1
|
Basile P, Soldato N, Pedio E, Siena P, Carella MC, Dentamaro I, Khan Y, Baggiano A, Mushtaq S, Forleo C, Ciccone MM, Pontone G, Guaricci AI. Cardiac magnetic resonance reveals concealed structural heart disease in patients with frequent premature ventricular contractions and normal echocardiography: A systematic review. Int J Cardiol 2024; 412:132306. [PMID: 38950789 DOI: 10.1016/j.ijcard.2024.132306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Premature ventricular contractions (PVCs) are a common form of arrhythmic events, often representing an idiopathic and benign condition without further therapeutic interventions. However, in certain circumstances PVCs may represent the epiphenomenon of a concealed structural heart disease (SHD). Surface 12‑leads EKG and 24-h dynamic EKG are necessary to assess their main characteristics such as site of origin, frequency and complexity. Echocardiography represents the first-line imaging tool recommended to evaluate cardiac structures and function. Cardiac Magnetic Resonance (CMR) is recognized as a superior modality for detecting structural cardiac alterations, that might evade detection by conventional echocardiography. Moreover, in specific populations such as athletes, CMR may have a crucial role to exclude a concealed SHD and the risk of serious arrhythmic events during sport activity. Some clinical characteristics such as male sex, older age or family history of sudden cardiac death (SCD) or cardiomyopathy, and some electrocardiographic features of PVCs, in particular a right branch bundle block (RBBB) with superior/intermediate axis morphology, the reproducibility of VAs during exercise test (ET) or the evidence of complex ventricular arrhythmias, may warrant a CMR evaluation, due to the high probability of SHD. In this systematic review our objective was to provide an exhaustive overview on the role of CMR in detecting a concealed SHD in patients with high daily burden of PVCs and a normal echocardiographic evaluation, paving the way for a more extensive utilization of CMR in presence of certain high-risk clinical and/or EKG features identified during the diagnostic workup.
Collapse
Affiliation(s)
- Paolo Basile
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Nicolò Soldato
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Erika Pedio
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Paola Siena
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Maria Cristina Carella
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Ilaria Dentamaro
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Yamna Khan
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Cinzia Forleo
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Marco Matteo Ciccone
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Andrea Igoren Guaricci
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy.
| |
Collapse
|
2
|
Zarà M, Baggiano A, Amadio P, Campodonico J, Gili S, Annoni A, De Dona G, Carerj ML, Cilia F, Formenti A, Fusini L, Banfi C, Gripari P, Tedesco CC, Mancini ME, Chiesa M, Maragna R, Marchetti F, Penso M, Tassetti L, Volpe A, Bonomi A, Marenzi G, Pontone G, Barbieri SS. Circulating Small Extracellular Vesicles Reflect the Severity of Myocardial Damage in STEMI Patients. Biomolecules 2023; 13:1470. [PMID: 37892152 PMCID: PMC10605123 DOI: 10.3390/biom13101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Circulating small extracellular vesicles (sEVs) contribute to inflammation, coagulation and vascular injury, and have great potential as diagnostic markers of disease. The ability of sEVs to reflect myocardial damage assessed by Cardiac Magnetic Resonance (CMR) in ST-segment elevation myocardial infarction (STEMI) is unknown. To fill this gap, plasma sEVs were isolated from 42 STEMI patients treated by primary percutaneous coronary intervention (pPCI) and evaluated by CMR between days 3 and 6. Nanoparticle tracking analysis showed that sEVs were greater in patients with anterior STEMI (p = 0.0001), with the culprit lesion located in LAD (p = 0.045), and in those who underwent late revascularization (p = 0.038). A smaller sEV size was observed in patients with a low myocardial salvage index (MSI, p = 0.014). Patients with microvascular obstruction (MVO) had smaller sEVs (p < 0.002) and lower expression of the platelet marker CD41-CD61 (p = 0.039). sEV size and CD41-CD61 expression were independent predictors of MVO/MSI (OR [95% CI]: 0.93 [0.87-0.98] and 0.04 [0-0.61], respectively). In conclusion, we provide evidence that the CD41-CD61 expression in sEVs reflects the CMR-assessed ischemic damage after STEMI. This finding paves the way for the development of a new strategy for the timely identification of high-risk patients and their treatment optimization.
Collapse
Affiliation(s)
- Marta Zarà
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Andrea Baggiano
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Patrizia Amadio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Jeness Campodonico
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Sebastiano Gili
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Andrea Annoni
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Gianluca De Dona
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | | | - Francesco Cilia
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Alberto Formenti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Laura Fusini
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20156 Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Paola Gripari
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | | | | | - Mattia Chiesa
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Riccardo Maragna
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Francesca Marchetti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Marco Penso
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Luigi Tassetti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Alessandra Volpe
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Alice Bonomi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Giancarlo Marenzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | | |
Collapse
|
3
|
Lupu M, Tudor D, Filip A. Iron metabolism and cardiovascular disease: Basic to translational purviews and therapeutical approach. Rev Port Cardiol 2022; 41:1037-1046. [PMID: 36228833 DOI: 10.1016/j.repc.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022] Open
Abstract
Iron interactions with the cardiovascular system were proposed about half a century ago, yet a clear-cut understanding of this micronutrient and its intricacies with acute and chronic events is still lacking. In chronic heart failure, patients with decreased iron stores appear to benefit from intravenous administration of metallic formulations, whereas acute diseases (e.g., myocardial infarction, stroke) are barely studied in randomized controlled trials in humans. However, proof-of-concept studies have indicated that the dual redox characteristics of iron could be involved in atherosclerosis, necrosis, and ferroptosis. To this end, we sought to review the currently available body of literature pertaining to these temporal profiles of heart diseases, as well as the pathophysiologic mechanism by which iron enacts, underlining key points related to treatment options.
Collapse
Affiliation(s)
- Mihai Lupu
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania.
| | - Diana Tudor
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| | - Adriana Filip
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Muscogiuri G, Guaricci AI, Cau R, Saba L, Senatieri A, Chierchia G, Pontone G, Volpato V, Palmisano A, Esposito A, Basile P, Marra P, D'angelo T, Booz C, Rabbat M, Sironi S. Multimodality imaging in acute myocarditis. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1097-1109. [PMID: 36218216 DOI: 10.1002/jcu.23310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
The diagnosis of acute myocarditis often involves several noninvasive techniques that can provide information regarding volumes, ejection fraction, and tissue characterization. In particular, echocardiography is extremely helpful for the evaluation of biventricular volumes, strain and ejection fraction. Cardiac magnetic resonance, beyond biventricular volumes, strain, and ejection fraction allows to characterize myocardial tissue providing information regarding edema, hyperemia, and fibrosis. Contemporary cardiac computed tomography angiography (CCTA) can not only be extremely important for the assessment of coronary arteries, pulmonary arteries and aorta but also tissue characterization using CCTA can be an additional tool that can explain chest pain with a diagnosis of myocarditis.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Milano, Italy
- School of Medicine, University of Milano-Bicocca, Milano, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, Cagliari, Italy
| | | | | | | | - Valentina Volpato
- University Cardiology Unit, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
| | - Anna Palmisano
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milano, Italy
| | - Antonio Esposito
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milano, Italy
| | - Paolo Basile
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Tommaso D'angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Messina, Italy
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Mark Rabbat
- Loyola University of Chicago, Chicago, Illinois, USA
- Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, Milano, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
5
|
Muscogiuri G, Guaricci AI, Soldato N, Cau R, Saba L, Siena P, Tarsitano MG, Giannetta E, Sala D, Sganzerla P, Gatti M, Faletti R, Senatieri A, Chierchia G, Pontone G, Marra P, Rabbat MG, Sironi S. Multimodality Imaging of Sudden Cardiac Death and Acute Complications in Acute Coronary Syndrome. J Clin Med 2022; 11:jcm11195663. [PMID: 36233531 PMCID: PMC9573273 DOI: 10.3390/jcm11195663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Sudden cardiac death (SCD) is a potentially fatal event usually caused by a cardiac arrhythmia, which is often the result of coronary artery disease (CAD). Up to 80% of patients suffering from SCD have concomitant CAD. Arrhythmic complications may occur in patients with acute coronary syndrome (ACS) before admission, during revascularization procedures, and in hospital intensive care monitoring. In addition, about 20% of patients who survive cardiac arrest develop a transmural myocardial infarction (MI). Prevention of ACS can be evaluated in selected patients using cardiac computed tomography angiography (CCTA), while diagnosis can be depicted using electrocardiography (ECG), and complications can be evaluated with cardiac magnetic resonance (CMR) and echocardiography. CCTA can evaluate plaque, burden of disease, stenosis, and adverse plaque characteristics, in patients with chest pain. ECG and echocardiography are the first-line tests for ACS and are affordable and useful for diagnosis. CMR can evaluate function and the presence of complications after ACS, such as development of ventricular thrombus and presence of myocardial tissue characterization abnormalities that can be the substrate of ventricular arrhythmias.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Piazzale Brescia 20, 20149 Milan, Italy
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Nicola Soldato
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Paola Siena
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Maria Grazia Tarsitano
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Davide Sala
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Paolo Sganzerla
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Alberto Senatieri
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
| | | | | | - Paolo Marra
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60611, USA
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
6
|
Argentiero A, Muscogiuri G, Rabbat MG, Martini C, Soldato N, Basile P, Baggiano A, Mushtaq S, Fusini L, Mancini ME, Gaibazzi N, Santobuono VE, Sironi S, Pontone G, Guaricci AI. The Applications of Artificial Intelligence in Cardiovascular Magnetic Resonance-A Comprehensive Review. J Clin Med 2022; 11:jcm11102866. [PMID: 35628992 PMCID: PMC9147423 DOI: 10.3390/jcm11102866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease remains an integral field on which new research in both the biomedical and technological fields is based, as it remains the leading cause of mortality and morbidity worldwide. However, despite the progress of cardiac imaging techniques, the heart remains a challenging organ to study. Artificial intelligence (AI) has emerged as one of the major innovations in the field of diagnostic imaging, with a dramatic impact on cardiovascular magnetic resonance imaging (CMR). AI will be increasingly present in the medical world, with strong potential for greater diagnostic efficiency and accuracy. Regarding the use of AI in image acquisition and reconstruction, the main role was to reduce the time of image acquisition and analysis, one of the biggest challenges concerning magnetic resonance; moreover, it has been seen to play a role in the automatic correction of artifacts. The use of these techniques in image segmentation has allowed automatic and accurate quantification of the volumes and masses of the left and right ventricles, with occasional need for manual correction. Furthermore, AI can be a useful tool to directly help the clinician in the diagnosis and derivation of prognostic information of cardiovascular diseases. This review addresses the applications and future prospects of AI in CMR imaging, from image acquisition and reconstruction to image segmentation, tissue characterization, diagnostic evaluation, and prognostication.
Collapse
Affiliation(s)
- Adriana Argentiero
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Giuseppe Muscogiuri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60660, USA;
| | - Chiara Martini
- Radiologic Sciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Nicolò Soldato
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Paolo Basile
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Laura Fusini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Maria Elisabetta Mancini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Nicola Gaibazzi
- Department of Cardiology, Azienda Ospedaliero-Universitaria, 43126 Parma, Italy;
| | - Vincenzo Ezio Santobuono
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
- Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
- Correspondence:
| |
Collapse
|
7
|
Podzolkov VI, Dragomiretskaya NA, Beliaev IG, Kucherova JS, Kazadaeva AV. Endothelial Microvascular Dysfunction and Its Relationship with Haptoglobin Levels in Patients with Different Phenotypes of Chronic Heart Failure. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2021. [DOI: 10.20996/1819-6446-2021-10-05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. To study the relationship between the level of haptoglobin and the main indicators of microcirculation (MC) in patients with different phenotypes of chronic heart failure (CHF).Materials and methods. Patients with different phenotypes of functional class II-IV chronic heart failure according to NYHA (n=80) underwent a general clinical examination, determination of the serum haptoglobin level by enzyme-linked immunosorbent assay, as well as an assessment of the MC state on the medial surface of the upper third of the leg by laser Doppler flowmetry (LDF).Results. Patients with CHF included patients with preserved left ventricular ejection fraction (HFpEF; n=27, intermediate ejection fraction (HFmrEF; n=25) and reduced ejection fraction (HFrEF; n=28). The median value of haptoglobin in the HFpEF group was 1387.6 [ 747.5; 1946.9] mg/l, in the HFmrEF group was 1583.4 [818.9; 2201.4] mg/l, in the HFrEF group was 968.5 [509.5; 1324.4] mg/l. Correlation analysis revealed statistically significant relationships between haptoglobin and the amplitudes of the endothelial frequency range (Ae) in the groups of HFmrEF (r=-0.628, 95% confidence interval [CI] -0.256; -0.825, p=0.003) and HFrEF (r=-0.503, 95% CI -0.089; -0.803, p=0.02). A negative relationship between the haptoglobin level and Kv and σ was revealed, as well as a formula for calculating the value of haptoglobin was obtained, which is predicted on the basis of the amplitude index of the endothelial frequency range: [haptoglobin]=1787-(4053×Ae).Conclusion. The multifactorial effect of haptoglobin is realized in the central and peripheral mechanisms of MC regulation. Low values of haptoglobin in blood plasma should be considered as a potential marker for the development of complications and used in a comprehensive assessment of the state of patients with CHF. Evaluation of the diagnostic and prognostic significance of haptoglobin, especially in patients with HFmrEF, requires further study.
Collapse
Affiliation(s)
- V. I. Podzolkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - I. G. Beliaev
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Ju. S. Kucherova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. V. Kazadaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
8
|
Abstract
Ischemic cardiomyopathy (ICM) is one of the most common causes of congestive heart failure. In patients with ICM, tissue characterization with cardiac magnetic resonance imaging (CMR) allows for evaluation of myocardial abnormalities in acute and chronic settings. Myocardial edema, microvascular obstruction (MVO), intracardiac thrombus, intramyocardial hemorrhage, and late gadolinium enhancement of the myocardium are easily depicted using standard CMR sequences. In the acute setting, tissue characterization is mainly focused on assessment of ventricular thrombus and MVO, which are associated with poor prognosis. Conversely, in chronic ICM, it is important to depict late gadolinium enhancement and myocardial ischemia using stress perfusion sequences. Overall, with CMR's ability to accurately characterize myocardial tissue in acute and chronic ICM, it represents a valuable diagnostic and prognostic imaging method for treatment planning. In particular, tissue characterization abnormalities in the acute setting can provide information regarding the patients that may develop major adverse cardiac event and show the presence of ventricular thrombus; in the chronic setting, evaluation of viable myocardium can be fundamental for planning myocardial revascularization. In this review, the main findings on tissue characterization are illustrated in acute and chronic settings using qualitative and quantitative tissue characterization.
Collapse
|
9
|
Qi Y, Gu R, Xu J, Kang L, Liu Y, Wang L, Chen J, Zhang J, Wang K. Index of microcirculatory resistance predicts long term cardiac systolic function in patients with STEMI undergoing primary PCI. BMC Cardiovasc Disord 2021; 21:66. [PMID: 33530931 PMCID: PMC7852219 DOI: 10.1186/s12872-021-01887-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background To evaluate the predictive value of the index of microcirculatory resistance (IMR) for long-term cardiac systolic function after primary percutaneous coronary intervention (pPCI) in patients with acute anterior wall ST-segment elevation myocardial infarction (STEMI). Methods A total of 53 acute anterior wall STEMI patients were included and followed up within 1-year. IMR was measured to evaluate the immediate intraoperative reperfusion. IMR > 40 U was defined as the high IMR group and ≤ 40 U was defined as the low IMR group. Left ventricular ejection fraction (LVEF) was measured by echocardiography at 24 h, 1 month, 3 months, and 1 year after PCI to analyze the correlation between IMR and cardiac systolic function. Heart failure was estimated according to classification within one year. Results The ratio of TMPG (TIMI myocardial perfusion grade) 3 (85.7% vs. 52%, p = 0.015) and STR (ST-segment resolution) > 70% (82.1% vs. 48%, p = 0.019) were significantly higher in the low IMR group. The LVEF in the low IMR group was significantly higher than that in the high IMR group at 3 months (43.06 ± 2.63% vs. 40.20 ± 2.67%, p < 0.001) and 1 year (44.16 ± 2.40% vs. 40.13 ± 3.48%, p < 0.001). IMR was negatively correlated with LVEF at 3 months (r = − 0.1014, p = 0.0040) and 1 year (r = − 0.1754, p < 0.0001). Conclusions The IMR showed significant negative correlation with the LVEF value after primary PCI. The high IMR is a strong predictor of heart failure within 1 year after anterior myocardial infarction.
Collapse
Affiliation(s)
- Yu Qi
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Rong Gu
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jiamin Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Lian Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jianzhou Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingmei Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Kun Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
10
|
Iron deficiency in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol 2020; 300:14-19. [DOI: 10.1016/j.ijcard.2019.07.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022]
|
11
|
A proteomic approach to identify novel disease biomarkers in LCAT deficiency. J Proteomics 2018; 198:113-118. [PMID: 30529744 DOI: 10.1016/j.jprot.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022]
Abstract
Genetic LCAT deficiency is a rare recessive autosomal disease due to loss-of-function mutations in the gene coding for the enzyme lecithin:cholesterol acyltransferase (LCAT). Homozygous carriers are characterized by corneal opacity, haemolytic anaemia and renal disease, which represent the first cause of morbidity and mortality in these subjects. Diagnostic and prognostic markers capable of early detecting declining kidney function in these subjects are not available, and the specific serum or urine proteomic signature of LCAT deficient carriers has never been assessed. Taking advantage of a proteomic approach, we performed 2-DE analysis of carriers' plasma and identified proteins present at different concentration in samples from homozygous carriers. Our data confirm the well-known alterations in the concentration of circulating apolipoproteins, with a statistically significant decrease of both apoA-I and apoA-II and a statistically significant increase of apoC-III. Furthermore, we observed increased level of alpha-1-antitrypsin, zinc-alpha-2-glycoprotein and retinol-binding protein 4, and reduced level of clusterin and haptoglobin. Interestingly, only beta but not alpha subunit of haptoglobin is significant reduced in homozygous subjects. Despite the limited sample size, our findings set the basis for assessing the identified protein in a larger population and for correlating their levels with clinical markers of renal function and anaemia. SIGNIFICANCE: This investigation defines the effects of LCAT deficiency on the level of the major plasma proteins in homozygous and heterozygous carriers. Increase for some proteins, with different function, together with a drop for haptoglobin, and specifically for haptoglobin beta chains, are reported for the first time as part of a coherent signature. We are glad to have the opportunity to report our findings on this subject, which is one of the main interests for our research group, when Journal of Proteomics celebrates its 10th anniversary. With its various sections devoted to different areas of research, this journal is a privileged forum for publishing proteomic investigations without restrictions either in sample type or in technical approach. It is as well a privileged forum for reviewing literature data on various topics related to proteomics investigation, as colleagues in our research group have done over the years; by the way, a good share of the reviewed papers were as well reports published in Journal of Proteomics itself. The journal also offers opportunities for focused surveys through thematic issues devoted to a variety of subjects, timely selected for their current relevance in research; it was an honour for colleagues in our group to recently act as editors of one of those. Out of this diverse experience, we express our appreciation for the endeavour of Journal of Proteomics in its first 10 years of life - and wish identical and possibly greater success for the time to come.
Collapse
|
12
|
Prognostic Value and Therapeutic Perspectives of Coronary CT Angiography: A Literature Review. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6528238. [PMID: 30306089 PMCID: PMC6165606 DOI: 10.1155/2018/6528238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
Coronary stenosis severity is both a powerful and a still debated predictor of prognosis in coronary artery disease. Coronary computed tomographic angiography (CCTA) has emerged as a noninvasive technique that enables anatomic visualization of coronary artery disease (CAD). CCTA with newer applications, plaque characterization and physiologic/functional evaluation, allows a comprehensive diagnostic and prognostic assessment of otherwise low-intermediate subjects for primary prevention. CCTA measures the overall plaque burden, differentiates plaque subtypes, and identifies high-risk plaque with good reproducibility. Research in this field may also advance towards an era of personalized risk prediction and individualized medical therapy. It has been demonstrated that statins may delay plaque progression and change some plaque features. The potential effects on plaque modifications induced by other medical therapies have also been investigated. Although it is not currently possible to recommend routinely serial scans to monitor the therapeutic efficacy of medical interventions, the plaque modulation, as a part of risk modification, appears a feasible strategy. In this review we summarize the current evidence regarding vulnerable plaque and effects of lipid lowering therapy on morphological features of CAD. We also discuss the potential ability of CCTA to characterize coronary atherosclerosis, stratify prognosis of asymptomatic subjects, and guide medical therapy.
Collapse
|
13
|
Personalized Medicine in the Prevention of Reperfusion Injury? JACC Cardiovasc Imaging 2018; 12:1018-1019. [PMID: 29680354 DOI: 10.1016/j.jcmg.2018.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 11/21/2022]
|