coupling efficiency. Here, we report the self-assembly of URTP carbon dots (CDs) using diphenylaminourea as the precursor through a thermal-evaporation assisted covalent-binding approach in the presence of boric acid (BA). The BA-functionalized diphenylaminourea-derived CDs (denoted as D-CDs1.5/BA composites) show a rigid network structure with B-C linkages connected to the surface of the CDs, which can effectively suppress the free vibration of CDs to promote intersystem crossover, finally resulting in an excellent URTP afterglow performance. They feature a low singlet-triplet energy gap and reduced nonradiative attenuation properties. As a result, the D-CDs1.5/BA composites exhibit a bifunctional fluorescence/phosphorescence performance with a high phosphorescence quantum efficiency (12.67%) and an ultra-long green afterglow phosphorescence lifetime of up to 3.66 s. A high-level information encryption and fingerprinting description based on the URTP D-CDs1.5/BA composites were then investigated. This work contributes to the feasible design and preparation of novel URTP CD materials with both ultra-long afterglow and a high phosphorescence efficiency, making them promising candidates for advanced anti-counterfeiting applications.
Collapse
Affiliation(s)
- Xinlei Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Xia Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Peng Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Bohan Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| |
Collapse
|