1
|
Gan JC, Jiang ZF, Fang KM, Li XS, Zhang L, Feng JJ, Wang AJ. Low Rh doping accelerated HER/OER bifunctional catalytic activities of nanoflower-like Ni-Co sulfide for greatly boosting overall water splitting. J Colloid Interface Sci 2025; 677:221-231. [PMID: 39142162 DOI: 10.1016/j.jcis.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Facile synthesis of high-efficiency and stable bifunctional electrocatalyst is essential for producing clean hydrogen in energy storage systems. Herein, low Rh-doped flower-like Ni3S2/Co3S4 heterostructures were facilely prepared on porous nickel foam (labeled Rh-Ni3S2/Co3S4/NF) by a hydrothermal method. The correlation of the precursors types with the morphological structures and catalytic properties were rigorously investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in the control groups. The low Rh doping within the catalyst played important role in boosting the catalytic characteristics. The resulting catalyst showed the smaller overpotentials of 197 and 78 mV to drive a current density of 10 mA cm-2 for the OER and HER in alkaline electrolyte, respectively. And the potential only required 1.71 V to drive a current density of 100 mA cm-2 in a water splitting device. It reflects excellent overall water splitting of the home-made Rh-Ni3S2/Co3S4/NF. This strategy shed some constructive light for preparing transition metal sulfide-based electrocatalysts in water splitting devices.
Collapse
Affiliation(s)
- Jia-Chun Gan
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zuo-Feng Jiang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xin-Sheng Li
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Zhao F, Kang L, Long J, Chen K, Ding S. An Efficient Cathode Catalyst for Rechargeable Zinc-air Batteries based on the Derivatives of MXene@ZIFs. CHEMSUSCHEM 2024:e202401200. [PMID: 39499023 DOI: 10.1002/cssc.202401200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/07/2024] [Indexed: 11/07/2024]
Abstract
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes at the cathode of zinc-air batteries. Developing highly efficient and durable electrocatalysts at the air cathode is significant for the practical application of rechargeable zinc-air batteries. Herein, N-doped layered MX containing Co2P/Ni2P nanoparticles is synthesized by growing CoNi-ZIF on the surface and interlayers of the two-dimensional material MXene (Ti2C3) followed by phosphating calcination. The growth of CoNi-ZIF on the surface of MXene results in the attenuation of high-temperature structural damage of MXene, which in turn leads to the formation of Co2P/Ni2P@MX with a hierarchical configuration, higher electron conductivity, and abundant active sites. The optimized Co2P/Ni2P@MX achieves a half-wave potential of 0.85 V for the ORR and an overpotential of 345 mV for the OER. In addition, DFT calculations were adopted to investigate the mechanism at the atomic and molecular levels. The liquid zinc-air battery with Co2P/Ni2P@MX as the cathode exhibits a specific capacity of 783.7 mAh g-1 and exceeds 280 h (840 cycles) cycle stability, superior to zinc-air batteries constructed by the cathode of commercial Pt/C+RuO2 and other previous works. Furthermore, a solid-state battery synthesized with Co2P/Ni2P@MX as the cathode exhibits stable cycle performance (154 h/462 cycles).
Collapse
Affiliation(s)
- Fei Zhao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, China
| | - Li Kang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, China
| | - Jilan Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, China
| | - Keyu Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, China
| | - Simeng Ding
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, China
| |
Collapse
|
3
|
Tamilarasi S, Kumar RS, Kim AR, Kim HJ, Yoo DJ. Boosting the Production of Hydrogen from an Overall Urea Splitting Reaction Using a Tri-Functional Scandium-Cobalt Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405939. [PMID: 39318087 DOI: 10.1002/smll.202405939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Indexed: 09/26/2024]
Abstract
The creation of highly efficient and economical electrocatalysts is essential to the massive electrolysis of water to produce clean energy. The ability to use urea reaction of oxidation (UOR) in place of the oxygen/hydrogen evolution process (OER/HER) during water splitting is a significant step toward the production of high-purity hydrogen with less energy usage. Empirical evidence suggests that the UOR process consists of two stages. First, the metal sites undergo an electrochemical pre-oxidation reaction, and then the urea molecules on the high-valence metal sites are chemically oxidized. Here, the use of scandium-doped CoTe supported on carbon nanotubes called Sc@CoTe/CNT is reported and CoTe/CNT as a composite to efficiently promote hydrogen generation from highly durable and active electrocatalysts for the OER/UOR/HER in urea and alkali solutions. Electrochemical impedance spectroscopy indicates that the UOR facilitates charge transfer across the interface. Furthermore, the Sc@CoTe/CNT nanocatalyst has high performance in KOH and KOH-containing urea solutions as demonstrated by the HER, OER, and UOR (215 mV, 1.59, and 1.31 V, respectively, at 10 mA cm-2 in 1 m KOH) and CoTe/CNT shows 195 mV, 1.61 and 1.3 V, respectively. Consequently, the total urea splitting system achieves 1.29 V, whereas the overall water splitting device obtaines 1.49 V of Sc@CoTe/CNT and CoTe/CNT shows 1.54, 1.48 V, respectively. This work presents a viable method of combining HER with UOR for maximally effective hydrogen production.
Collapse
Affiliation(s)
- S Tamilarasi
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Ramasamy Santhosh Kumar
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Ae Rhan Kim
- Department of Life Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, R&D Center for CANUTECH, Business Incubation Center, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Hyun Jin Kim
- Department of Life Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
4
|
Lu J, Jiang W, Deng R, Feng B, Yin S, Tsiakaras P. Tailoring competitive adsorption sites of hydroxide ion to enhance urea oxidation-assisted hydrogen production. J Colloid Interface Sci 2024; 667:249-258. [PMID: 38636226 DOI: 10.1016/j.jcis.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Alloys with bimetallic electron modulation effect are promising catalysts for the electrooxidation of urea. However, the side reaction oxygen evolution reaction (OER) originating from the competitive adsorption of OH- and urea severely limited the urea oxidation reaction (UOR) activity on the alloy catalysts. This work successfully constructs the defect-rich NiCo alloy with lattice strain (PMo-NiCo/NF) by rapid pyrolysis and co-doping. By taking advantage of the compressive strain, the d-band center of NiCo is shifted downward, inhibiting OH- from adsorbing on the NiCo site and avoiding the detrimental OER. Meanwhile, the oxygenophilic P/Mo tailored specific adsorption sites to adsorb OH- preferentially, which further released the NiCo sites to ensure the enriched adsorption of urea, thus improving the UOR efficiency. As a result, PMo-NiCo/NF only requires 1.27 V and -57 mV to drive a current density of ±10 mA cm-2 for UOR and hydrogen evolution reaction (HER), respectively. With the guidance of this work, reactant competing adsorption sites could be tailored for effective electrocatalytic performance.
Collapse
Affiliation(s)
- Jiali Lu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenjie Jiang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Rui Deng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Boyao Feng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| | - Panagiotis Tsiakaras
- Laboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), Yekaterinburg 620990, Russian Federation; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| |
Collapse
|
5
|
Liu H, Wang P, Qi X, Yin A, Wang Y, Ye Y, Luo J, Ren Z, Chen L, Yu S, Wei J. Insights into the Understanding of the Nickel-Based Pre-Catalyst Effect on Urea Oxidation Reaction Activity. Molecules 2024; 29:3321. [PMID: 39064899 PMCID: PMC11279396 DOI: 10.3390/molecules29143321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nickel-based catalysts are regarded as the most excellent urea oxidation reaction (UOR) catalysts in alkaline media. Whatever kind of nickel-based catalysts is utilized to catalyze UOR, it is widely believed that the in situ-formed Ni3+ moieties are the true active sites and the as-utilized nickel-based catalysts just serve as pre-catalysts. Digging the pre-catalyst effect on the activity of Ni3+ moieties helps to better design nickel-based catalysts. Herein, five different anions of OH-, CO32-, SiO32-, MoO42-, and WO42- were used to bond with Ni2+ to fabricate the pre-catalysts β-Ni(OH)2, Ni-CO3, Ni-SiO3, Ni-MoO4, and Ni-WO4. It is found that the true active sites of the five as-fabricated catalysts are the same in situ-formed Ni3+ moieties and the five as-fabricated catalysts demonstrate different UOR activity. Although the as-synthesized five catalysts just serve as the pre-catalysts, they determine the quantity of active sites and activity per active site, thus determining the catalytic activity of the catalysts. Among the five catalysts, the amorphous nickel tungstate exhibits the most superior activity per active site and can catalyze UOR to reach 158.10 mA·cm-2 at 1.6 V, exceeding the majority of catalysts. This work makes for a deeper understanding of the pre-catalyst effect on UOR activity and helps to better design nickel-based UOR catalysts.
Collapse
Affiliation(s)
- Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ao Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuxin Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Ye
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi Ren
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Fan X, Li B, Zhu C, Yan F, Zhang X, Chen Y. Nitrogen and Sulfur Co-Doped Carbon-Coated Ni 3S 2/MoO 2 Nanowires as Bifunctional Catalysts for Alkaline Seawater Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309655. [PMID: 38243851 DOI: 10.1002/smll.202309655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/30/2023] [Indexed: 01/22/2024]
Abstract
Bifunctional catalysts have inherent advantages in simplifying electrolysis devices and reducing electrolysis costs. Developing efficient and stable bifunctional catalysts is of great significance for industrial hydrogen production. Herein, a bifunctional catalyst, composed of nitrogen and sulfur co-doped carbon-coated trinickel disulfide (Ni3S2)/molybdenum dioxide (MoO2) nanowires (NiMoS@NSC NWs), is developed for seawater electrolysis. The designed NiMoS@NSC exhibited high activity in alkaline electrolyte with only 52 and 191 mV overpotential to attain 10 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Significantly, the electrolyzer (NiMoS@NSC||NiMoS@NSC) based on this bifunctional catalyst drove 100 mA cm-2 at only 1.71 V along with a robust stability over 100 h in alkaline seawater, which is superior to a platinum/nickel-iron layered double hydroxide couple (Pt||NiFe LDH). Theoretical calculations indicated that interfacial interactions between Ni3S2 and MoO2 rearranged the charge at interfaces and endowed Mo sites at the interfaces with Pt-like HER activity, while Ni sites on Ni3S2 surfaces at non-interfaces are the active centers for OER. Meanwhile, theoretical calculations and experimental results also demonstrated that interfacial interactions improved the electrical conductivity, boosting reaction kinetics for both HER and OER. This study presented a novel insight into the design of high-performance bifunctional electrocatalysts for seawater splitting.
Collapse
Affiliation(s)
- Xiaocheng Fan
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Bei Li
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Feng Yan
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yujin Chen
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
7
|
Wan Z, Zhang Y, Ren Q, Li X, Yu H, Zhou W, Ma X, Xuan C. Interface engineering of NiS/NiCo 2S 4 heterostructure with charge redistribution for boosting overall water splitting. J Colloid Interface Sci 2024; 653:795-806. [PMID: 37751675 DOI: 10.1016/j.jcis.2023.09.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Developing highly efficient bifunctional non-noble metal-based electrocatalysts is pivotal to fulfilling practical water electrolysis. In this work, NiS/NiCo2S4 heterostructured electrocatalysts are prepared through a simply controlling sulfurization process by employing a one-pot solvothermal strategy. The alteration of cobalt addition amount can affect the crystalline phase, morphology, and catalytic activity of the resulting heterostructured materials. The successful integration of NiS with NiCo2S4 is realized by deliberately tuning the cobalt addition amount. The resulting Co-Ni-S5:1 delivers high activity with low overpotentials of 198 and 259 mV to attain 10 mA cm-2 when used as electrocatalysts toward hydrogen evolution reaction and oxygen evolution reaction, respectively. Experimental and theoretical calculations evidence the strong interface coupling between NiS and NiCo2S4 leads to increased electronic conductivity, electron migration near lattice-matched interface and interfacial charge redistribution, thereof enhancing the reaction kinetics rate and activity. Moreover, the potential application is demonstrated by employing Co-Ni-S5:1 in a two-electrode electrolyzer which can efficiently catalyze water electrolysis and work stably for 100 h. This work not only provides highly efficient bifunctional heterostructured electrocatalysts by simply regulating the metal components in sulfides but also further broadens the application of interface engineering.
Collapse
Affiliation(s)
- Zhenwei Wan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yueqi Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qinglin Ren
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xueru Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haitao Yu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wenkai Zhou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xinbin Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Cuijuan Xuan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
8
|
Li Q, Gao J, Zang X, Dai C, Zhang H, Xin L, Jin W, Xiao W, Xu G, Wu Z, Wang L. Synergistic Effects of Pyrrolic N/Pyridinic N on Ultrafast Microwave Synthesized Porous CoP/Ni 2P to Boost Electrocatalytic Hydrogen Generation. Inorg Chem 2023; 62:21508-21517. [PMID: 38064289 DOI: 10.1021/acs.inorgchem.3c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Transition metal phosphides are ideal inexpensive electrocatalysts for water-splitting, but the catalytic activity still falls behind that of noble metal catalysts. Therefore, developing valid strategies to boost the electrocatalytic activity is urgent to promote large-scale applications. Herein, a microwave combustion strategy (20 s) is applied to synthesize N-doped CoP/Ni2P heterojunctions (N-CoP/Ni2P) with porous structure. The porous structure expands the specific surface area and accelerates the mass transport efficiency. Importantly, the pyrrolic N/pyridinic N content is adjusted by changing the amount of urea during the synthesis process and then optimizing the adsorption/desorption capacity for H*/OH* to enhance the catalyst activity. Then, the synthesized N-CoP/Ni2P exhibits small overpotentials of 111 and 133 mV for HER in acidic and alkaline electrolytes and 290 mV for OER in alkaline electrolytes. This work provides an original and efficient approach to the synthesis of porous metal phosphides.
Collapse
Affiliation(s)
- Qichang Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jinxiao Gao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xingchao Zang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Chunlong Dai
- Shandong Long Antai Environmental Protection Technology Co., Ltd, Weifang, Shandong 261202, China
| | - Huadong Zhang
- Shandong Long Antai Environmental Protection Technology Co., Ltd, Weifang, Shandong 261202, China
| | - Liantao Xin
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Guangrui Xu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|