1
|
Wang N, Nan K, Zheng H, Xue Q, Wang W, Wang Y. Two-phase magnetic nanospheres with magnetic coupling effect encapsulated in porous carbon to achieve lightweight and efficient microwave absorbers. J Colloid Interface Sci 2024; 671:56-66. [PMID: 38788424 DOI: 10.1016/j.jcis.2024.05.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Component selection is crucial for microwave absorbents. Multi-component absorbers are increasingly useful and can be prepared through the rational design and control of various electrical, magnetic, and other auxiliary components. In this paper, Ni3Fe/NiFe2O4 nanospheres with two-phase magnetism were designed for use as a multi-component absorber. Specifically, a Ni3Fe/ NiFe2O4@SPC composite with 3D networks was successfully fabricated by hydrothermal method, high-temperature carbonization for activation, and electrostatic self-assembly. The contact interface and coupling effect between the two magnetic components can promote the attenuation of electromagnetic waves. Moreover, the introduction of porous carbon successfully inhibits the easy aggregation of the magnetic particles. Impressively, with a filling load of 10 wt%, the optimal RL of the prepared Ni3Fe/NiFe2O4@SPC composite reaches -60.6 dB, and the effective absorption bandwidth is 5.2 GHz at 2 mm. The combination of two magnetic components and porous carbon in this multiphase microwave-absorbing composite demonstrates a feasible strategy for designing efficient microwave absorbers in the future.
Collapse
Affiliation(s)
- Nian Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kai Nan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Hao Zheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Qingze Xue
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Wei Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| |
Collapse
|
2
|
Guo S, Cai Y, Cheng L, Yuan Y, Wang Y, Yu H, Hu Z, Chen D, Yuan H. Ultraflexible Ultrathin 3D/1D Hierarchical Interpenetrating Ni-MOF/CNT Buckypaper Composites: Microstructures and Microwave Absorption Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32713-32726. [PMID: 38860983 DOI: 10.1021/acsami.4c05050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Metal-organic frameworks (MOFs) have attracted attention due to their designable structures. However, recently reported MOF microwave-absorbing materials (MAMs) are dominated by powders. It remains a challenge to design MOF/carbon nanotube (CNT) composite structures that combine the mechanical properties of self-supporting flexibility with excellent microwave absorption. This work involves the hydrothermal approach to grow Ni-MOF of different microstructures in situ on the CNT monofilament by adjusting the molar ratio of nickel ions to organic ligands. Subsequently, an ultraflexible self-supporting Ni-MOF/CNT buckypaper (BP) is obtained by directional gas pressure filtration technology. The BP porous skeleton and the Ni-MOF with a unique porous structure provide effective impedance matching. The CNTs contribute to the conduction loss, the cross-scale heterogeneous interface generated by Ni-MOF/CNT BP provides rich interfacial polarization loss, and the porous structure complicates the microwave propagation path. All factors work together to give Ni-MOF/CNT BP an excellent microwave absorption capacity. The minimum reflection losses of Ni-MOF/CNT BPs decorated with granular-, hollow porous prism-, and porous prism-shaped Ni-MOFs reach -50.8, -57.8, and -43.3 dB, respectively. The corresponding effective absorption bandwidths are 4.5, 6.3, and 4.8 GHz, respectively. Furthermore, BPs show remarkable flexibility as they can be wound hundreds of times around a glass rod with a diameter of 4 mm without structural damage. This work presents a new concept for creating ultraflexible self-supported MOF-based MAMs with hierarchical interpenetrating porous structures, with potential application advantages in the field of flexible electronics.
Collapse
Affiliation(s)
- Siyu Guo
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Yanzhi Cai
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Laifei Cheng
- Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Yibing Yuan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Yuhan Wang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Haiming Yu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Zhongyi Hu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Dengpeng Chen
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Hudie Yuan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| |
Collapse
|
3
|
Wang S, Liu Q, Li S, Huang F, Zhang H. Joule-Heating-Driven Synthesis of a Honeycomb-Like Porous Carbon Nanofiber/High Entropy Alloy Composite as an Ultralightweight Electromagnetic Wave Absorber. ACS NANO 2024. [PMID: 38286018 DOI: 10.1021/acsnano.3c11408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
High entropy alloys (HEA) have garnered significant attention in electromagnetic wave (EMW) absorption due to their efficient synergism among multiple components and tunable electronic structures. However, their high density and limited chemical stability hinder their progress as lightweight absorbers. Incorporating HEA with carbon offers a promising solution, but synthesizing stable HEA/carbon composite faces challenges due to the propensity for phase separation during conventional heat treatments. Moreover, EMW absorption mechanisms in HEAs may be different from established empirical models due to their high-entropy effect. This underscores the urgent need to synthesize stable and lightweight HEA/carbon absorbers and uncover their intrinsic absorption mechanisms. Herein, we successfully integrated a quinary FeCoNiCuMn HEA into a honeycomb-like porous carbon nanofiber (HCNF) using electrostatic spinning and the Joule-heating method. Leveraging the inherent lattice distortion effects and honeycomb structure, the HCNF/HEA composite demonstrates outstanding EMW absorption properties at an ultralow filler loading of 2 wt %. It achieves a minimum reflection loss of -65.8 dB and boasts a maximum absorption bandwidth of up to 7.68 GHz. This study not only showcases the effectiveness of combining HCNF with HEA, but also underscores the potential of Joule-heating synthesis for developing lightweight HEA-based absorbers.
Collapse
Affiliation(s)
- Shipeng Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Qiangchun Liu
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Shikuo Li
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Fangzhi Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Hui Zhang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|