1
|
Miyamura N, Suzuki K, Friedman RA, Floratos A, Kunisada Y, Masuda K, Lowy AM, Tsuji M, Sugahara KN. A pancreatic cancer mouse model with human immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542127. [PMID: 37292766 PMCID: PMC10245824 DOI: 10.1101/2023.05.24.542127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a tumor immune microenvironment (TIME) that promotes resistance to immunotherapy. A preclinical model system that facilitates studies of the TIME and its impact on the responsiveness of human PDAC to immunotherapies remains an unmet need. We report a novel mouse model, which develops metastatic human PDAC that becomes infiltrated by human immune cells recapitulating the TIME of human PDAC. The model may serve as a versatile platform to study the nature of human PDAC TIME and its response to various treatments.
Collapse
|
2
|
da Silva L, Jiang J, Perkins C, Atanasova KR, Bray JK, Bulut G, Azevedo-Pouly A, Campbell-Thompson M, Yang X, Hakimjavadi H, Chamala S, Ratnayake R, Gharaibeh RZ, Li C, Luesch H, Schmittgen TD. Pharmacological inhibition and reversal of pancreatic acinar ductal metaplasia. Cell Death Discov 2022; 8:378. [PMID: 36055991 PMCID: PMC9440259 DOI: 10.1038/s41420-022-01165-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatic acinar cells display a remarkable degree of plasticity and can dedifferentiate into ductal-like progenitor cells by a process known as acinar ductal metaplasia (ADM). ADM is believed to be one of the earliest precursor lesions toward the development of pancreatic ductal adenocarcinoma and maintaining the pancreatic acinar cell phenotype suppresses tumor formation. The effects of a novel pStat3 inhibitor (LLL12B) and the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) were investigated using 3-D cultures from p48Cre/+ and p48Cre/+LSL-KrasG12D/+ (KC) mice. LLL12B and TSA inhibited ADM in both KC and p48Cre/+ mouse pancreatic organoids. Furthermore, treatment with LLL12B or TSA on dedifferentiated acini from p48Cre/+ and KC mice that had undergone ADM produced morphologic and gene expression changes that suggest a reversal of ADM. Validation experiments using qRT-PCR (p48Cre/+ and KC) and RNA sequencing (KC) of the LLL12B and TSA treated cultures showed that the ADM reversal was more robust for the TSA treatments. Pathway analysis showed that TSA inhibited Spink1 and PI3K/AKT signaling during ADM reversal. The ability of TSA to reverse ADM was also observed in primary human acinar cultures. We report that pStat3 and HDAC inhibition can attenuate ADM in vitro and reverse ADM in the context of wild-type Kras. Our findings suggest that pharmacological inhibition or reversal of pancreatic ADM represents a potential therapeutic strategy for blocking aberrant ductal reprogramming of acinar cells.
Collapse
Affiliation(s)
- Lais da Silva
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Corey Perkins
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kalina Rosenova Atanasova
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Julie K Bray
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Gamze Bulut
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ana Azevedo-Pouly
- Department of Surgery, University of Arkansas for Medical Sciences, University of Florida, Gainesville, FL, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Xiaozhi Yang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hesamedin Hakimjavadi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Srikar Chamala
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Yang H, Zhang L, Wang Q. MicroRNA-221-3p alleviates cell apoptosis and inflammatory response by targeting cyclin dependent kinase inhibitor 1B in chronic obstructive pulmonary disease. Bioengineered 2021; 12:5705-5715. [PMID: 34516316 PMCID: PMC8806819 DOI: 10.1080/21655979.2021.1967837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As a chronic bronchitis or emphysema featured by airflow obstruction, chronic obstructive pulmonary disease (COPD) can further develop into respiratory failure and pulmonary heart diseases. MicroRNAs (miRNAs) are crucial mediators in COPD. Nevertheless, the specific role and molecular mechanism of microRNA-221-3p (miR-221-3p) in COPD are unclear. This research aimed to probe into the role of miR-221-3p in COPD. Bioinformatics analysis and a series of assays including western blot, luciferase reporter, reverse transcription quantitative polymerase chain reaction, flow cytometry, cell counting kit-8 and enzyme linked immunosorbent assay were used to explore the functions and mechanism of miR-221-3p in COPD. First, miR-221-3p level was validated to be lowly expressed in the lung tissues of COPD patients and 16HBE cells stimulated by cigarette smoke extract (CSE). Functionally, miR-221-3p overexpression inhibited inflammatory response and apoptosis in CSE-treated 16HBE cells. Moreover, we predicted 5 potential targets of miR-221-3p and found that miR-221-3p shared binding site with cyclin dependent kinase inhibitor 1B (CDKN1B). CDKN1B was targeted by miR-221-3p in CSE-treated 16HBE cells. CDKN1B was negatively modulated by miR-221-3p. Finally, rescue experiments demonstrated that overexpressed CDKN1B counteracted the influences of miR-221-3p on apoptosis and inflammatory response in CSE-treated 16HBE cells. Our data showed that miR-221-3p alleviated cell apoptosis and inflammatory response via targeting CDKN1B in an in vitro model of COPD.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Lijuan Zhang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Quandong Wang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
4
|
Xu Y, Gu L, Wang J, Wang Z, Zhang P, Zhang X. Detection of Circulating Antibodies to p16 Protein-Derived Peptides in Hepatocellular Carcinoma. Lab Med 2021; 51:574-578. [PMID: 32195537 DOI: 10.1093/labmed/lmaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE This study aimed at confirming the alteration of circulating anti-p16 immunoglobulin G (IgG) levels in hepatocellular carcinoma (HCC). METHODS An in-house-developed enzyme-linked immunosorbent assay was used for determining plasma IgG antibodies against p16-derived antigens in 122 HCC patients and 134 healthy controls. RESULTS Plasma anti-p16 IgG levels were significantly higher in HCC patients than in the controls (Z = 3.51, P = 0.0004), with no difference between males and females. A trend of increasing plasma anti-p16 IgG levels was associated with increasing HCC stage, with group 3 patients having the highest anti-p16 IgG levels (Z = 3.38, P = 0.0008). Group 3 exhibited the best sensitivity (19.6%) and specificity (95%) for plasma anti-p16 IgG detection, with an area under the receiver operating characteristic curve of 0.659 (95% confidence interval, 0.564-0.754). CONCLUSION Circulating IgG antibody to p16 protein might be a useful biomarker for HCC prognosis assessment rather than for early malignancy diagnosis.
Collapse
Affiliation(s)
- Yangchun Xu
- Second Hospital of Jilin University, Changchun, China
| | - Litong Gu
- Department of Hepatobiliary & Pancreatic Surgery, Jilin Province People's Hospital, Changchun, China
| | - Jiaxin Wang
- Second Hospital of Jilin University, Changchun, China
| | - Zhenqi Wang
- School of Public Health, Jilin University, Changchun, China
| | - Ping Zhang
- Department of Hepatobiliary & Pancreatic Surgery, First Hospital of Jilin University, Changchun, China
| | - Xuan Zhang
- Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Gupta N, Yelamanchi R. Pancreatic adenocarcinoma: A review of recent paradigms and advances in epidemiology, clinical diagnosis and management. World J Gastroenterol 2021; 27:3158-3181. [PMID: 34163104 PMCID: PMC8218366 DOI: 10.3748/wjg.v27.i23.3158] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the dreaded malignancies for both the patient and the clinician. The five-year survival rate of pancreatic adenocarcinoma (PDA) is as low as 2% despite multimodality treatment even in the best hands. As per the Global Cancer Observatory of the International Agency for Research in Cancer estimates of pancreatic cancer, by 2040, a 61.7% increase is expected in the total number of cases globally. With the widespread availability of next-generation sequencing, the entire genome of the tumors is being sequenced regularly, providing insight into their pathogenesis. As invasive PDA arises from pancreatic intraepithelial neoplasia and mucinous neoplasm and intraductal papillary neoplasm, screening for them can be beneficial as the disease is curable with resection at an early stage. Routine preoperative biliary drainage has no role in patients suffering from PDA with obstructive jaundice. If performed, metallic stents are preferred over plastic ones. Minimally invasive procedures are preferred to open procedures as they have less morbidity. The duct-to-mucosa technique for pancreaticojejunostomy is presently widely practiced. The role of intraperitoneal drains after surgery for PDA is controversial. Neoadjuvant chemoradiotherapy has been proven to have a significant role both in locally advanced as well as in resectable PDA. Many new regimens and drugs have been added in the arsenal of chemoradiotherapy for metastatic disease. The roles of immunotherapy and gene therapy in PDA are being investigated. This review article is intended to improve the understanding of the readers with respect to the latest updates of PDA, which may help to trigger new research ideas and make better management decisions.
Collapse
Affiliation(s)
- Nikhil Gupta
- Department of Surgery, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi 110001, India
| | - Raghav Yelamanchi
- Department of Surgery, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi 110001, India
| |
Collapse
|
6
|
Xu J, Li F, Gao Y, Guo R, Ding L, Fu M, Yi Y, Chen H, Xiao ZXJ, Niu M. E47 upregulates ΔNp63α to promote growth of squamous cell carcinoma. Cell Death Dis 2021; 12:381. [PMID: 33833226 PMCID: PMC8032790 DOI: 10.1038/s41419-021-03662-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Targeted therapy has greatly improved both survival and prognosis of cancer patients. However, while therapeutic treatment of adenocarcinoma has been advanced greatly, progress in treatment of squamous cell carcinoma (SCC) has been slow and ineffective. Therefore, it is of great importance to decipher mechanisms and identify new drug targets involved in squamous cell carcinoma development. In this study, we demonstrate that E47 plays the distinctive and opposite roles on cell proliferation in adenocarcinoma and squamous cell carcinoma. While E47 suppresses cell proliferation in adenocarcinoma cells, it functions as a oncoprotein to promote cell proliferation and tumor growth of squamous cell carcinoma. Mechanistically, we show that E47 can directly bind to the promoter and transactivate ΔNp63 gene expression in squamous cell carcinoma cells, resulting in upregulation of cyclins D1/E1 and downregulation of p21, and thereby promoting cell proliferation and tumor growth. We further show that expression of E2A (E12/E47) is positively correlated with p63 and that high expression of E2A is associated with poor outcomes in clinical samples of squamous cell carcinoma. These results highlight that the E47-ΔNp63α axis may be potential therapeutic targets for treatment of squamous cell carcinoma.
Collapse
Affiliation(s)
- Jing Xu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ya Gao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rongtian Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liangping Ding
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengyuan Fu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Wu C, Yang P, Liu B, Tang Y. Is there a CDKN2A-centric network in pancreatic ductal adenocarcinoma? Onco Targets Ther 2020; 13:2551-2562. [PMID: 32273725 PMCID: PMC7108878 DOI: 10.2147/ott.s232464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer has a high mortality rate and its incidence has risen rapidly in recent years. Meanwhile, the diagnosis and treatment of this cancer remain challenging. Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, but, currently, no sufficiently effective modalities for its treatment exist. The early diagnosis rate of pancreatic cancer is low and most patients have reached an advanced stage at the time of diagnosis. PDAC evolves from precancerous lesions and is highly aggressive and metastatic. It is essential to understand how the disease progresses and metastasizes. CDKN2A mutations are very common in PDAC. Therefore, here, we have performed a literature review and discuss the role of CDKN2A and some related genes in the development of PDAC, as well as the basis of gene targeting with a correlation coefficient of CDKN2A above 0.9 on the STRING website. It is noteworthy that the interaction of CDKN2A with each gene has been reported in the literature. The role of these genes and CDKN2A in PDAC may provide new directions that will advance the current knowledge base and treatment options since cancer progression is realized through interactions among cells. Our findings provide new insights into the treatment of PADC that can, to some extent, improve the diagnosis rate and quality of life of patients.
Collapse
Affiliation(s)
- Chu Wu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Ping Yang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Bingxue Liu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yunlian Tang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
8
|
Wang Y, Zhao S, Chen Y, Wang T, Dong C, Wo X, Zhang J, Dong Y, Xu W, Feng X, Qu C, Wang Y, Zhong Z, Zhao W. The Capsid Protein VP1 of Coxsackievirus B Induces Cell Cycle Arrest by Up-Regulating Heat Shock Protein 70. Front Microbiol 2019; 10:1633. [PMID: 31379784 PMCID: PMC6653663 DOI: 10.3389/fmicb.2019.01633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023] Open
Abstract
Manipulating cell cycle is one of the common strategies used by viruses to generate favorable cellular environment to facilitate viral replication. Coxsackievirus B (CVB) is one of the major viral pathogens of human myocarditis and cardiomyopathy. Because of its small genome, CVB depends on cellular machineries for productive replication. However, how the structural and non-structural components of CVB would manipulate cell cycle is not clearly understood. In this study, we demonstrated that the capsid protein VP1 of CVB type 3 (CVB3) induced cell cycle arrest at G1 phase. G1 arrest was the result of the decrease level of cyclin E and the accumulation of p27Kip1. Study on the gene expression profile of the cells expressing VP1 showed that the expression of both heat shock protein 70-1 (Hsp70-1) and Hsp70-2 was significantly up-regulated. Knockdown of Hsp70 resulted in the increased level of cyclin E and the reduction of p27Kip1. We further demonstrated that the phosphorylation of the heat shock factor 1, which directly promotes the expression of Hsp70, was also increased in the cell expressing VP1. Moreover, we show that CVB3 infection also induced G1 arrest, likely due to dysregulating Hsp70, cyclin E, and p27, while knockdown of Hsp70 dramatically inhibited viral replication. Cell cycle arrest at G1 phase facilitated CVB3 infection, since viral replication in the cells synchronized at G1 phase dramatically increased. Taken together, this study demonstrates that the VP1 of CVB3 induces cell cycle arrest at G1 phase through up-regulating Hsp70. Our findings suggest that the capsid protein VP1 of CVB is capable of manipulating cellular activities during viral infection.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Shuoxuan Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Chaorun Dong
- Northern Translational Medicine Research Center, Harbin Medical University, Harbin, China
| | - Xiaoman Wo
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Jian Zhang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Weizhen Xu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xiaofeng Feng
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Cong Qu
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Crawford HC, Pasca di Magliano M, Banerjee S. Signaling Networks That Control Cellular Plasticity in Pancreatic Tumorigenesis, Progression, and Metastasis. Gastroenterology 2019; 156:2073-2084. [PMID: 30716326 PMCID: PMC6545585 DOI: 10.1053/j.gastro.2018.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest cancers, and its incidence on the rise. The major challenges in overcoming the poor prognosis with this disease include late detection and the aggressive biology of the disease. Intratumoral heterogeneity; presence of a robust, reactive, and desmoplastic stroma; and the crosstalk between the different tumor components require complete understanding of the pancreatic tumor biology to better understand the therapeutic challenges posed by this disease. In this review, we discuss the processes involved during tumorigenesis encompassing the inherent plasticity of the transformed cells, development of tumor stroma crosstalk, and enrichment of cancer stem cell population during tumorigenesis.
Collapse
Affiliation(s)
- Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Sulagna Banerjee
- Department of Surgery, University of Miami School of Medicine, Miami, Florida; Sylvester Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
10
|
Elliott B, Millena AC, Matyunina L, Zhang M, Zou J, Wang G, Zhang Q, Bowen N, Eaton V, Webb G, Thompson S, McDonald J, Khan S. Essential role of JunD in cell proliferation is mediated via MYC signaling in prostate cancer cells. Cancer Lett 2019; 448:155-167. [PMID: 30763715 PMCID: PMC6414252 DOI: 10.1016/j.canlet.2019.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
JunD, a member of the AP-1 family, is essential for cell proliferation in prostate cancer (PCa) cells. We recently demonstrated that JunD knock-down (KD) in PCa cells results in cell cycle arrest in G1-phase concomitant with a decrease in cyclin D1, Ki67, and c-MYC, but an increase in p21 levels. Furthermore, the over-expression of JunD significantly increased proliferation suggesting JunD regulation of genes required for cell cycle progression. Here, employing gene expression profiling, quantitative proteomics, and validation approaches, we demonstrate that JunD KD is associated with distinct gene and protein expression patterns. Comparative integrative analysis by Ingenuity Pathway Analysis (IPA) identified 1) cell cycle control/regulation as the top canonical pathway whose members exhibited a significant decrease in their expression following JunD KD including PRDX3, PEA15, KIF2C, and CDK2, and 2) JunD dependent genes are associated with cell proliferation, with MYC as the critical downstream regulator. Conversely, JunD over-expression induced the expression of the above genes including c-MYC. We conclude that JunD is a crucial regulator of cell cycle progression and inhibiting its target genes may be an effective approach to block prostate carcinogenesis.
Collapse
Affiliation(s)
- Bethtrice Elliott
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Ana Cecilia Millena
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Lilya Matyunina
- Integrated Cancer Research Center, School of Biological Sciences, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30309, USA
| | - Mengnan Zhang
- Integrated Cancer Research Center, School of Biological Sciences, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30309, USA
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Guangdi Wang
- Department of Chemistry, RCMI Cancer Research Center, Xavier University, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Qiang Zhang
- Department of Chemistry, RCMI Cancer Research Center, Xavier University, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Vanessa Eaton
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Gabrielle Webb
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Shadyra Thompson
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - John McDonald
- Integrated Cancer Research Center, School of Biological Sciences, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30309, USA
| | - Shafiq Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Murray Korc
- Correspondence Address correspondence to: Murray Korc, MD, Department of Medicine, Indiana University School of Medicine, 980 West Walnut Street, Walther Hall, Room C528, Indianapolis, Indiana 46202.
| |
Collapse
|