1
|
Zou W, Huo Y, Zhang X, Jin C, Li X, Cao Z. Toxicity of hexagonal boron nitride nanosheets to freshwater algae: Phospholipid membrane damage and carbon assimilation inhibition. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133204. [PMID: 38103293 DOI: 10.1016/j.jhazmat.2023.133204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Hexagonal boron nitride (h-BN) nanomaterials have attracted numerous attentions for application in various fields, including environmental governance. Understanding the environmental implications of h-BN is a prerequisite for its safe and sustainable use; nevertheless, information on the negative effect of h-BN on aquatic organisms and the underlying toxicity mechanisms is scarce. The present study found that low exposure doses (0.1-1 μg/mL) of micron-sized h-BN lamella apparently suppressed (maximally 45.3%) the growth of Chlorella vulgaris (a freshwater alga) via membrane damages and metabolic reprogramming. Experimental and simulation results verified that h-BN can penetrate into and then extract phospholipids from the cell membrane of algae due to the strong hydrophobic interactions between h-BN nanosheets and lipids, resulting in membrane permeabilization and integrity reduction. Oxidative stress-triggered lipid peroxidation also contributes to membrane destruction of algae. Metabolomics assay demonstrated that h-BN down-regulated the CO2-fixation associated Calvin cycle and glycolysis/gluconeogenesis pathways in algae, thereby inhibiting energy synthesis and antioxidation process. Despite releasing soluble B inside cells, the B species exhibited negligible toxicity. These findings highlight the phenomena and mechanisms of h-BN toxicity in photosynthetic algae, which have great implications for guiding their safe use under the scenarios of global carbon neutrality.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Yuhan Huo
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|