1
|
Han Q, Veríssimo NVP, Bryant SJ, Martin AV, Huang Y, Pereira JFB, Santos-Ebinuma VC, Zhai J, Bryant G, Drummond CJ, Greaves TL. Scattering approaches to unravel protein solution behaviors in ionic liquids and deep eutectic solvents: From basic principles to recent developments. Adv Colloid Interface Sci 2024; 331:103242. [PMID: 38964196 DOI: 10.1016/j.cis.2024.103242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Proteins in ionic liquids (ILs) and deep eutectic solvents (DESs) have gained significant attention due to their potential applications in various fields, including biocatalysis, bioseparation, biomolecular delivery, and structural biology. Scattering approaches including dynamic light scattering (DLS) and small-angle X-ray and neutron scattering (SAXS and SANS) have been used to understand the solution behavior of proteins at the nanoscale and microscale. This review provides a thorough exploration of the application of these scattering techniques to elucidate protein properties in ILs and DESs. Specifically, the review begins with the theoretical foundations of the relevant scattering approaches and describes the essential solvent properties of ILs and DESs linked to scattering such as refractive index, scattering length density, ion-pairs, liquid nanostructure, solvent aggregation, and specific ion effects. Next, a detailed introduction is provided on protein properties such as type, concentration, size, flexibility and structure as observed through scattering methodologies. This is followed by a review of the literature on the use of scattering for proteins in ILs and DESs. It is highlighted that enhanced data analysis and modeling tools are necessary for assessing protein flexibility and structure, and for understanding protein hydration, aggregation and specific ion effects. It is also noted that complementary approaches are recommended for comprehensively understanding the behavior of proteins in solution due to the complex interplay of factors, including ion-binding, dynamic hydration, intermolecular interactions, and specific ion effects. Finally, the challenges and potential research directions for this field are proposed, including experimental design, data analysis approaches, and supporting methods to obtain fundamental understandings of complex protein behavior and protein systems in solution. We envisage that this review will support further studies of protein interface science, and in particular studies on solvent and ion effects on proteins.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nathalia V P Veríssimo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-020, Brazil
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Andrew V Martin
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuhong Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jorge F B Pereira
- Univ Coimbra, CERES, Department of Chemical Engineering, Pólo II - Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Valéria C Santos-Ebinuma
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-020, Brazil
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
2
|
Li Z, Qin B, Liu H, Du S, Liu Y, He L, Xu B, Du L. Mesoporous silica thin film as effective coating for enhancing osteogenesis through selective protein adsorption and blood clotting. Biomed Mater 2024; 19:055040. [PMID: 39094621 DOI: 10.1088/1748-605x/ad6ac2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
The role of blood clots in tissue repair has been identified for a long time; however, its participation in the integration between implants and host tissues has attracted attention only in recent years. In this work, a mesoporous silica thin film (MSTF) with either vertical or parallel orientation was deposited on titania nanotubes surface, resulting in superhydrophilic nanoporous surfaces. A proteomic analysis of blood plasma adsorption revealed that the MSTF coating could significantly increase the abundance of acidic proteins and the adsorption of coagulation factors (XII and XI), with the help of cations (Na+, Ca2+) binding. As a result, both the activation of platelets and the formation of blood clots were significantly enhanced on the MSTF surface with more condensed fibrin networks. The two classical growth factors of platelets-derived growth factors-AB and transformed growth factors-βwere enriched in blood clots from the MSTF surface, which accounted for robust osteogenesis bothin vitroandin vivo. This study demonstrates that MSTF may be a promising coating to enhance osteogenesis by modulating blood clot formation.
Collapse
Affiliation(s)
- Zhe Li
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Bowen Qin
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huan Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Shimin Du
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Yunxian Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Lixing He
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Boya Xu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Liangzhi Du
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| |
Collapse
|
3
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Awad MN, Brown SJ, Abraham AN, Sezer D, Han Q, Wang X, Le TC, Elbourne A, Bryant G, Greaves TL, Bryant SJ. Biophysical Characterization and Cryopreservation of Mammalian Cells Using Ionic Liquids. J Phys Chem B 2024; 128:2504-2515. [PMID: 38416751 DOI: 10.1021/acs.jpcb.3c06797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Ionic liquids (ILs) are a diverse class of solvents which can be selected for task-specific properties, making them attractive alternatives to traditional solvents. To tailor ILs for specific biological applications, it is necessary to understand the structure-property relationships of ILs and their interactions with cells. Here, a selection of carboxylate anion-based ILs were investigated as cryoprotectants, which are compounds added to cells before freezing to mitigate lethal freezing damage. The cytotoxicity, cell permeability, thermal behavior, and cryoprotective efficacy of the ILs were assessed with two model mammalian cell lines. We found that the biophysical interactions, including permeability of the ILs, were influenced by considering the IL pair together, rather than as single species acting independently. All of the ILs tested had high cytotoxicity, but ethylammonium acetate demonstrated good cryoprotective efficacy for both cell types tested. These results demonstrate that despite toxicity, ILs may be suitable for certain biological applications. It also demonstrates that more research is required to understand the contribution of ion pairs to structure-property relationships and that knowing the behavior of a single ionic species will not necessarily predict its behavior as part of an IL.
Collapse
Affiliation(s)
- Miyah N Awad
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Stuart J Brown
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amanda N Abraham
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dilek Sezer
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Qi Han
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoying Wang
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Digital Services, Deakin University, Melbourne, Victoria 3008, Australia
| | - Tu C Le
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Brown SJ, Ryan TM, Drummond CJ, Greaves TL, Han Q. Lysozyme aggregation and unfolding in ionic liquid solvents: Insights from small angle X-ray scattering and high throughput screening. J Colloid Interface Sci 2024; 655:133-144. [PMID: 37931553 DOI: 10.1016/j.jcis.2023.10.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Understanding protein behaviour is crucial for developing functional solvent systems. Ionic liquids (ILs) are designer salts with versatile ion combinations, where some suppress unfavourable protein behaviour. This work utilizes small angle X-ray scattering (SAXS) to investigate the size and shape changes of model protein hen egg white lysozyme (HEWL) in 137 IL and salt solutions. Guinier, Kratky, and pair distance distribution analysis were used to evaluate the protein size, shape, and aggregation changes in these solvents. At low IL and salt concentration (1 mol%), HEWL remained monodispersed and globular. Most ILs increased HEWL size compared to buffer, while the nitrate and mesylate anions induced the most significant size increases. IL cation branching, hydroxyl groups, and longer alkyl chains counteracted this size increase. Common salts exhibited specific ion effects, while the IL effect varied with concentration due to complex ion-pairing. Protein aggregation and unfolding occurred at 10 mol% IL, altering the protein shape, especially for ILs with multiple alkyl chains on the cation, or with a mesylate/nitrate anion. This study highlights the usefulness of adopting a high-throughput SAXS strategy for understanding IL effects on protein behaviour and provides insights on controlling protein aggregation and unfolding with ILs.
Collapse
Affiliation(s)
- Stuart J Brown
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Timothy M Ryan
- SAXS/WAXS Beamline, Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|