1
|
Burman I, Sinha A. Economic evaluation of submerged anaerobic hybrid membrane bioreactor operating at mesophilic temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45808-45817. [PMID: 38976193 DOI: 10.1007/s11356-024-34249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
A laboratory-scale mesophilic submerged anaerobic hybrid membrane bioreactor (An-HMBR) was operated for 270 days for the treatment of high-strength synthetic wastewater at different hydraulic retention times (HRTs) (3 days, 2 days, 1 day, and 0.5 days). Chemical oxygen demand (COD) removal efficiency of 92% was obtained with methane yield rate of 0.18 LCH4/g CODremoval at 1-day HRT. The results of lab scale reactor at 1-day HRT were utilized for upscaling and cost analysis. Cost analysis revealed that the total capital cost comprised tank system (48%), membrane cost (32%), screen and PUF sponge (5% each), PLCs (4%), liquid pumps (3%), and others (2%). The operational cost comprised chemical cost (46%), pumping energy (42%), and sludge disposal (12%). The results revealed that the tank and heating costs accounted for the largest fraction of the total life cycle cost for full-scale An-HMBR. The heating cost can be compensated by gas recovery. Sensitivity analysis revealed that the interest rates, influent flow, and membrane flux were the most crucial parameters which affected the total cost of An-HMBR.
Collapse
Affiliation(s)
- Isha Burman
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
2
|
Li P, Wallace CD, McGarr JT, Moeini F, Dai Z, Soltanian MR. Investigating key drivers of N 2O emissions in heterogeneous riparian sediments: Reactive transport modeling and statistical analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166930. [PMID: 37704143 DOI: 10.1016/j.scitotenv.2023.166930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas that also contributes to ozone depletion. Recent studies have identified river corridors as significant sources of N2O emissions. Surface water-groundwater (hyporheic) interactions along river corridors induce flow and reactive nitrogen transport through riparian sediments, thereby generating N2O. Despite the prevalence of these processes, the controlling influence of physical and geochemical parameters on N2O emissions from coupled aerobic and anaerobic reactive transport processes in heterogeneous riparian sediments is not yet fully understood. This study presents an integrated framework that combines a flow and multi-component reactive transport model (RTM) with an uncertainty quantification and sensitivity analysis tool to determine which physical and geochemical parameters have the greatest impact on N2O emissions from riparian sediments. The framework involves the development of thousands of RTMs, followed by global sensitivity and responsive surface analyses. Results indicate that characterizing the denitrification reaction rate constant and permeability of intermediate-permeability sediments (e.g., sandy gravel) are crucial in describing coupled nitrification-denitrification reactions and the magnitude of N2O emissions. This study provides valuable insights into the factors that influence N2O emissions from riparian sediments and can help in developing strategies to control N2O emissions from river corridors.
Collapse
Affiliation(s)
- Pei Li
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States.
| | | | - Jeffrey T McGarr
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Farzad Moeini
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun, Jilin 130026, China
| | - Mohamad Reza Soltanian
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States; Department of Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States.
| |
Collapse
|
3
|
Khuman CN, Bhowmick GD, Ghangrekar MM, Mitra A. Effect of Using a Ceramic Separator on the Performance of Hydroponic Constructed Wetland-Microbial Fuel Cell. JOURNAL OF HAZARDOUS TOXIC AND RADIOACTIVE WASTE 2020. [DOI: 10.1061/(asce)hz.2153-5515.0000499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chabungbam Niranjit Khuman
- M. Tech., Dept. Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID:
| | - Gourav Dhar Bhowmick
- Ph.D. Scholar, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID:
| | - Makarand M. Ghangrekar
- Professor, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India; Head, School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur 721302, India (corresponding author). ORCID:
| | - Arunabha Mitra
- Professor, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
4
|
Gupta S, Srivastava P, Yadav AK. Simultaneous removal of organic matters and nutrients from high-strength wastewater in constructed wetlands followed by entrapped algal systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1112-1117. [PMID: 31820236 DOI: 10.1007/s11356-019-06896-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The present work designs a low-cost biological treatment strategy consisting of constructed wetlands (CWs) followed by entrapped algae (EA) for removing nutrients (PO43-, NO3-, and NH4+) and organic matters from high-strength wastewater. The CWs are efficient means for organic pollutant removal but face challenges in nutrient removal. Algae have a high growth rate and nutrient uptake capabilities from wastewater. The severe challenge that limits the use of algae for nutrient removal from wastewater is its post-treatment separation from wastewater. This work presents a strategy to address the described problems of CWs and algae-based system. It also assesses the performance of the system using synthetic wastewater. A combined system of CW followed by EA (CW-EA) was able to treat 86.0% of phosphate, 95.0% of nitrate, 74.0% of ammonium, and 87.0% of chemical oxygen demand (COD) from high-strength wastewater.
Collapse
Affiliation(s)
- Supriya Gupta
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Pratiksha Srivastava
- Australian Maritime College, College of Science and Engineering, University of Tasmania, Launceston, Tasmania, 7248, Australia
| | - Asheesh Kumar Yadav
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India.
| |
Collapse
|
5
|
Tang B, Chen Q, Bin L, Huang S, Zhang W, Fu F, Li P. Insight into the microbial community and its succession of a coupling anaerobic-aerobic biofilm on semi-suspended bio-carriers. BIORESOURCE TECHNOLOGY 2018; 247:591-598. [PMID: 28982089 DOI: 10.1016/j.biortech.2017.09.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
This work aims at establishing a coupling anaerobic-aerobic biofilm within a single bioreactor and revealing its microbial community and succession. By using a semi-suspended bio-carrier fabricated with 3D printing technique, an obvious DO gradient was gradually created within the biofilm, which demonstrated that a coupling anaerobic-aerobic biofilm was successfully established on the surface of bio-carriers. The results of metagenomic analysis revealed that the microbial community on the bio-carriers experienced a continuous succession in its structure and dominant species along with the operational time. The formed coupling biofilm created suitable micro multi-habitats for the co-existence of these microorganisms, including nitrifying and denitrifying bacteria, which were beneficial to the removing of organic pollutants and converting nutrients. Along with the succession, the microbial community was gradually dominated by several functional microorganisms. Overall, the results presented an approach to improve the microbial biodiversity by constructing a new structure and floating status of bio-carriers.
Collapse
Affiliation(s)
- Bing Tang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China.
| | - Qianyu Chen
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Liying Bin
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Wenxiang Zhang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Ping Li
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| |
Collapse
|
6
|
Yousefzadeh S, Ahmadi E, Gholami M, Ghaffari HR, Azari A, Ansari M, Miri M, Sharafi K, Rezaei S. A comparative study of anaerobic fixed film baffled reactor and up-flow anaerobic fixed film fixed bed reactor for biological removal of diethyl phthalate from wastewater: a performance, kinetic, biogas, and metabolic pathway study. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:139. [PMID: 28580013 PMCID: PMC5452402 DOI: 10.1186/s13068-017-0826-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/22/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Phthalic acid esters, including diethyl phthalate (DEP), which are considered as top-priority and hazardous pollutants, have received significant attention over the last decades. It is vital for industries to select the best treatment technology, especially when the DEP concentration in wastewater is high. Meanwhile, anaerobic biofilm-based reactors are considered as a promising option. Therefore, in the present study, for the biological removal of DEP from synthetic wastewater, two different anaerobic biofilm-based reactors, including anaerobic fixed film baffled reactor (AnFFBR) and up-flow anaerobic fixed film fixed bed reactor (UAnFFFBR), were compared from kinetic and performance standpoints. As in the previous studies, only the kinetic coefficients have been calculated and the relationship between kinetic coefficients and their interpretation has not been evaluated, the other aim of the present study was to fill this research gap. RESULTS In optimum conditions, 90.31 and 86.91% of COD as well as 91.11 and 88.72% of DEP removal were achieved for the AnFFBR and UAnFFFBR, respectively. According to kinetic coefficients (except biomass yield), the AnFFBR had better performance as it provided a more favorable condition for microbial growth. The Grau model was selected as the best mathematical model for designing and predicting the bioreactors' performance due to its high coefficients of determination (0.97 < R2). With regard to the insignificant variations of the calculated Grau kinetic coefficients (KG) when the organic loading rate (with constant HRT) increased, it can be concluded that both of the bioreactors can tolerate high organic loading rate and their performance is not affected by the applied DEP concentrations. CONCLUSIONS Both the bioreactors were capable of treating low-to-high strength DEP wastewater; however, according to the experimental results and obtained kinetic coefficients, the AnFFBR indicated higher performance. Although the AnFFBR can be considered as a safer treatment option than the UAnFFFBR due to its lower DEP concentrations in sludge, the UAnFFFBR had lower VSS/TSS ratio and sludge yield, which could make it more practical for digestion. Finally, both the bioreactors showed considerable methane yield; however, compared to the UAnFFFBR, the AnFFBR had more potential for bioenergy production. Although both the selected bioreactors achieved nearly 90% of DEP removal, they can only be considered as pre-treatment methods according to the standard regulations and should be coupled with further technology.
Collapse
Affiliation(s)
- Samira Yousefzadeh
- Department of Environmental Health Engineering, Aradan School of Public Health and Paramedical, Semnan University of Medical Sciences, Semnan, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadi
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Gholami
- Occupational Health Research Center (OHRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Ghaffari
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Azari
- Department of Environmental Health Engineering, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Ansari
- Environmental Science and Technology Research Center, Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Miri
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Rezaei
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|