1
|
Smith J, Margalit D, Golledge J, Nastasi D, Nohria A, McDowell L. Carotid Artery Stenosis and Ischemic Stroke in Patients With Head and Neck Cancer Treated With Radiation Therapy: A Critical Review. Int J Radiat Oncol Biol Phys 2024; 119:1437-1454. [PMID: 38583496 DOI: 10.1016/j.ijrobp.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
The purpose of this review is to summarize the literature on carotid artery stenosis (CAS) and ischemic stroke (IS) in patients with head and neck cancer (HNC) treated with radiation therapy (RT) to guide assessment, screening, and management strategies. Patients treated with RT for HNC are at an elevated risk of developing CAS, with published meta-analyses demonstrating that CAS >50% occurs in approximately 25% of patients. Previous research suggests a 10-year cumulative incidence of stroke between 5.7% and 12.5%. Cardiovascular disease (CVD) risk prediction tools such as Qstroke, QRISK-2, and Framingham risk score perform poorly for predicting IS for patients with HNC who received RT. Duplex ultrasound is the most common imaging modality to assess CAS, but controversy remains as to the utility of screening asymptomatic individuals. Only 3 of the 5 major HNC survivorship guidelines acknowledge RT as a risk factor for CAS or IS, while only 1 makes a specific recommendation on screening for CAS (American Head and Neck Society). Within the general population, only 1 CVD guideline discusses RT as a risk factor for CAS (Society for Vascular Surgery). Clinicians involved in the care of patients with HNC treated with RT should be aware of the increased risk of CAS and IS and the challenges in risk prediction. Although there is a lack of evidence to make firm recommendations, HNC survivorship recommendations should ensure HNC survivors and primary care providers are informed of these risks and the importance of assessment and management of CVD risk factors. Future studies are required to refine risk prediction models in patients with HNC and to determine those most likely to benefit from targeted screening and initiation of early preventative strategies.
Collapse
Affiliation(s)
- Justin Smith
- Faculty of Medicine, University of Queensland, Brisbane, Australia; Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia.
| | - Danielle Margalit
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia; The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Australia; The Australian Institute of Tropical Health and Medicine, Townsville, Australia
| | - Domenico Nastasi
- Department of Vascular Surgery, Gold Coast University Hospital, Gold Coast, Australia
| | - Anju Nohria
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts; Adult Survivorship Program, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Lachlan McDowell
- Faculty of Medicine, University of Queensland, Brisbane, Australia; Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
2
|
Su X, Liang F, Zeng Y, Yang ZR, Deng YZ, Xu YH, Cai XW. Radiation-Induced Endothelial Ferroptosis Accelerates Atherosclerosis via the DDHD2-Mediated Nrf2/GPX4 Pathway. Biomolecules 2024; 14:879. [PMID: 39062593 PMCID: PMC11274403 DOI: 10.3390/biom14070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study sought to explore potential roles of endothelial ferroptosis in radiation-associated atherosclerosis (RAA) and molecular mechanisms behind this phenomenon. Here, an in vivo RAA mouse model was used and treated with ferroptosis inhibitors. We found that the RAA group had a higher plaque burden and a reduction in endothelial cells with increased lipid peroxidation compared to the control group, while ameliorated by liproxstatin-1. In vitro experiments further confirmed that radiation induced the occurrence of ferroptosis in human artery endothelial cells (HAECs). Then, proteomics analysis of HAECs identified domain-containing protein 2 (DDHD2) as a co-differentially expressed protein, which was enriched in the lipid metabolism pathway. In addition, the level of lipid peroxidation was elevated in DDHD2-knockdown HAECs. Mechanistically, a significant decrease in the protein and mRNA expression of glutathione peroxidase 4 (GPX4) was observed in HAECs following DDHD2 knockdown. Co-immunoprecipitation assays indicated a potential interaction between DDHD2 and nuclear factor erythroid 2-related factor 2 (Nrf2). The downregulation of Nrf2 protein was also detected in DDHD2-knockdown HAECs. In conclusion, our findings suggest that radiation-induced endothelial ferroptosis accelerates atherosclerosis, and DDHD2 is a potential regulatory protein in radiation-induced endothelial ferroptosis through the Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Xi Su
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.S.); (Z.-R.Y.)
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
| | - Ya Zeng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.S.); (Z.-R.Y.)
| | - Zhang-Ru Yang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.S.); (Z.-R.Y.)
| | - Yue-Zhen Deng
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yun-Hua Xu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xu-Wei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.S.); (Z.-R.Y.)
| |
Collapse
|
3
|
Wu Z, Chen T, Qian Y, Luo G, Liao F, He X, Xu W, Pu J, Ding S. High-Dose Ionizing Radiation Accelerates Atherosclerotic Plaque Progression by Regulating P38/NCOA4-Mediated Ferritinophagy/Ferroptosis of Endothelial Cells. Int J Radiat Oncol Biol Phys 2023; 117:223-236. [PMID: 37059236 DOI: 10.1016/j.ijrobp.2023.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Radiation therapy (RT) significantly increased the incidence of coronary artery diseases, especially atherosclerosis. Endothelial dysfunction has been the major side effect of RT among tumor patients who received RT. However, the involvement between endothelial dysfunction and radiation-induced atherosclerosis (RIA) remains unclear. Here, we constructed a murine model of RIA, aiming to uncover its underlying mechanisms and identify novel strategies for RIA prevention and treatment. METHODS AND MATERIALS Eight-week-old ApoE-/- mice that were fed a Western diet were subjected to partial carotid ligation (PCL). Four weeks later, ionizing radiation (IR) of 10 Gy was performed to verify the detrimental role of IR on atherogenesis. Ultrasound imaging, RT quantitative polymerase chain reaction, histopathology and immunofluorescence, and biochemical analysis were performed 4 weeks after IR. To study the involvement of endothelial ferroptosis induced by IR in RIA, mice after IR were administrated with ferroptosis agonist (cisplatin) or antagonist (ferrostatin-1) intraperitoneally. Western blotting, autophagic flux measurement, reactive oxygen species level detection, and coimmunoprecipitation assay were carried out in vitro. Furthermore, to determine the effect of ferritinophagy inhibition on RIA, in vivo knockdown of NCOA4 was carried out by pluronic gel. RESULTS We verified that accelerated plaque progression was concomitant with endothelial cell (EC) ferroptosis after IR induction, as suggested by a higher level of lipid peroxidation and changes in ferroptosis-associated genes in the PCL + IR group than in the PCL group within vasculature. In vitro experiments further validated the devastating effects of IR on oxidative stress and ferritinophagy in ECs. Mechanistic experiments revealed that IR induced EC ferritinophagy and subsequent ferroptosis in a P38/NCOA4-dependent manner. Both in vitro and in vivo experiments confirmed the therapeutic effect of NCOA4 knockdown in alleviating IR-induced ferritinophagy/ferroptosis of EC and RIA. CONCLUSIONS Our findings provide novel insights into the regulatory mechanisms of RIA and first prove that IR accelerates atherosclerotic plaque progression by regulating ferritinophagy/ferroptosis of ECs in a P38/NCOA4-dependent manner.
Collapse
Affiliation(s)
- Zhinan Wu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taiwei Chen
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxuan Qian
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guqing Luo
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Liao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjie He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyi Xu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Song Ding
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Uchihara Y, Saito K, Motoyama R, Ishibashi-Ueda H, Yamaguchi E, Hatakeyama K, Tanaka A, Kataoka H, Iihara K, Sugie K, Koga M, Toyoda K, Nagatsuka K, Ihara M. Neovascularization From the Carotid Artery Lumen Into the Carotid Plaque Confirmed by Contrast-Enhanced Ultrasound and Histology. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1798-1803. [PMID: 37202244 DOI: 10.1016/j.ultrasmedbio.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE This study was aimed at assessing intraplaque neovessels, focusing on neovascularization from the vascular luminal side using contrast-enhanced ultrasound (CEUS) and determining that this contrast effect indicates that the neovessel is connected to the vessel lumen histopathologically. Whether plaque vulnerability can be assessed more accurately was also investigated. METHODS We enrolled consecutive patients with internal carotid artery stenosis who underwent carotid endarterectomy (CEA) and pre-operative CEUS with perflubutane of the carotid arteries. We graded the contrast effect semi-quantitatively from the vascular luminal and adventitial sides. We compared the contrast effect with the pathological findings, especially the neovascularization of the CEA specimens. RESULTS In total, 68 carotid arterial atheromatous plaques (47 symptomatic) were analyzed. Symptomatic plaques were significantly correlated with stronger contrast effects from the luminal side than from the adventitial side (p = 0.0095). Microbubbles from the luminal side appeared to flow mainly into the plaque shoulder. The contrast effect value for the plaque shoulder and neovessel density were significantly correlated (ρ = 0.35, p = 0.031). Neovessel density was significantly higher in symptomatic than in asymptomatic plaques (56.2 ± 43.7/mm2 and 18.1 ± 15.2/mm2, respectively, p < 0.0001). Serial histological sections of CEA specimens in a symptomatic plaque with a strong contrast effect from the luminal side revealed multiple neovessels fenestrated to the vessel lumen with endothelial cells, consistent with the CEUS findings. CONCLUSION Contrast-enhanced ultrasound can be used to evaluate neovessels originating from the luminal side, histopathologically confirmed in serial sections. Symptomatic vulnerable plaque is correlated more significantly with intraplaque neovascularization from the luminal side than with neovascularization from the adventitia.
Collapse
Affiliation(s)
- Yuto Uchihara
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology, Nara Medical University, Nara, Japan.
| | - Kozue Saito
- Department of Neurology, Nara Medical University, Nara, Japan; Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Rie Motoyama
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Eriko Yamaguchi
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akito Tanaka
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology, Nara Medical University, Nara, Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Koji Iihara
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazuyuki Nagatsuka
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
5
|
Shan D, Wang S, Wang J, Lu J, Ren J, Chen J, Wang D, Qi P. Computed tomography angiography-based radiomics model for predicting carotid atherosclerotic plaque vulnerability. Front Neurol 2023; 14:1151326. [PMID: 37396779 PMCID: PMC10312009 DOI: 10.3389/fneur.2023.1151326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Vulnerable carotid atherosclerotic plaque (CAP) significantly contributes to ischemic stroke. Neovascularization within plaques is an emerging biomarker linked to plaque vulnerability that can be detected using contrast-enhanced ultrasound (CEUS). Computed tomography angiography (CTA) is a common method used in clinical cerebrovascular assessments that can be employed to evaluate the vulnerability of CAPs. Radiomics is a technique that automatically extracts radiomic features from images. This study aimed to identify radiomic features associated with the neovascularization of CAP and construct a prediction model for CAP vulnerability based on radiomic features. CTA data and clinical data of patients with CAPs who underwent CTA and CEUS between January 2018 and December 2021 in Beijing Hospital were retrospectively collected. The data were divided into a training cohort and a testing cohort using a 7:3 split. According to the examination of CEUS, CAPs were dichotomized into vulnerable and stable groups. 3D Slicer software was used to delineate the region of interest in CTA images, and the Pyradiomics package was used to extract radiomic features in Python. Machine learning algorithms containing logistic regression (LR), support vector machine (SVM), random forest (RF), light gradient boosting machine (LGBM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-layer perception (MLP) were used to construct the models. The confusion matrix, receiver operating characteristic (ROC) curve, accuracy, precision, recall, and f-1 score were used to evaluate the performance of the models. A total of 74 patients with 110 CAPs were included. In all, 1,316 radiomic features were extracted, and 10 radiomic features were selected for machine-learning model construction. After evaluating several models on the testing cohorts, it was discovered that model_RF outperformed the others, achieving an AUC value of 0.93 (95% CI: 0.88-0.99). The accuracy, precision, recall, and f-1 score of model_RF in the testing cohort were 0.85, 0.87, 0.85, and 0.85, respectively. Radiomic features associated with the neovascularization of CAP were obtained. Our study highlights the potential of radiomics-based models for improving the accuracy and efficiency of diagnosing vulnerable CAP. In particular, the model_RF, utilizing radiomic features extracted from CTA, provides a noninvasive and efficient method for accurately predicting the vulnerability status of CAP. This model shows great potential for offering clinical guidance for early detection and improving patient outcomes.
Collapse
Affiliation(s)
- Dezhi Shan
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Siyu Wang
- Department of Ultrasound, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Junjie Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Lu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Junhong Ren
- Department of Ultrasound, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Juan Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Daming Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Peng Qi
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Leboucher A, Sotton S, Gambin Flandrin I, Magné N. Head and neck radiotherapy-induced carotid toxicity: Pathophysiological concepts and clinical syndromes. Oral Oncol 2022; 129:105868. [DOI: 10.1016/j.oraloncology.2022.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 01/17/2023]
|
7
|
Dong S, Hou J, Zhang C, Lu G, Qin W, Huang L, Zhou G. Diagnostic Performance of Atherosclerotic Carotid Plaque Neovascularization with Contrast-Enhanced Ultrasound: A Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7531624. [PMID: 35295205 PMCID: PMC8920645 DOI: 10.1155/2022/7531624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Objectives To evaluate the diagnostic performance of contrast-enhanced ultrasound (CEUS) for atherosclerotic carotid plaque neovascularization. Methods The electronic databases like PubMed, Embase, OVID, and Web of Science were used to search for the relevant studies, which are involved in the evaluation of the diagnostic parameters of QUS for atherosclerotic carotid plaque neovascularization. Review Manager 5.4 and Stata 14.0 were used to estimate the pooled diagnostic value of CEUS. Forest plots, sensitivity analysis, and Deeks' funnel plots were performed on the included studies. Results Ten studies eventually met the final inclusion criteria. For diagnostic performance, CUES showed that the pooled values of sensitivity, specificity, positive likelihood odds ratios, negative likelihood odds ratios, and diagnostic odds ratios were 0.83 (95% CI 0.78-0.86), 0.77 (95% CI 0.68-0.84), 3.61 (95% CI 2.59-5.03), 0.23 (95% CI 0.18-0.28), and 16.02 (95% CI 10.02-25.60), respectively. The estimate of the area under curve (AUC) was 0.85 (95% CI 0.82-0.88). Conclusion Our research supported that CEUS had high sensitivity and specificity in the diagnosis of atherosclerotic carotid plaque neovascularization. More high-quality prospective multicenter studies focusing on the accuracy of CEUS for carotid atherosclerotic plaque should be performed to verify our conclusions.
Collapse
Affiliation(s)
- Shanshan Dong
- Department of Function, First Affiliated Hospital, School of Medical, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jianzhong Hou
- Department of General Surgery, First Affiliated Hospital, School of Medical, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Caiyun Zhang
- Department of Function, First Affiliated Hospital, School of Medical, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Guilin Lu
- Department of Function, First Affiliated Hospital, School of Medical, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenjuan Qin
- Department of Function, First Affiliated Hospital, School of Medical, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Lei Huang
- Department of Function, First Affiliated Hospital, School of Medical, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Guangqin Zhou
- Department of Function, First Affiliated Hospital, School of Medical, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
8
|
Zhang Y, Cao J, Zhou J, Zhang C, Li Q, Chen S, Feinstein S, Grayburn PA, Huang P. Plaque Elasticity and Intraplaque Neovascularisation on Carotid Artery Ultrasound: A Comparative Histological Study. Eur J Vasc Endovasc Surg 2021; 62:358-366. [PMID: 34266763 DOI: 10.1016/j.ejvs.2021.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/12/2021] [Accepted: 05/23/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Plaque elasticity and intraplaque neovascularisation are strongly suggestive of vulnerable plaque. This study aimed to investigate the relationship between intraplaque neovascularisation and plaque elasticity, and to compare the ultrasound findings with histopathological changes. METHODS Patients enrolled in this study presented with symptomatic carotid stenosis (> 70%) and later underwent both pre-operative ultrasonography and endarterectomy. Contrast enhanced ultrasound (CEUS) and shear wave elastography (SWE) were used to measure the neovascularisation and elasticity of the plaque, respectively. After removal, plaques were histologically assessed to determine the microvessel density (MVD), matrix metalloproteinase (MMP)-9 expression, and type I/type III collagen ratio using immunohistochemistry staining and morphometry. A correlation analysis was used to establish the relationship among the aforementioned quantitative parameters. Inter- and intra-observer consistency evaluations were performed using the intraclass correlation coefficient and Bland-Altman plots. RESULTS Ninety-four symptomatic patients with 98 plaques were included. The area under the curve (AUC) of the carotid plaque detected using CEUS correlated with its shear wave velocity (SWV) (r = -.714; p < .001), MVD (r = .842; p < .001), collagen type I/III ratio (r = -.833; p < .001), and MMP-9 (r = .738; p < .001). SWE was positively correlated with the type I/III collagen ratio (r = .805; p < .001). The overall interexaminer consistency of the SWE was acceptable (r = .638; p < .001). The interobserver correlation coefficient of the AUC, time to peak (TP), mean transit time (MTT), and SWV were .719, .756, .733, and .686, respectively. The intra-observer variability values of the AUC, TP, MTT, and SWV were .826, .845, .633, and .748, respectively. CONCLUSION SWE and CEUS can comprehensively evaluate the vulnerability of the carotid plaque by assessing the elasticity of the plaque and neovascularisation within it. The negative correlation between the intraplaque neovascularisation and elasticity, further validated by histological findings, suggests that the more abundant the neovascularisation, the less elasticity.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jing Cao
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jingyi Zhou
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Chao Zhang
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qunying Li
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shuyuan Chen
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Steven Feinstein
- Echocardiography Section of Cardiology, Rush University Medical Centre, Chicago, IL, USA
| | - Paul A Grayburn
- Department of Internal Medicine, Division of Cardiology, Baylor Scott & White Heart and Vascular Institute, Baylor University Medical Centre, Dallas, TX, USA
| | - Pintong Huang
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
9
|
Xia S, Qiu W, Cai A, Kong B, Xu L, Wu Z, Li L. The association of lipoprotein(a) and intraplaque neovascularization in patients with carotid stenosis: a retrospective study. BMC Cardiovasc Disord 2021; 21:285. [PMID: 34107870 PMCID: PMC8190836 DOI: 10.1186/s12872-021-02038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background Lipoprotein(a) is genetically determined and increasingly recognized as a major risk factor for arteriosclerotic cardiovascular disease. We examined whether plasma lipoprotein(a) concentrations were associated with intraplaque neovascularization (IPN) grade in patients with carotid stenosis and in terms of increasing plaque susceptibility to haemorrhage and rupture. Methods We included 85 patients diagnosed with carotid stenosis as confirmed using carotid ultrasound who were treated at Guangdong General Hospital. Baseline data, including demographics, comorbid conditions and carotid ultrasonography, were recorded. The IPN grade was determined using contrast-enhanced ultrasound through the movement of the microbubbles. Univariate and multivariate binary logistic regression analyses were used to evaluate the association between lipoprotein(a) and IPN grade, with stepwise adjustment for covariates including age, sex, comorbid conditions and statin therapy (model 1), total cholesterol, triglyceride, low-density lipoprotein cholesterol calculated by Friedwald's formula, high-density lipoprotein cholesterol, apolipoprotein A and apolipoprotein B (model 2), maximum plaque thickness and total carotid maximum plaque thickness, degree of carotid stenosis and internal carotid artery (ICA) occlusion (model 3). Results Lipoprotein(a) was a significant predictor of higher IPN grade in binary logistic regression before adjusting for other risk factors (odds ratio [OR] 1.238, 95% confidence interval [CI] (1.020, 1.503), P = 0.031). After adjusting for other risk factors, lipoprotein(a) still remained statistically significant in predicting IPN grade in all model. (Model 1: OR 1.333, 95% CI 1.074, 1.655, P = 0.009; Model 2: OR 1.321, 95% CI 1.059, 1.648, P = 0.014; Model 3: OR 1.305, 95% CI 1.045, 1.628, P = 0.019). Lp(a) ≥ 300 mg/L is also significantly related to IPN compare to < 300 mg/L (OR 2.828, 95% CI 1.055, 7.580, P = 0.039) as well as in model 1, while in model 2 and model 3 there are not significant difference. Conclusions Plasma lipoprotein(a) concentrations were found to be independently associated with higher IPN grade in patients with carotid stenosis. Lowering plasma lipoprotein(a) levels may result in plaque stabilization by avoiding IPN formation.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Weida Qiu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Anping Cai
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Bo Kong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Lan Xu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Zejia Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Liwen Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China.
| |
Collapse
|
10
|
Mantella LE, Liblik K, Johri AM. Vascular imaging of atherosclerosis: Strengths and weaknesses. Atherosclerosis 2021; 319:42-50. [PMID: 33476943 DOI: 10.1016/j.atherosclerosis.2020.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is an inflammatory disease that can lead to several complications such as ischemic heart disease, stroke, and peripheral vascular disease. Therefore, researchers and clinicians rely heavily on the use of imaging modalities to identify, and more recently, quantify the burden of atherosclerosis in the aorta, carotid arteries, coronary arteries, and peripheral vasculature. These imaging techniques vary in invasiveness, cost, resolution, radiation exposure, and presence of artifacts. Consequently, a detailed understanding of the risks and benefits of each technique is crucial prior to their introduction into routine cardiovascular screening. Additionally, recent research in the field of microvascular imaging has proven to be important in the field of atherosclerosis. Using techniques such as contrast-enhanced ultrasound and superb microvascular imaging, researchers have been able to detect blood vessels within a plaque lesion that may contribute to vulnerability and rupture. This paper will review the strengths and weaknesses of the various imaging techniques used to measure atherosclerotic burden. Furthermore, it will discuss the future of advanced imaging modalities as potential biomarkers for atherosclerosis.
Collapse
Affiliation(s)
- Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, K7L 3N6, Kingston, ON, Canada
| | - Kiera Liblik
- Department of Medicine, Cardiovascular Imaging Network at Queen's University, 76 Stuart Street, K7L 2V7, Kingston, ON, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, K7L 3N6, Kingston, ON, Canada; Department of Medicine, Cardiovascular Imaging Network at Queen's University, 76 Stuart Street, K7L 2V7, Kingston, ON, Canada.
| |
Collapse
|
11
|
Valentin ML, Barco S, Studer G, Clemens R, Kreuzpointner R, Sebastian T, Thalhammer C, Kucher N. Prevalence of carotid plaque stenosis after head and neck radiotherapy – an observational study of 156 survivors. VASA 2020; 49:467-473. [DOI: 10.1024/0301-1526/a000896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Summary: Background: Radiotherapy for head and neck cancer (HNC) represents a well-known predisposing factor for asymptomatic carotid artery lesions and acute cerebrovascular accidents. Our aim is to provide contemporary estimates on the prevalence, severity, and characteristics of carotid artery lesions in HNC survivors. Patients and methods: We prospectively included HNC patients who underwent radiotherapy and were free from the disease at the time of duplex ultrasound evaluation. Patients were re-contacted telephonically and those who agreed to participate were invited for an ambulatory visit when the investigators collected clinical information and performed duplex ultrasound examination based on a predefined protocol. Results: A total of 156 patients were included and underwent duplex ultrasound examination after a mean of 65.2 months from the last session of radiotherapy. A total of 36 patients (23.1%) had normal carotid arteries; mild, non-stenotic lesions were observed in 49.4% (n = 77) of patients; severe stenotic plaques were found in 27.5% (n = 43) of patients. One patient found with an asymptomatic occlusion of the left ICA. The prevalence of major cardiovascular risk factors and high radiation dose increased proportionally with plaque severity. Low echogenicity plaque was found in 59 (37.8%) patients on the right side and 57 (36.5%) on the left side; long segment plaque in 49 (31.4%) patients on the right side and in 47 (30.1%) on the left side; an atypical location of the lesions in 42 (26.9%) patients on the right side and in 48 (30.8%) on the left side. Conclusions: The prevalence of occlusion and severe stenosis after radiotherapy for HNC was very low in our study population. Low echogenicity plaque, long segment plaque, and an atypical location were common findings. Classic cardiovascular risk factors appear to have had a causative role: a routine screening of radiotherapy-treated patients might be necessary only in patients with concomitant cardiovascular risk factors or exposed to high-dose neck radiation.
Collapse
Affiliation(s)
| | - Stefano Barco
- Clinic of Angiology, University Hospital Zurich, Zurich, Switzerland
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Gabriela Studer
- Radiation Oncology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Robert Clemens
- Department of Surgery, Cantonal Hospital Baden, Baden, Switzerland
| | | | - Tim Sebastian
- Clinic of Angiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Nils Kucher
- Clinic of Angiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Li J, Wang L, Wang Q, Xin Z, Liu Y, Zhao Q. Diagnostic value of carotid artery ultrasound and hypersensitive C-reactive protein in Type 2 diabetes mellitus patients with acute myocardial infarction in Chinese population. Medicine (Baltimore) 2018; 97:e12334. [PMID: 30313029 PMCID: PMC6203565 DOI: 10.1097/md.0000000000012334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hypersensitive C-reactive protein (hs-CRP) is reported to be significant risk indicators not only for the development of cardiovascular disease, but also for the development or progression of type 2 diabetes. The objective of this study was to analyze the significance of hs-CRP in type 2 diabetes mellitus (T2DM) combined with acute myocardial infarction (AMI).Fifty patients with both T2DM and AMI, 50 patients with T2DM alone, and 50 healthy subjects (control group) were selected.Operating characteristic (ROC) analysis revealed that the sensitivity, specificity, accuracy, and critical value in the diagnosis of T2DM combined with AMI using hs-CRP level were 84.6%, 75.9%, 0.856, and 7.34 mg/L, respectively. For using vulnerable plaque rate, these were 92.7%, 95.3%, 0.923, and 0.52, respectively.hs-CRP play a significant role in the early diagnosis of T2DM combined with AMI.
Collapse
Affiliation(s)
- Juan Li
- Special Inspection Department
| | - Liangliang Wang
- Ultrasound Department, Liaocheng People's Hospital, Shandong, China
| | - Qian Wang
- Ultrasound Department, Liaocheng People's Hospital, Shandong, China
| | - Zhaoqin Xin
- Ultrasound Department, Liaocheng People's Hospital, Shandong, China
| | | | - Qinghua Zhao
- Ultrasound Department, Liaocheng People's Hospital, Shandong, China
| |
Collapse
|
13
|
Arbustini E, Kodama T, Favalli V. Radiation Therapy for Head and Neck Cancer and Angioneogenesis: Good for Cancer, Bad for Carotids? JACC Cardiovasc Imaging 2016; 9:676-9. [PMID: 27209104 DOI: 10.1016/j.jcmg.2015.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/23/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Eloisa Arbustini
- Center for Inherited Cardiovascular Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy.
| | - Takahide Kodama
- Center for Inherited Cardiovascular Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Cardiovascular Center, Toranomon Hospital, Tokyo, Japan
| | - Valentina Favalli
- Center for Inherited Cardiovascular Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| |
Collapse
|