1
|
Fan E, Zhou S, Zhao H, Ran J, Zhang Z, Dong G, Zhang W, Zang Y, Zhao M, Chai DF, Huang X. Engineering hierarchical snowflake-like multi-metal selenide catalysts anchored on Ni foam for high-efficiency and stable overall water splitting. Dalton Trans 2024; 53:10142-10149. [PMID: 38818546 DOI: 10.1039/d4dt01108b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The development of excellent bifunctional electrocatalysts is an effective way to promote the industrial application of electrolytic water. In this work, a free-standing W-doped cobalt selenide (W-CoSe300/NF) electrocatalyst with a snowflake-like structure supported on nickel foam was prepared by a hydrothermal-selenization strategy. Benefiting from the high specific surface area of the 3D snowflake-like structure and the regulation of tungsten doping on the electronic structure of the metal active center, W-CoSe300/NF shows remarkable electrocatalytic water decomposition performance. In 1.0 M KOH, the W-CoSe300/NF electrocatalyst achieved an efficient HER and OER at a current density of 50 mA cm-2 with overpotentials as low as 84 mV and 283 mV, respectively. More importantly, W-CoSe300/NF acts as both the anode and cathode of the electrolytic tank, requiring only a potential of 1.54 V to obtain 10 mA cm-2 and can operate continuously for more than 120 hours at this current density. This study proposes a new way for the design of high efficiency and affordable bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Enze Fan
- College of Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Shuangqi Zhou
- College of Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Hanwei Zhao
- College of Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Jianxin Ran
- College of Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Zhuanfang Zhang
- Teaching Experiment Management Equipment Center, Qiqihar University, Qiqihar 161006, PR China.
| | - Guohua Dong
- College of Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Wenzhi Zhang
- College of Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Yu Zang
- College of Materials, Qiqihar University, Qiqihar University, Qiqihar 161006, PR China
| | - Ming Zhao
- College of Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Dong-Feng Chai
- College of Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Xiaoming Huang
- Teaching Experiment Management Equipment Center, Qiqihar University, Qiqihar 161006, PR China.
| |
Collapse
|
2
|
Huang X, Liang R, Zhang Y, Fan J, Hao W. Matrix-type bismuth-modulated copper-sulfur electrode using local photothermal effect strategy for efficient seawater splitting. J Colloid Interface Sci 2024; 660:823-833. [PMID: 38277839 DOI: 10.1016/j.jcis.2024.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Constructing catalytic electrodes with green economy, stability, and high efficiency is crucial for achieving overall economic water splitting. Herein, a matrix-type bismuth-modulated nickel-boron electrodes loaded on sulfurized copper foils (Bi-NiBx@CFS) is synthesized via in situ mild electroless plating. This electrode features a 2-dimensional (2D) matrix-type nanosheet structure with uniform, large pores, providing more active sites and ensuring a high gas transmission rate. Notably, the crystalline-amorphous structure constituted by the photothermal materials Bi and NiBx is loaded onto sulfide-based heterostructures. This enhances the catalytic activity through the "local photothermal effect" strategy. A performance enhancement of approximately 10 % is achieved for the Bi-NiBx@CFS at a current density of 10 mA cm-2 using this strategy at 298 K. This enhancement is equivalent to increasing the temperature of conventional electrolyte solutions by 321 K. In addition, the overpotential required to catalytically drive seawater splitting at the same current density is only 1.486 V. The Bi-NiBx@CFS electrode operates stably for 200 h without any performance degradation at industrial-grade current densities. The Bi-NiBx@CFS electrode under the "localized photothermal effect" strategy is expected to be a new type of electrocatalyst for overall seawater splitting.
Collapse
Affiliation(s)
- Xinke Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Rikai Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yifan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|