1
|
Pistritu DV, Vasiliniuc AC, Vasiliu A, Visinescu EF, Visoiu IE, Vizdei S, Martínez Anghel P, Tanca A, Bucur O, Liehn EA. Phospholipids, the Masters in the Shadows during Healing after Acute Myocardial Infarction. Int J Mol Sci 2023; 24:8360. [PMID: 37176067 PMCID: PMC10178977 DOI: 10.3390/ijms24098360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Phospholipids are major components of cell membranes with complex structures, high heterogeneity and critical biological functions and have been used since ancient times to treat cardiovascular disease. Their importance and role were shadowed by the difficulty or incomplete available research methodology to study their biological presence and functionality. This review focuses on the current knowledge about the roles of phospholipids in the pathophysiology and therapy of cardiovascular diseases, which have been increasingly recognized. Used in singular formulation or in inclusive combinations with current drugs, phospholipids proved their positive and valuable effects not only in the protection of myocardial tissue, inflammation and fibrosis but also in angiogenesis, coagulation or cardiac regeneration more frequently in animal models as well as in human pathology. Thus, while mainly neglected by the scientific community, phospholipids present negligible side effects and could represent an ideal target for future therapeutic strategies in healing myocardial infarction. Acknowledging and understanding their mechanisms of action could offer a new perspective into novel therapeutic strategies for patients suffering an acute myocardial infarction, reducing the burden and improving the general social and economic outcome.
Collapse
Affiliation(s)
- Dan-Valentin Pistritu
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | | | - Anda Vasiliu
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Elena-Florentina Visinescu
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Ioana-Elena Visoiu
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Smaranda Vizdei
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Paula Martínez Anghel
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Business Academy Aarhus, 30 Sønderhøj, 8260 Viby J, Denmark
| | - Antoanela Tanca
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Octavian Bucur
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Viron Molecular Medicine Institute, 201 Washington Street, Boston, MA 02108, USA
| | - Elisa Anamaria Liehn
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Institute for Molecular Medicine, University of Southern Denmark, 25 J.B Winsløws Vej, 5230 Odense, Denmark
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
| |
Collapse
|
2
|
Yan Y, Gu Z, Li B, Guo X, Zhang Z, Zhang R, Bian Z, Qiu J. Metabonomics profile analysis in inflammation-induced preterm birth and the potential role of metabolites in regulating premature cervical ripening. Reprod Biol Endocrinol 2022; 20:135. [PMID: 36068532 PMCID: PMC9446521 DOI: 10.1186/s12958-022-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Preterm birth (PTB) is the primary cause of infant morbidity and mortality. Moreover, previous studies have established that PTB is related to premature cervical ripening. However, the underlying mechanism remains to be elucidated. This study sought to identify differentially expressed metabolites and investigate their potential biological functions in PTB. METHODS Pregnant C57BL/6 J mice were treated with either LPS or normal saline and cervical alterations before labor were detected by staining. Metabolic profiles in the plasma of PTB and control mice were examined through non-targeted metabonomics analyses, quantitative polymerase chain reaction and immunofluorescence staining were performed on human cervical smooth cells. RESULTS The study demonstrated that the mRNA and protein levels of α-SMA, SM-22, and calponin in cervical smooth muscle cells of PTB mice were lower while OR was higher at both mRNA and protein levels compared to the CTL group. A total of 181 differentially expressed metabolites were analyzed, among them, 96 were upregulated, while 85 were downregulated in the PTB group. Differentially expressed metabolites may play a role in STAT3, RhoA, mTOR, TGF-β, and NK-κB signaling pathways. Furthermore, when treated with taurine, the levels of α-SMA and SM-22 in human cervical smooth muscle cells were elevated, whereas that of connexin-43 was decreased. CONCLUSION Our study highlighted the changes of metabolites in the peripheral blood changed prior to PTB and revealed that these differentially expressed metabolites might participate in the development of premature cervical ripening. Taurine was identified as an important metabolite may modulate human cervical smooth muscle cells. Our study provided new insights into the mechanism underlying premature cervical ripening in PTB.
Collapse
Affiliation(s)
- Yan Yan
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Zhuorong Gu
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Baihe Li
- Hongqiao International Institute of Medicine Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Xirong Guo
- Hongqiao International Institute of Medicine Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Runjie Zhang
- Hongqiao International Institute of Medicine Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China.
| | - Zheng Bian
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China.
| | - Jin Qiu
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
3
|
Chen DQ, Guo Y, Li X, Zhang GQ, Li P. Small molecules as modulators of regulated cell death against ischemia/reperfusion injury. Med Res Rev 2022; 42:2067-2101. [PMID: 35730121 DOI: 10.1002/med.21917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/11/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Yaros K, Eksi B, Chandra A, Agusala K, Lehmann LH, Zaha Vlad G. Cardio-oncology imaging tools at the translational interface. J Mol Cell Cardiol 2022; 168:24-32. [DOI: 10.1016/j.yjmcc.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/03/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
5
|
Qin X, Jiang H, Liu Y, Zhang H, Tian M. Radionuclide imaging of apoptosis for clinical application. Eur J Nucl Med Mol Imaging 2022; 49:1345-1359. [PMID: 34873639 PMCID: PMC8921127 DOI: 10.1007/s00259-021-05641-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Apoptosis was a natural, non-inflammatory, energy-dependent form of programmed cell death (PCD) that can be discovered in a variety of physiological and pathological processes. Based on its characteristic biochemical changes, a great number of apoptosis probes for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) have been developed. Radionuclide imaging with these tracers were potential for the repetitive and selective detection of apoptotic cell death in vivo, without the need for invasive biopsy. In this review, we overviewed molecular mechanism and specific biochemical changes in apoptotic cells and summarized the existing tracers that have been used in clinical trials as well as their potentialities and limitations. Particularly, we highlighted the clinic applications of apoptosis imaging as diagnostic markers, early-response indicators, and prognostic predictors in multiple disease fields.
Collapse
Affiliation(s)
- Xiyi Qin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Zhang D, Gao M, Jin Q, Ni Y, Li H, Jiang C, Zhang J. Development of Duramycin-Based Molecular Probes for Cell Death Imaging. Mol Imaging Biol 2022; 24:612-629. [PMID: 35142992 DOI: 10.1007/s11307-022-01707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Cell death is involved in numerous pathological conditions such as cardiovascular disorders, ischemic stroke and organ transplant rejection, and plays a critical role in the treatment of cancer. Cell death imaging can serve as a noninvasive means to detect the severity of tissue damage, monitor the progression of diseases, and evaluate the effectiveness of treatments, which help to provide prognostic information and guide the formulation of individualized treatment plans. The high abundance of phosphatidylethanolamine (PE), which is predominantly confined to the inner leaflet of the lipid bilayer membrane in healthy mammalian cells, becomes exposed on the cell surface in the early stages of apoptosis or accessible to the extracellular milieu when the cell suffers from necrosis, thus representing an attractive target for cell death imaging. Duramycin is a tetracyclic polypeptide that contains 19 amino acids and can bind to PE with excellent affinity and specificity. Additionally, this peptide has several favorable structural traits including relatively low molecular weight, stability to enzymatic hydrolysis, and ease of conjugation and labeling. All these highlight the potential of duramycin as a candidate ligand for developing PE-specific molecular probes. By far, a couple of duramycin-based molecular probes such as Tc-99 m-, F-18-, or Ga-68-labeled duramycin have been developed to target exposed PE for in vivo noninvasive imaging of cell death in different animal models. In this review article, we describe the state of the art with respect to in vivo imaging of cell death using duramycin-based molecular probes, as validated by immunohistopathology.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, 3000, Leuven, Leuven, KU, Belgium
| | - Huailiang Li
- Department of General Surgery, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, Jiangsu Province, People's Republic of China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Herschede SR, Gneid H, Dent T, Jaeger EB, Lawson LB, Busschaert N. Bactericidal urea crown ethers target phosphatidylethanolamine membrane lipids. Org Biomol Chem 2021; 19:3838-3843. [PMID: 33949594 DOI: 10.1039/d1ob00263e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An increasing number of people are infected with antibiotic-resistant bacteria each year, sometimes with fatal consequences. In this manuscript, we report a novel urea-functionalized crown ether that can bind to the bacterial lipid phosphatidylethanolamine (PE), facilitate PE flip-flop and displays antibacterial activity against the Gram-positive bacterium Bacillus cereus with a minimum inhibitory concentration comparable to that of the known PE-targeting lantibiotic duramycin.
Collapse
Affiliation(s)
- Sarah R Herschede
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Hassan Gneid
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Taylor Dent
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Ellen B Jaeger
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Louise B Lawson
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Nathalie Busschaert
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| |
Collapse
|
8
|
Chaudhry F, Kawai H, Johnson KW, Narula N, Shekhar A, Chaudhry F, Nakahara T, Tanimoto T, Kim D, Adapoe MKMY, Blankenberg FG, Mattis JA, Pak KY, Levy PD, Ozaki Y, Arbustini E, Strauss HW, Petrov A, Fuster V, Narula J. Molecular Imaging of Apoptosis in Atherosclerosis by Targeting Cell Membrane Phospholipid Asymmetry. J Am Coll Cardiol 2021; 76:1862-1874. [PMID: 33059832 DOI: 10.1016/j.jacc.2020.08.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Apoptosis in atherosclerotic lesions contributes to plaque vulnerability by lipid core enlargement and fibrous cap attenuation. Apoptosis is associated with exteriorization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the cell membrane. Although PS-avid radiolabeled annexin-V has been employed for molecular imaging of high-risk plaques, PE-targeted imaging in atherosclerosis has not been studied. OBJECTIVES This study sought to evaluate the feasibility of molecular imaging with PE-avid radiolabeled duramycin in experimental atherosclerotic lesions in a rabbit model and compare duramycin targeting with radiolabeled annexin-V. METHODS Of the 27 rabbits, 21 were fed high-cholesterol, high-fat diet for 16 weeks. Nine of the 21 rabbits received 99mTc-duramycin (test group), 6 received 99mTc-linear duramycin (duramycin without PE-binding capability, negative radiotracer control group), and 6 received 99mTc-annexin-V for radionuclide imaging. The remaining normal chow-fed 6 animals (disease control group) received 99mTc-duramycin. In vivo microSPECT/microCT imaging was performed, and the aortas were explanted for ex vivo imaging and for histological characterization of atherosclerosis. RESULTS A significantly higher duramycin uptake was observed in the test group compared with that of disease control and negative radiotracer control animals; duramycin uptake was also significantly higher than the annexin-V uptake. Quantitative duramycin uptake, represented as the square root of percent injected dose per cm (√ID/cm) of abdominal aorta was >2-fold higher in atherosclerotic lesions in test group (0.08 ± 0.01%) than in comparable regions of disease control animals (0.039 ± 0.0061%, p = 3.70·10-8). Mean annexin uptake (0.060 ± 0.010%) was significantly lower than duramycin (p = 0.001). Duramycin uptake corresponded to the lesion severity and macrophage burden. The radiation burden to the kidneys was substantially lower with duramycin (0.49% ID/g) than annexin (5.48% ID/g; p = 4.00·10-4). CONCLUSIONS Radiolabeled duramycin localizes in lipid-rich areas with high concentration of apoptotic macrophages in the experimental atherosclerosis model. Duramycin uptake in atherosclerotic lesions was significantly greater than annexin-V uptake and produced significantly lower radiation burden to nontarget organs.
Collapse
Affiliation(s)
- Farhan Chaudhry
- Icahn School of Medicine at Mount Sinai, New York, New York; Wayne State University School of Medicine, Detroit, Michigan
| | - Hideki Kawai
- Icahn School of Medicine at Mount Sinai, New York, New York; Department of Cardiology, Fujita Health University, Toyoake, Aichi, Japan
| | - Kipp W Johnson
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Navneet Narula
- New York University Langone Medical Center, New York, New York
| | - Aditya Shekhar
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | - Dongbin Kim
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Jeffrey A Mattis
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania
| | - Phillip D Levy
- Wayne State University School of Medicine, Detroit, Michigan
| | - Yukio Ozaki
- Department of Cardiology, Fujita Health University, Toyoake, Aichi, Japan
| | | | - H William Strauss
- Icahn School of Medicine at Mount Sinai, New York, New York; Memorial Sloan Kettering Cancer Center, New York, New York
| | - Artiom Petrov
- Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Valentin Fuster
- Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
9
|
Chaudhry F, Jageka C, Levy PD, Cerghet M, Lisak RP. Review of the COVID-19 Risk in Multiple Sclerosis. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:68-77. [PMID: 33959727 PMCID: PMC8098748 DOI: 10.33696/immunology.3.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ongoing pandemic of the novel coronavirus of 2019 (COVID-19) has resulted in over 1 million deaths, primarily affecting older patients with chronic ailments. Multiple sclerosis (MS) patients have been deemed particularly vulnerable given their high rates of disability and increased susceptibility to infections. There have also been concerns regarding disease-modifying therapy (DMT) during the pandemic as many DMTs may increase the risk of infection due to some of their immunosuppressive properties. Furthermore, due to MS-related chronic inflammatory damage within the central nervous system, there have been concerns for worsening neurological injury by COVID-19. This has resulted in an alarmingly high level of anxiety and stress among the MS community leading to a lack of compliance with medications and routine check-ups, and even failure to obtain treatment for relapse. However, there is currently substantial evidence that MS and most DMT usage is not associated with increased COVID-19 severity. MS patients who suffer worse outcomes were more likely to be older and suffer from significant disabilities and comorbid conditions, which would also be expected from those in the general population. Likewise, there is little if any evidence demonstrating an increased susceptibility of MS patients to COVID-19-related neurological complications. Therefore, we aim to summarize the most recent findings related to COVID-19 and MS demonstrating that MS and most DMTs do not appear as risk factors for severe COVID-19.
Collapse
Affiliation(s)
- Farhan Chaudhry
- Department of Emergency Medicine and Integrative Biosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Cristina Jageka
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Phillip D. Levy
- Department of Emergency Medicine and Integrative Biosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert P Lisak
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine and the Detroit Medical Center, Detroit, MI, USA
| |
Collapse
|
10
|
Tawakol A, Abohashem S, Zureigat H. Imaging Apoptosis in Atherosclerosis: From Cell Death, A Ray of Light. J Am Coll Cardiol 2020; 76:1875-1877. [PMID: 33059833 DOI: 10.1016/j.jacc.2020.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Ahmed Tawakol
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Shady Abohashem
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hadil Zureigat
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Tan H, Abudupataer M, Qiu L, Mao W, Xiao J, Cheng D, Shi H. 99m Tc-labeled Duramycin for detecting and monitoring cardiomyocyte death and assessing atorvastatin cardioprotection in acute myocardial infarction. Chem Biol Drug Des 2020; 97:210-220. [PMID: 32881342 DOI: 10.1111/cbdd.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to dynamically monitor myocardial cell death using 99m Tc-Duramycin single-photon emission computed tomography/computed tomography (micro-SPECT/CT) imaging in acute myocardial infarction (AMI) and the anti-apoptosis effect of atorvastatin for cardioprotection. Mice were randomized into three groups: AMI group, AMI with atorvastatin treatment (T-AMI) group, and sham group. Three groups of model mice were randomly selected at day 1 (D1), day 3 (D3), and day 7 (D7) day after surgery with 99m Tc-Duramycin micro-SPECT/CT imaging. The lesion-to-normal myocardial tissue ratio (L/N) average values were 2.62 on D1, 3.89 on D3, and 1.20 on D7 for the uptake of 99m Tc-duramycin in the infarcted region in the AMI group. The sham group presented no positive imaging in myocardium, and the L/N average values were 1.09, 1.14, and 1.10 on D1, D3, and D7, respectively. Meanwhile, 99m Tc-linear-duramycin imaging showed no radioactive uptake in the infarction region. The T-AMI group imaging showed tracer uptake decreased obviously compared to the uptake in the infarcted region in AMI mice. 99m Tc-Duramycin SPECT/CT imaging allowed non-invasive monitoring of myocardial cell death in a mouse model of AMI and an assessment of atorvastatin anti-apoptosis effect for cardioprotection by in vivo molecular imaging.
Collapse
Affiliation(s)
- Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
12
|
Mosayebnia M, Hajiramezanali M, Shahhosseini S. Radiolabeled Peptides for Molecular Imaging of Apoptosis. Curr Med Chem 2020; 27:7064-7089. [PMID: 32532184 DOI: 10.2174/0929867327666200612152655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/22/2022]
Abstract
Apoptosis is a regulated cell death induced by extrinsic and intrinsic stimulants. Tracking of apoptosis provides an opportunity for the assessment of cardiovascular and neurodegenerative diseases as well as monitoring of cancer therapy at early stages. There are some key mediators in apoptosis cascade, which could be considered as specific targets for delivering imaging or therapeutic agents. The targeted radioisotope-based imaging agents are able to sensitively detect the physiological signal pathways which make them suitable for apoptosis imaging at a single-cell level. Radiopeptides take advantage of both the high sensitivity of nuclear imaging modalities and favorable features of peptide scaffolds. The aim of this study is to review the characteristics of those radiopeptides targeting apoptosis with different mechanisms.
Collapse
Affiliation(s)
- Mona Mosayebnia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Hajiramezanali
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Li L, Liu T, Liu L, Zhang Z, Li S, Zhang Z, Zhou Y, Liu F. Metabolomics Analysis of the Effect of Hydrogen-Rich Water on Myocardial Ischemia-Reperfusion Injury in Rats. J Bioenerg Biomembr 2020; 52:257-268. [PMID: 32472432 DOI: 10.1007/s10863-020-09835-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
To investigate the effect of hydrogen-rich water on myocardial tissue metabolism in a myocardial ischemia-reperfusion injury (MIRI) rat model. Twelve rats were randomly divided into a hydrogen-rich water group and a control group of size 6 each. After the heart was removed, it was fixed in the Langendorff device, and the heart was perfused with 37 °C perfusion solution pre-balanced with oxygen. The control group was perfused with Kreb's-Ringers (K-R) solution, and the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. Liquid Chromatograph Mass Spectrometer (LC-MS) analysis platform was used for metabolomics research. Principle component analysis (PCA), partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), Variable importance in projection (VIP) value of OPLS-DA model (threshold value ≥1) were employed with independent sample T Test (p < 0.05) to find differentially expressed metabolites, and screen for differential metabolic pathways. VIP (OPLS-DA) analysis was performed with T test, and the metabolites of the control group and the hydrogen-rich water group were significantly different, and the glycerophospholipid metabolism was screened. Seven myocardial ischemia-reperfusion injury (MIRI)-related signaling pathways were identified, including glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI) anchored biosynthesis, and purine metabolism, as well as 10 biomarkers such as phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Hydrogen-rich water regulates the metabolic imbalance that could change MIRI myocardial tissue metabolism, and alleviate ischemia-reperfusion injury in isolated hearts of rats through multiple signaling pathways.
Collapse
Affiliation(s)
- Liangtong Li
- Medical College, Hebei University, Baoding, 071000, China
| | - Tongtong Liu
- Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Li Liu
- Medical College, Hebei University, Baoding, 071000, China
| | - Zhe Zhang
- Medical College, Hebei University, Baoding, 071000, China
| | - Shaochun Li
- Medical College, Hebei University, Baoding, 071000, China
| | - Zhiling Zhang
- Department of Cardiology, Baoding First Center Hospital, Baoding, 071000, China
| | - Yujuan Zhou
- Medical College, Hebei University, Baoding, 071000, China.
| | - Fulin Liu
- Affiliated Hospital of Hebei University, Baoding, 071000, China.
| |
Collapse
|
14
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
15
|
Chaudhry F, Adapoe MKMY, Johnson KW, Narula N, Shekhar A, Kawai H, Horwitz JK, Liu J, Li Y, Pak KY, Mattis J, Moreira AL, Levy PD, Strauss HW, Petrov A, Heeger PS, Narula J. Molecular Imaging of Cardiac Allograft Rejection: Targeting Apoptosis With Radiolabeled Duramycin. JACC Cardiovasc Imaging 2020; 13:1438-1441. [PMID: 32199845 DOI: 10.1016/j.jcmg.2020.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 11/17/2022]
|
16
|
Andrews WT, Donahue D, Holmes A, Balsara R, Castellino FJ, Hummon AB. In situ metabolite and lipid analysis of GluN2D -/- and wild-type mice after ischemic stroke using MALDI MSI. Anal Bioanal Chem 2020; 412:6275-6285. [PMID: 32107573 DOI: 10.1007/s00216-020-02477-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is a crucial mediator of pathological glutamate-driven excitotoxicity and subsequent neuronal death in acute ischemic stroke. Although the roles of the NMDAR's composite GluN2A-C subunits have been investigated in this phenomenon, the relative importance of the GluN2D subunit has yet to be evaluated. Herein, GluN2D-/- mice were studied in a model of ischemic stroke using MALDI FT-ICR mass spectrometry imaging to investigate the role of the GluN2D subunit of the NMDA receptor in brain ischemia. GluN2D-/- mice underwent middle cerebral artery occlusion (MCAO) and brain tissue was subsequently harvested, frozen, and cryosectioned. Tissue sections were analyzed via MALDI FT-ICR mass spectrometry imaging. MALDI analyses revealed increases in several calcium-related species, namely vitamin D metabolites, LysoPC, and several PS species, in wild-type mouse brain tissue when compared to wild type. In addition, GluN2D-/- mice also displayed an increase in PC, as well as a decrease in DG, suggesting reduced free fatty acid release from brain ischemia. These trends indicate that GluN2D-/- mice show enhanced rates of neurorecovery and neuroprotection from ischemic strokes compared to wild-type mice. The cause of neuroprotection may be the result of an increase in PGP in knockout mice, contributing to greater cardiolipin synthesis and decreased sensitivity to apoptotic signals. Graphical abstract.
Collapse
Affiliation(s)
- William T Andrews
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Cavanaugh Dr, Notre Dame, IN, 46556, USA.
| | - Deborah Donahue
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Cavanaugh Dr, Notre Dame, IN, 46556, USA
| | - Adam Holmes
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Cavanaugh Dr, Notre Dame, IN, 46556, USA
| | - Rashna Balsara
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Cavanaugh Dr, Notre Dame, IN, 46556, USA
| | - Francis J Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Cavanaugh Dr, Notre Dame, IN, 46556, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry and the Comprehensive Cancer Center, The Ohio State University, 414 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
17
|
Chaudhry F, Isherwood J, Bawa T, Patel D, Gurdziel K, Lanfear DE, Ruden DM, Levy PD. Single-Cell RNA Sequencing of the Cardiovascular System: New Looks for Old Diseases. Front Cardiovasc Med 2019; 6:173. [PMID: 31921894 PMCID: PMC6914766 DOI: 10.3389/fcvm.2019.00173] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease encompasses a wide range of conditions, resulting in the highest number of deaths worldwide. The underlying pathologies surrounding cardiovascular disease include a vast and complicated network of both cellular and molecular mechanisms. Unique phenotypic alterations in specific cell types, visualized as varying RNA expression-levels (both coding and non-coding), have been identified as crucial factors in the pathology underlying conditions such as heart failure and atherosclerosis. Recent advances in single-cell RNA sequencing (scRNA-seq) have elucidated a new realm of cell subpopulations and transcriptional variations that are associated with normal and pathological physiology in a wide variety of diseases. This breakthrough in the phenotypical understanding of our cells has brought novel insight into cardiovascular basic science. scRNA-seq allows for separation of widely distinct cell subpopulations which were, until recently, simply averaged together with bulk-tissue RNA-seq. scRNA-seq has been used to identify novel cell types in the heart and vasculature that could be implicated in a variety of disease pathologies. Furthermore, scRNA-seq has been able to identify significant heterogeneity of phenotypes within individual cell subtype populations. The ability to characterize single cells based on transcriptional phenotypes allows researchers the ability to map development of cells and identify changes in specific subpopulations due to diseases at a very high throughput. This review looks at recent scRNA-seq studies of various aspects of the cardiovascular system and discusses their potential value to our understanding of the cardiovascular system and pathology.
Collapse
Affiliation(s)
- Farhan Chaudhry
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Jenna Isherwood
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Tejeshwar Bawa
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Dhruvil Patel
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - David E Lanfear
- Heart and Vascular Institute, Henry Ford Health System, Detroit, MI, United States
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, United States
| | - Phillip D Levy
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| |
Collapse
|
18
|
Boseila AA, Rashed HM, Sakr TM, Abdel-Reheem AY, Basalious EB. Superiority of DEAE-Dx-Stabilized Cationic Bile-Based Vesicles over Conventional Vesicles for Enhanced Hepatic Delivery of Daclatasvir. Mol Pharm 2019; 16:4190-4199. [DOI: 10.1021/acs.molpharmaceut.9b00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), 12611 Cairo, Egypt
| | - Hassan M. Rashed
- Labeled Compounds Department, Hot Labs Center, Atomic Energy Authority, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Tamer M. Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Atomic Energy Authority, Cairo, Egypt
| | - Amal Y. Abdel-Reheem
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), 12611 Cairo, Egypt
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
19
|
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, Kar S, Su S, Higa JK, Kawasaki NK, Matsui T. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol 2019; 317:H891-H922. [PMID: 31418596 DOI: 10.1152/ajpheart.00259.2019] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell death is a fundamental process in cardiac pathologies. Recent studies have revealed multiple forms of cell death, and several of them have been demonstrated to underlie adverse cardiac remodeling and heart failure. With the expansion in the area of myocardial cell death and increasing concerns over rigor and reproducibility, it is important and timely to set a guideline for the best practices of evaluating myocardial cell death. There are six major forms of regulated cell death observed in cardiac pathologies, namely apoptosis, necroptosis, mitochondrial-mediated necrosis, pyroptosis, ferroptosis, and autophagic cell death. In this article, we describe the best methods to identify, measure, and evaluate these modes of myocardial cell death. In addition, we discuss the limitations of currently practiced myocardial cell death mechanisms.
Collapse
Affiliation(s)
- Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University of Bratislava, Bratislava, Slovakia
| | - Joseph A Hill
- Departments of Medicine (Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher P Baines
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James M Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia
| | - Hande C Piristine
- Department of Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi Su
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jason K Higa
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Takashi Matsui
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
20
|
Chen J, Jiang Z, Zhou X, Sun X, Cao J, Liu Y, Wang X. Dexmedetomidine Preconditioning Protects Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Necroptosis by Inhibiting HMGB1-Mediated Inflammation. Cardiovasc Drugs Ther 2019; 33:45-54. [PMID: 30675709 DOI: 10.1007/s10557-019-06857-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a serious threat to the health of people around the world. Recent evidence has indicated that high-mobility group box-1 (HMGB1) is involved in I/R-induced inflammation, and inflammation can cause necroptosis of cells. Interestingly, dexmedetomidine (DEX) has anti-inflammatory properties. Therefore, we speculated that DEX preconditioning may suppress H/R-induced necroptosis by inhibiting expression of HMGB1 in cardiomyocytes. We found that hypoxia/reoxygenation (H/R) significantly increased cellular damage, as measured by cell viability (100 ± 3.26% vs. 53.33 ± 3.29, p < 0.01), CK-MB (1 vs. 3.25 ± 0.26, p < 0.01), cTnI (1 vs. 2.69 ± 0.31, p < 0.01), inflammation as indicated by TNF-α (1 ± 0.09 vs. 2.57 ± 0.12, p < 0.01), IL-1β (1 ± 0.33 vs. 3.87 ± 0.41, p < 0.01) and IL-6 (1 ± 0.36 vs. 3.60 ± 0.45, p < 0.01), and necroptosis, which were accompanied by significantly increased protein levels of HMGB1. These changes [cellular damage as measured by cell viability (53.33 ± 3.29% vs. 67.59 ± 2.69%, p < 0.01), CK-MB (3.25 ± 0.26 vs. 2.27 ± 0.22, p < 0.01), cTnI (2.69 ± 0.31 vs. 1.90 ± 0.25, p < 0.01), inflammation as indicated by TNF-α (2.57 ± 0.12 vs. 1.75 ± 0.15, p < 0.01), IL-1β (3.87 ± 0.41 vs. 2.09 ± 0.36, p < 0.01) and IL-6 (3.60 ± 0.45 vs. 2.21 ± 0.39, p < 0.01), and necroptosis proteins] were inhibited by DEX preconditioning. We also found that silencing expression of HMGB1 reinforced the protective effects of DEX preconditioning and overexpression of HMGB1 counteracted the protective effects of DEX preconditioning. Thus, we concluded that DEX preconditioning inhibits H/R-induced necroptosis by inhibiting expression of HMGB1 in cardiomyocytes.
Collapse
Affiliation(s)
- Jingyi Chen
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Institute of Anesthesiology, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Zhenzhen Jiang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xing Zhou
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Institute of Anesthesiology, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xingxing Sun
- Department of Ultrasonography Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jianwei Cao
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongpan Liu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Institute of Anesthesiology, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xianyu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Institute of Anesthesiology, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| |
Collapse
|
21
|
Johnson SE, Ugolkov A, Haney CR, Bondarenko G, Li L, Waters EA, Bergan R, Tran A, O'Halloran TV, Mazar A, Zhao M. Whole-body Imaging of Cell Death Provides a Systemic, Minimally Invasive, Dynamic, and Near-real Time Indicator for Chemotherapeutic Drug Toxicity. Clin Cancer Res 2018; 25:1331-1342. [PMID: 30420445 DOI: 10.1158/1078-0432.ccr-18-1846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Response to toxicity in chemotherapies varies considerably from tissue to tissue and from patient to patient. An ability to monitor the tissue damage done by chemotherapy may have a profound impact on treatment and prognosis allowing for a proactive management in understanding and mitigating such events. For the first time, we investigated the feasibility of using whole-body imaging to map chemotherapeutic drug-induced toxicity on an individual basis. EXPERIMENTAL DESIGN In a preclinical proof-of-concept, rats were treated with a single clinical dose of cyclophosphamide, methotrexate, or cisplatin. In vivo whole-body imaging data were acquired using 99mTc-duramycin, which identifies dead and dying cells as an unambiguous marker for tissue injury in susceptible organs. Imaging results were cross-validated using quantitative ex vivo measurements and histopathology and compared with standard blood and serum panels for toxicology. RESULTS The in vivo whole-body imaging data detected widespread changes, where spatially heterogeneous toxic effects were identified across different tissues, within substructures of organs, as well as among different individuals. The signal changes were consistent with established toxicity profiles of these chemotherapeutic drugs. Apart from generating a map of susceptible tissues, this in vivo imaging approach was more sensitive compared with conventional blood and serum markers used in toxicology. Also, repeated imaging during the acute period after drug treatment captured different kinetics of tissue injury among susceptible organs in males and females. CONCLUSIONS This novel and highly translational imaging approach shows promise in optimizing therapeutic decisions by detecting and managing drug toxicity on a personalized basis.Toxicity to normal tissues is a significant limitation in chemotherapies. This work demonstrated an in vivo imaging-based approach for characterizing toxicity-induced tissue injury in a systemic, dynamic, and near-real time fashion. This novel approach shows promise in optimizing therapeutic decisions by monitoring drug toxicity on a personalized basis.
Collapse
Affiliation(s)
- Steven E Johnson
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andrey Ugolkov
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Gennadiy Bondarenko
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Lin Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Emily A Waters
- Center for Advanced Molecular Imaging, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Raymond Bergan
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andy Tran
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.,Department of Chemistry, Northwestern University, Evanston, Illinois
| | - Andrew Mazar
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois. .,Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ming Zhao
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| |
Collapse
|
22
|
Nakahara T, Petrov A, Tanimoto T, Chaudhry F, Narula N, Seshan SV, Mattis JA, Pak KY, Sahni G, Bhardwaj A, Sengupta PP, Tiersten A, Strauss HW, Narula J. Molecular Imaging of Apoptosis in Cancer Therapy-Related Cardiac Dysfunction Before LVEF Reduction. JACC Cardiovasc Imaging 2018; 11:1203-1205. [DOI: 10.1016/j.jcmg.2017.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 11/25/2022]
|
23
|
Wu JC, Qin X, Neofytou E. Radiolabeled Duramycin: Promising Translational Imaging of Myocardial Apoptosis. JACC Cardiovasc Imaging 2018; 11:1834-1836. [PMID: 29454760 DOI: 10.1016/j.jcmg.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California; Department of Radiology, Stanford University School of Medicine, Stanford, California.
| | - Xulei Qin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|