1
|
Coverdale NS, Champagne AA, Allen MD, Tremblay JC, Ethier TS, Fernandez-Ruiz J, Marshall RA, MacPherson REK, Pyke KE, Cook DJ, Olver TD. Brain atrophy, reduced cerebral perfusion, arterial stiffening, and wall thickening with aging coincide with stimulus-specific changes in fMRI-BOLD responses. Am J Physiol Regul Integr Comp Physiol 2024; 326:R346-R356. [PMID: 38406844 DOI: 10.1152/ajpregu.00270.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The aim of this study was to investigate how aging affects blood flow and structure of the brain. It was hypothesized older individuals would have lower gray matter volume (GMV), resting cerebral blood flow (CBF0), and depressed responses to isometabolic and neurometabolic stimuli. In addition, increased carotid-femoral pulse-wave velocity (PWV), carotid intima-media thickness (IMT), and decreased brachial flow-mediated dilation (FMD) would be associated with lower CBF0, cerebrovascular reactivity (CVR), and GMV. Brain scans (magnetic resonance imaging) and cardiovascular examinations were conducted in young (age = 24 ± 3 yr, range = 22-28 yr; n = 13) and old (age = 71 ± 4 yr; range = 67-82 yr, n = 14) participants, and CBF0, CVR [isometabolic % blood oxygen level-dependent (BOLD) in response to a breath hold (BH)], brain activation patterns during a working memory task (neurometabolic %BOLD response to N-back trial), GMV, PWV, IMT, and FMD were measured. CBF0 and to a lesser extent CVRBH were lower in the old group (P ≤ 0.050); however, the increase in the %BOLD response to the memory task was not blunted (P ≥ 0.2867). Age-related differential activation patterns during the working memory task were characterized by disinhibition of the default mode network in the old group (P < 0.0001). Linear regression analyses revealed PWV, and IMT were negatively correlated with CBF0, CVRBH, and GMV across age groups, but within the old group alone only the relationships between PWV-CVRBH and IMT-GMV remained significant (P ≤ 0.0183). These findings suggest the impacts of age on cerebral %BOLD responses are stimulus specific, brain aging involves alterations in cerebrovascular and possibly neurocognitive control, and arterial stiffening and wall thickening may serve a role in cerebrovascular aging.NEW & NOTEWORTHY Cerebral perfusion was lower in old versus young adults. %Blood oxygen level-dependent (BOLD) responses to an isometabolic stimulus and gray matter volume were decreased in old versus young adults and associated with arterial stiffening and wall thickening. The increased %BOLD response to a neurometabolic stimulus appeared unaffected by age; however, the old group displayed disinhibition of the default mode network during the stimulus. Thus, age-related alterations in cerebral %BOLD responses were stimulus specific and related to arterial remodeling.
Collapse
Affiliation(s)
- Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Joshua C Tremblay
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Tarrah S Ethier
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Rory A Marshall
- Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Biomedical Sciences, Western College of Veterinary Medicine, the University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, the University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Qiao H, Cai Y, Huang M, Liu Y, Zhang Q, Huang L, Chen H, Yuan C, Zhao X. Quantitative assessment of carotid artery atherosclerosis by three-dimensional magnetic resonance and two-dimensional ultrasound imaging: a comparison study. Quant Imaging Med Surg 2020; 10:1021-1032. [PMID: 32489926 DOI: 10.21037/qims-19-818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background It has been proven that magnetic resonance (MR) and ultrasound imaging are useful tools in the quantification of carotid atherosclerotic plaques. However, there are only a few pieces of evidence to illustrate the links of quantitative measurements of carotid plaques between MR and ultrasound imaging. This study looked to compare the quantitative measurements of carotid plaques and investigate their relationship between three-dimensional (3D) MR vessel wall imaging and two-dimensional (2D) ultrasound imaging. Methods Seventy-five asymptomatic elderly subjects (mean age: 73.3±5.7 years; 45 males) with carotid atherosclerotic plaques diagnosed by both ultrasound and MR imaging were included in this study. The plaque size, including the maximum wall thickness (Max WT), plaque length, and plaque area, was measured by 3D MR and ultrasound imaging on longitudinal and cross-sectional views. The quantitative assessments of carotid plaque size were compared and correlated between 3D MR and 2D ultrasound imaging. Results In total, the quantitative measurements of 101 plaques on longitudinal views or 44 plaques on cross-sectional views of both MR and ultrasound imaging were compared. The Max WT of the plaques (longitudinal: 2.9±0.8 vs. 2.4±0.9 mm; cross-sectional: 3.2±1.1 vs. 2.6±0.7 mm) and plaque areas (longitudinal: 24.3±13.4 vs. 17.0±12.7 mm2; cross-sectional: 24.9±24.6 vs. 16.8±13.3 mm2) measured by MR imaging were found to be significantly higher than those measured by ultrasound imaging (all P<0.001). Moderate to strong correlations were found in Max WT, plaque area, plaque length between 3D MR and ultrasound imaging. Conclusions The quantitative measurements of carotid plaques using 3D MR and 2D ultrasound are significantly correlated. The plaque area and Max WT measured by 3D MR imaging are more significant than these parameters measured by 2D ultrasound imaging, which might be explained by the resolution of MR imaging and the workflow of measurements.
Collapse
Affiliation(s)
- Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | - Ying Cai
- Department of Radiology, Taizhou People's Hospital, Taizhou 225400, China
| | - Manwei Huang
- Department of Ultrasound, China Meitan General Hospital, Beijing 100028, China
| | - Yang Liu
- Department of Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| | - Qiang Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | | | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | - Chun Yuan
- Department of Radiology, University of Washington, Washington, Seattle, USA
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| |
Collapse
|
3
|
Coolen BF, Calcagno C, van Ooij P, Fayad ZA, Strijkers GJ, Nederveen AJ. Vessel wall characterization using quantitative MRI: what's in a number? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:201-222. [PMID: 28808823 PMCID: PMC5813061 DOI: 10.1007/s10334-017-0644-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022]
Abstract
The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.
Collapse
Affiliation(s)
- Bram F Coolen
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands. .,Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pim van Ooij
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Inflammation has been widely acknowledged to contribute throughout all stages of atherogenesis. However, these recent advances in our understanding have not been translated into clinical practice in which the mainstay of treatment is still lipid-targeted therapy. This review provides an overview of promising anti-inflammatory therapies in atherosclerosis, and discusses potential drawbacks and clinical benefits. RECENT FINDINGS Immunosuppressive drugs are likely to beneficially affect atherogenesis. Several novel anti-inflammatory targets have been scrutinized, of which some have reached clinical development stage, such as cytokine targets interleukin-1 and interleukin-6, CCR2 antagonist, selective phospholipase, and leukotriene inhibitors. Novel imaging modalities such as MRI and PET-computed tomography provide valuable surrogate inflammatory endpoints for risk stratification and testing anti-inflammatory agents in cardiovascular randomized trials. SUMMARY Anti-inflammatory therapies hold great promise in cardiovascular prevention regimens; however, atherosclerosis is a chronic disease, and systemic long-term use of anti-inflammatory agents carries the risk of complications arising from immunosuppression. In order to successfully add immunosuppressive drugs to our routine armament, we need to identify high-risk patients who benefit from anti-inflammatory treatment, increase our insight into the inflammatory pathogenesis of atherogenesis, and find safe and effective compounds capable of directly suppressing plaque inflammation.
Collapse
|
5
|
Bochem AE, van Wijk DF, Holleboom AG, Duivenvoorden R, Motazacker MM, Dallinga-Thie GM, de Groot E, Kastelein JJP, Nederveen AJ, Hovingh GK, Stroes ESG. ABCA1 mutation carriers with low high-density lipoprotein cholesterol are characterized by a larger atherosclerotic burden. Eur Heart J 2012; 34:286-91. [PMID: 23136402 DOI: 10.1093/eurheartj/ehs376] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS Low HDL-C is a potent risk factor for cardiovascular disease (CVD). Yet, mutations in ABCA1, a major determinant of circulating HDL-C levels, were previously not associated with CVD risk in cohort studies. To study the consequences of low plasma levels of high-density lipoprotein cholesterol (HDL-C) due to ATP-binding cassette transporter A1 (ABCA1) dysfunction for atherosclerotic vascular disease in the carotid arteries. METHODS AND RESULTS We performed 3.0 Tesla magnetic resonance imaging (MRI) measurements of the carotid arteries in 36 carriers of high impact functional ABCA1 mutations and 36 normolipidemic controls. Carriers presented with 42% lower HDL-C levels (P < 0.001), a larger mean wall area (18.6 ± 6.0 vs. 15.8 ± 4.3 mm(2); P = 0.02), a larger mean wall thickness (0.82 ± 0.21 vs. 0.70 ± 0.14 mm; P = 0.005), and a higher normalized wall index (0.37 ± 0.06 vs. 0.33 ± 0.04; P = 0.005) compared with controls, retaining significance after adjustment for smoking, alcohol consumption, systolic blood pressure, diabetes, body mass index, history of CVD, LDL-C, and statin use (P = 0.002). CONCLUSION Carriers of loss of function ABCA1 mutations display a larger atherosclerotic burden compared with age and sex-matched controls, implying a higher risk for CVD. Further studies are needed to elucidate the full function of ABCA1 in the protection against atherosclerosis. These data support the development of strategies to up-regulate ABCA1 in patients with established CVD.
Collapse
Affiliation(s)
- Andrea E Bochem
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Evaluation of coronary stenosis with the aid of quantitative image analysis in histological cross sections. J Forensic Leg Med 2012; 19:485-9. [DOI: 10.1016/j.jflm.2012.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 03/29/2012] [Accepted: 04/21/2012] [Indexed: 11/18/2022]
|
7
|
Duivenvoorden R, Holleboom AG, van den Bogaard B, Nederveen AJ, de Groot E, Hutten BA, Schimmel AW, Hovingh GK, Kastelein JJP, Kuivenhoven JA, Stroes ESG. Carriers of lecithin cholesterol acyltransferase gene mutations have accelerated atherogenesis as assessed by carotid 3.0-T magnetic resonance imaging [corrected]. J Am Coll Cardiol 2012; 58:2481-7. [PMID: 22133847 DOI: 10.1016/j.jacc.2010.11.092] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/25/2010] [Accepted: 11/08/2010] [Indexed: 10/14/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the role of reduced lecithin: cholesterol acyltransferase (LCAT) function on atherogenesis using 3.0-T carotid magnetic resonance imaging (MRI) and B-mode ultrasound. BACKGROUND The role of low high-density lipoprotein cholesterol as a causal factor in atherogenesis has recently been questioned. LCAT plays a key role in high-density lipoprotein cholesterol metabolism. METHODS Carotid 3.0-T MRI and B-mode ultrasound measurements were performed in 40 carriers of LCAT gene mutations and 40 controls, matched for age. Patients with cardiovascular disease were excluded. RESULTS Carriers had 31% lower LCAT activity levels and 38% decreased high-density lipoprotein cholesterol levels (both p < 0.001 vs. controls). Carriers presented with a 10% higher normalized wall index (0.34 ± 0.07 vs. 0.31 ± 0.04, p = 0.002), a 22% higher mean wall area (17.3 ± 8.5 mm(2) vs. 14.2 ± 4.1 mm(2), p = 0.01), and a 22% higher total wall volume (1,039 ± 508 mm(3) vs. 851 ± 247 mm(3), p = 0.01 vs. controls) as measured by MRI. The prevalence (20 vs. 5, p = 0.002) and the total volume (102 mm(3) vs. 3 mm(3)) of atherosclerotic plaque components on MRI relating to lipid-rich tissue or calcification were also higher in carriers than in controls. All differences retained significance after adjustment for age, sex, blood pressure, low-density lipoprotein cholesterol, body mass index, smoking, and family history of cardiovascular disease. Common carotid intima-media thickness measured with ultrasound was increased in carriers by 12.5% (0.72 ± 0.33 mm vs. 0.64 ± 0.15 mm, p = 0.14). CONCLUSIONS Carriers of LCAT gene mutations exhibit increased carotid atherosclerosis, indicating an increased risk of cardiovascular disease. The present findings imply that increasing LCAT activity may be an attractive target in cardiovascular prevention strategies.
Collapse
Affiliation(s)
- Raphaël Duivenvoorden
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Saam T, Raya JG, Cyran CC, Bochmann K, Meimarakis G, Dietrich O, Clevert DA, Frey U, Yuan C, Hatsukami TS, Werf A, Reiser MF, Nikolaou K. High resolution carotid black-blood 3T MR with parallel imaging and dedicated 4-channel surface coils. J Cardiovasc Magn Reson 2009; 11:41. [PMID: 19860875 PMCID: PMC2773764 DOI: 10.1186/1532-429x-11-41] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/27/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Most of the carotid plaque MR studies have been performed using black-blood protocols at 1.5 T without parallel imaging techniques. The purpose of this study was to evaluate a multi-sequence, black-blood MR protocol using parallel imaging and a dedicated 4-channel surface coil for vessel wall imaging of the carotid arteries at 3 T. MATERIALS AND METHODS 14 healthy volunteers and 14 patients with intimal thickening as proven by duplex ultrasound had their carotid arteries imaged at 3 T using a multi-sequence protocol (time-of-flight MR angiography, pre-contrast T1w-, PDw- and T2w sequences in the volunteers, additional post-contrast T1w- and dynamic contrast enhanced sequences in patients). To assess intrascan reproducibility, 10 volunteers were scanned twice within 2 weeks. RESULTS Intrascan reproducibility for quantitative measurements of lumen, wall and outer wall areas was excellent with intraclass correlation coefficients >0.98 and measurement errors of 1.5%, 4.5% and 1.9%, respectively. Patients had larger wall areas than volunteers in both common carotid and internal carotid arteries and smaller lumen areas in internal carotid arteries (p < 0.001). Positive correlations were found between wall area and cardiovascular risk factors such as age, hypertension, coronary heart disease and hypercholesterolemia (Spearman's r = 0.45-0.76, p < 0.05). No significant correlations were found between wall area and body mass index, gender, diabetes or a family history of cardiovascular disease. CONCLUSION The findings of this study indicate that high resolution carotid black-blood 3 T MR with parallel imaging is a fast, reproducible and robust method to assess carotid atherosclerotic plaque in vivo and this method is ready to be used in clinical practice.
Collapse
Affiliation(s)
- Tobias Saam
- Dept of Clinical Radiology, University of Munich, Grosshadern Campus, Munich, Germany
| | - Jose G Raya
- Josef Lissner Laboratory for Biomedical Imaging, Dept of Clinical Radiology, University of Munich, Grosshadern Campus, Munich, Germany
| | - Clemens C Cyran
- Dept of Clinical Radiology, University of Munich, Grosshadern Campus, Munich, Germany
| | - Katja Bochmann
- Dept of Clinical Radiology, University of Munich, Grosshadern Campus, Munich, Germany
| | | | - Olaf Dietrich
- Josef Lissner Laboratory for Biomedical Imaging, Dept of Clinical Radiology, University of Munich, Grosshadern Campus, Munich, Germany
| | - Dirk A Clevert
- Dept of Clinical Radiology, University of Munich, Grosshadern Campus, Munich, Germany
| | - Ute Frey
- Dept of Surgery, University of Munich, Grosshadern Campus, Munich, Germany
| | - Chun Yuan
- Dept of Radiology, University of Washington, Seattle, WA, USA
| | - Thomas S Hatsukami
- VA Puget Sound Health Care System, Seattle Division, 1660 South Columbian Way, Seattle, WA 98108, USA
- Dept of Surgery, University of Washington, Seattle, WA, USA
| | - Abe Werf
- Machnet BV, TD Eelde, the Netherlands
| | - Maximilian F Reiser
- Dept of Clinical Radiology, University of Munich, Grosshadern Campus, Munich, Germany
| | - Konstantin Nikolaou
- Dept of Clinical Radiology, University of Munich, Grosshadern Campus, Munich, Germany
| |
Collapse
|