1
|
Zhang X, Zhu M, Chen J, Wang Z, Li S, Yang H, Xu H, He G, Deng Z, Gu S, Liu X, Shang B. Magnetically driven Janus conical vertical array for all-weather freshwater collection. MATERIALS HORIZONS 2024; 11:1779-1786. [PMID: 38314856 DOI: 10.1039/d3mh02083e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The engineering of multifunctional structures with special surface wettability is highly desirable for all-weather freshwater production, but relevant research is scarce. In this study, a Janus conical vertical array was designed and fabricated via a magnetically driven spray-coating method for the first time. Benefiting from the special structure and wettability enhancement of the array in terms of solar absorption, fog capture and merging, droplet movement and evaporation area, all-weather freshwater production consisting of high-quality daytime solar vapor generation (water evaporation rate approximately 2.43 kg m-2 h-1, 1 kW m-2) and nighttime fog collection (water collection rate approximately 3.536 g cm-2 h-1) can be realized concurrently. When the designed array is employed for outdoor environments (114°35'E, 30°38'N, average daily temperature 34.9 °C, average daily humidity 64.0%), reliable and efficient daily pure water yields of 19.13 kg m-2-26.09 kg m-2 are obtainable. We believe that the proposed strategy for fabricating a Janus conical vertical array is novel in the integration of solar vapor generation and fog collection, which has great significance for all-weather freshwater production.
Collapse
Affiliation(s)
- Xiangyi Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Mengyao Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Junhao Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Zongwei Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Sanchuan Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Huiyu Yang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China.
| | - Hongman Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Guang He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Shaojin Gu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Xin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Bin Shang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| |
Collapse
|