1
|
Krem S, Sam S, Sung S, Sung W, Kim D. Charge Inversion by Monovalent Hydroxide Ions. J Phys Chem Lett 2024; 15:12010-12016. [PMID: 39587868 DOI: 10.1021/acs.jpclett.4c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The interaction between the hydroxide ion (OH-) and the headgroup of a model cationic lipid (DPTAP, 1,2-dipalmitoyl-3-trimethylammonium-propane chloride) was investigated for different concentrations of NaOH solutions by using sum-frequency vibrational spectroscopy. The OH signal (3000-3700 cm-1) of the interfacial water under the Langmuir monolayer of DPTAP decreased with increasing NaOH concentration, due to screening of the surface charge by OH- counterions. Surprisingly, after reaching a minimum at 5 mM NaOH, the OH signal steadily increased. The phase-sensitive spectra revealed a sign change in the OH stretch band, indicating the overcompensation of the surface charge by OH-. By contrast, for a DODAB (didodecyldimethylammonium bromide) monolayer (a cationic surfactant without ester groups), the OH stretch signal decreased monotonically with NaOH addition. This charge inversion behavior is driven by the specific interaction between the ester moiety of DPTAP and the OH- that overcomes the Coulomb repulsion between the adsorbed ions.
Collapse
Affiliation(s)
- Sona Krem
- Department of Physics, Sogang University, Seoul 04107, Korea
- Graduate School of Science, Royal University of Phnom Penh, Phnom Penh 120404, Cambodia
| | - Sokhuoy Sam
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Siheon Sung
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Woongmo Sung
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Doseok Kim
- Department of Physics, Sogang University, Seoul 04107, Korea
| |
Collapse
|
2
|
Tetteh N, Parshotam S, Gibbs JM. Separating Hofmeister Trends in Stern and Diffuse Layers at a Charged Interface. J Phys Chem Lett 2024; 15:9113-9121. [PMID: 39206708 DOI: 10.1021/acs.jpclett.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Understanding the role of pH and ions on the electrical double layer (EDL) at charged mineral oxide/aqueous interfaces remains crucial in modeling environmental and industrial processes. Yet the simultaneous contribution of pH and specific ion effects (SIEs) on the different layers of the EDL remains unknown. Here, we utilize zeta potential measurements, vibrational sum frequency generation, and the maximum entropy method to ascertain the detailed structure of the Stern and diffuse regions of the EDL at the silica/water interface with varying pH values for different alkali chlorides. Both at pH 2, when the surface is nearly neutral, and at pH 12, when the surface is highly charged, we observe that Li+ and Na+ disrupt while Cs+ enhances existing water structures within the Stern layer. Moreover, the SIE trends for the diffuse and Stern layers are opposite to one another at pH 2 (in the amount of ordered water) and at pH 12 (in the amount of net oriented water). Finally, we observe an inversion in Hofmeister (SIE) trends at low and high pH in the zeta that impacts the diffuse layer structure. These results indicate that SIEs play critical yet separable roles in governing both the electrostatic and water-structuring capabilities of the EDL.
Collapse
Affiliation(s)
- Nathaniel Tetteh
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Shyam Parshotam
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
3
|
Hore DK. Phase of the second-order susceptibility in vibrational sum frequency generation spectroscopy: Origins, utility, and measurement techniques. J Chem Phys 2024; 161:060902. [PMID: 39132786 DOI: 10.1063/5.0220817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Vibrational sum frequency generation can provide valuable structural information at surfaces and buried interfaces. Relating the measured spectra to the complex-valued second-order susceptibility χ(2) is at the heart of the technique and a requisite step in nearly all subsequent analyses. The magnitude and phase of χ(2) as a function of frequency reveal important information about molecules and materials in regions where centrosymmetry is broken. In this tutorial-style perspective, the origins of the χ(2) phase are first described, followed by the utility of phase determination. Finally, some practical methods of phase extraction are discussed.
Collapse
Affiliation(s)
- Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada and Department of Computer Science, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
4
|
Raji F, Nguyen NN, Nguyen CV, Nguyen AV. Lead (II) ions enable the ion-specific effects of monovalent anions on the molecular structure and interactions at silica/aqueous interfaces. J Colloid Interface Sci 2024; 662:653-662. [PMID: 38367582 DOI: 10.1016/j.jcis.2024.02.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
HYPOTHESIS The adsorption of heavy metal ions such as Pb(II) onto negatively charged minerals such as silica is expected to alter the structure and the interactions at the silica/aqueous interfaces. Besides the solution pH, the inner-sphere sorption of Pb(II) is expected to regulate the surface charge/potential, hypothesized to control the actions of monovalent anions in the aqueous environment. These complex pictures can be probed directly using surface-sensitive sum-frequency generation (SFG) spectroscopy. EXPERIMENTS The pH-dependent water structure within the double layer at silica/aqueous interfaces under the influence of different ions was examined using SFG. The recorded SFG spectra were deconvoluted into the Stern layer (SL) and diffuse layer (DL) using the maximum entropy method in conjunction with the electrical double-layer theory. FINDINGS Standalone monovalent sodium salts do not exhibit ion-specific effects on the silica/aqueous interfaces. However, the mixture of Pb(II) species and each of these salts display profound ion-specific effects on the structure of silica/aqueous interfaces, indicating the role of Pb(II) as an enabler of the ion-specificity of the investigated monovalent anions. The interesting effect arises from a complex interplay between the physical processes (i.e., electrostatic interactions, screening effects, etc.) and chemical processes such as the hydrolysis of Pb(II) ions, ion complexation, protonation and deprotonation of the surface silanol group.
Collapse
Affiliation(s)
- Foad Raji
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- Department of Water and Environmental Regulation, Joondalup, WA 6027, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Uddin MM, Azam MS, Hore DK. Variable-Angle Surface Spectroscopy Reveals the Water Structure in the Stern Layer at Charged Aqueous Interfaces. J Am Chem Soc 2024; 146:11756-11763. [PMID: 38600700 DOI: 10.1021/jacs.3c14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
At charged aqueous interfaces, the second-order nonlinear optical response originates from water molecules within the diffuse part of the electrical double layer, which are ordered by the surface field and from water that additionally experiences chemical and physical interactions with the surface in the Stern layer. These two environments can either reinforce or diminish the overall signal and can be disentangled by varying the coherence length of their interaction with external laser fields. Here, we demonstrate a method in which the angle of incidence is varied to afford a significant change in the coherence length. When this technique was applied to the silica-water interface, it was observed that water molecules in the Stern and diffuse layers direct their hydrogen atoms toward the mineral surface at a low ionic strength and neutral pH. A decrease in the signal with increasing ionic strength is attributed to hydrated cation adsorption that competes with free water for deprotonated silanol sites.
Collapse
Affiliation(s)
- Md Mosfeq Uddin
- Department of Chemistry, University of Victoria, Victoria V8W 3 V6, British Columbia, Canada
| | - Md Shafiul Azam
- Department of Chemistry, University of Victoria, Victoria V8W 3 V6, British Columbia, Canada
| | - Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria V8W 3 V6, British Columbia, Canada
- Department of Computer Science, University of Victoria, Victoria V8W 3P6, British Columbia, Canada
| |
Collapse
|
6
|
Parshotam S, Rehl B, Brown A, Gibbs JM. Relating the phase in vibrational sum frequency spectroscopy and second harmonic generation with the maximum entropy method. J Chem Phys 2023; 159:204707. [PMID: 38014784 DOI: 10.1063/5.0172667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
Nonlinear optical methods, such as vibrational sum frequency generation (vSFG) and second harmonic generation (SHG), are powerful techniques to study elusive structures at charged buried interfaces. However, for the separation and determination of the Stern and diffuse layer spectra at these charged interfaces, complex vSFG spectra and, hence, the absolute phase need to be retrieved. The maximum entropy method is a useful tool for the retrieval of complex spectra from the intensity spectra; however, one caveat is that an understanding of the error phase is required. Here, for the first time, we provide a physically motivated understanding of the error phase. Determining the error phase from simulated spectra of oscillators with a spectral overlap, we show that for broadband vSFG spectra, such as for the silica/water interface, the diffuse and Stern layers' spectral overlap within the O-H stretching window results in a correlation between the error phase and the phase shift between the responses of these layers. This correlation makes the error phase sensitive to changes in Debye length from varying the ionic strength among other variations at the interface. Furthermore, the change in the magnitude of the error phase can be related to the absolute SHG phase, permitting the use of an error phase model that can utilize the SHG phase to predict the error phase and, hence, the complex vSFG spectra. Finally, we highlight limitations of this model for vSFG spectra with a poor overlap between the diffuse and Stern layer spectra (silica/HOD in D2O system).
Collapse
Affiliation(s)
- Shyam Parshotam
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Benjamin Rehl
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|