1
|
Guo L, Jiao S, Wei G, Zhao X, Zhang J, Zhang H, Zhao X, Chen H, Ji X. Regulating the Pore Structure and Heteroatom Doping of Soybean Straw Carbon Based on a Bifunctional Template Method for the High-Performance Carbon Supercapacitor. CHEMSUSCHEM 2025; 18:e202400780. [PMID: 39128884 DOI: 10.1002/cssc.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
The previous research addressed the waste problem of agriculture and forestry residues by exploring the efficient utilization of liquefied soybean straw in supercapacitor. The structures of the liquefied soybean straw were controlled by coupling microwave hydrothermal treatment with carbonization under the influence of a C3N4 bifunctional template. What's more, C3N4 could effectively regulate the pore structures and provide an effective N active site of carbon materials C3N4. The obtained N-SLR Carbon-700 possess a specific surface area of up to 1593.7 m2 g -1, and the pore size is mainly concentrated in the range of 1.8-2.5 nm, providing efficient ions transmission channels and storage space. Its specific capacitance is up to 261.5 F g-1 (current density of 0.5 A g-1), and the capacity retention is 74.04 % when the current density is expanded by 20 times. In the two-electrode system, the energy density of N-SLR Carbon-700 could reach to 31.3 W h kg-1 at a power density of 360 W kg-1, as well as the energy surface density is maintained at 69 % when the power density is increased by a factor of 20. This work enhances effectively the charging and discharging stability and capacitance value of carbon-based supercapacitor.
Collapse
Affiliation(s)
- Lingyu Guo
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P.R. China
| | - Shenghui Jiao
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P.R. China
| | - Guijuan Wei
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P.R. China
| | - Xixia Zhao
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P.R. China
| | - Junliu Zhang
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P.R. China
| | - Huixin Zhang
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P.R. China
| | - Xin Zhao
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P.R. China
| | - Honglei Chen
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P.R. China
| | - XingXiang Ji
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P.R. China
| |
Collapse
|
2
|
Cheng X, Wang H, Wang S, Jiao Y, Sang C, Jiang S, He S, Mei C, Xu X, Xiao H, Han J. Hierarchically core-shell structured nanocellulose/carbon nanotube hybrid aerogels for patternable, self-healing and flexible supercapacitors. J Colloid Interface Sci 2024; 660:923-933. [PMID: 38280285 DOI: 10.1016/j.jcis.2024.01.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The flexible and self-healing supercapacitors (SCs) are considered to be promising smart energy storage devices. Nevertheless, the SCs integrated with flexibility, lightweight, pattern editability, self-healing capabilities and desirable electrochemical properties remain a challenge. Herein, an all-in-one self-healing SC fabricated with the free-standing hybrid film (TCMP) composed of the 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) carried carbon nanotubes (CNTs), manganese dioxide (MnO2) and polyaniline (PANI) as the electrode, polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel as the electrolyte and dynamically cross-linked cellulose nanofibers/PVA/sodium tetraborate decahydrate (CNF/PB) hydrogel as the self-healing electrode matrix is developed. The TCMP film electrodes are fabricated through a facile in-situ polymerization of MnO2 and PANI in TOCNs-dispersed CNTs composite networks, exhibiting lightweight, high electrical conductivity, flexibility, pattern editability and excellent electrochemical properties. Benefited from the hierarchically porous structure and high mechanical properties of TOCNs, excellent electrical conductivity of CNTs and the desirable synergistic effect of pseudocapacitance induced by MnO2 and PANI, the assembled SC with an interdigital structure demonstrated a high areal capacitance of 1108 mF cm-2 at 2 mA cm-2, large areal energy density of 153.7 μWh cm-2 at 1101.7 μW cm-2. A satisfactory bending cycle performance (capacitance retention up to 95 % after 200 bending deformations) and self-healing characteristics (∼90 % capacitance retention after 10 cut/repair cycles) are demonstrated for the TCMP-based symmetric SC, delivering a feasible strategy for electrochemical energy storage devices with excellent performance, designable patterns and desirable safe lifespan.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huixiang Wang
- Department of Biological Sciences, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Shaowei Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Jiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyu Sang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Chemical Engineering Department, New Brunswick University, Fredericton, New Brunswick E3B5A3, Canada.
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|