1
|
Yang Y, Shao Y, Gao X, Hu Z, Wang Y, Ma C, Jin G, Zhu F, Dong G, Zhou G. RGS10 Deficiency Alleviated Intestinal Mucosal Inflammation Through Suppression of Th1/Th17 Cell Immune Responses in Ulcerative Colitis. Immunology 2025; 174:139-152. [PMID: 39428350 DOI: 10.1111/imm.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Regulator of G-protein signalling (RGS) 10 plays critical roles in several immune related diseases. However, whether RGS10 is involved in colonic inflammation of ulcerative colitis (UC) is still obscure. This study aimed to investigate the role of RGS10 in UC. In this study, RGS10 expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and immunofluorescent analysis. Single-cell RNA sequencing of intestinal mucosa was performed to identify key immune cells with differentially expressed RGS10. RGS10 knockout mice were generated and established dextran sulphate sodium (DSS)-induced colitis. Expression of inflammatory cytokines on mRNA and protein levels was detected by qRT-PCR, enzyme-linked immunosorbent assay, and flow cytometry. We found that RGS10 expression was significantly elevated in UC patients, especially in CD4+ T cells, compared with healthy subjects. Intriguingly, RGS10 deficiency markedly alleviated DSS-induced colitis and decreased the proportion of Th1 and Th17 cells in lamina propria mononuclear cells (LPMCs), peripheral blood (PB), spleens, and mesenteric lymph nodes (mLNs). Mechanistically, RGS10 deficiency blocked the differentiation of Th1 and Th17 cells by inhibiting the phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3. The co-immunoprecipitation analysis further showed that RGS10 could interact with protein tyrosine phosphatase non-receptor type 2 (PTPN2), and further regulated Th1 and Th17 cells differentiation of CD4+ T cells. In conclusion, RGS10 deficiency alleviated intestinal mucosal inflammation through inhibition of Th1/Th17 cell-mediated immune responses via interaction with PTPN2 in CD4+ T cells. Therefore, targeting RGS10 may represent a novel therapeutic approach for UC treatment.
Collapse
Affiliation(s)
- Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xizhuang Gao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Zongjing Hu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Cuimei Ma
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Ye Y, Liu C, Wu R, Kang D, Gao H, Lv H, Feng Z, Shi Y, Liu Z, Chen L. Circadian clock component PER2 negatively regulates CD4 + T cell IFN-γ production in ulcerative colitis. Mucosal Immunol 2024; 17:1161-1173. [PMID: 39097147 DOI: 10.1016/j.mucimm.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Period circadian clock 2 (PER2) is involved in the pathogenesis of various inflammatory and autoimmune diseases. However, there are gaps in our understanding of the role of PER2 in regulating CD4+ T cells beyond its time-keeping function in ulcerative colitis (UC) pathogenesis. Our findings revealed PER2 was predominantly expressed in CD4+ T cells, while it was significantly decreased in the inflamed mucosa and peripheral blood CD4+ T cells of UC patients compared with that in Crohn's disease (CD) patients and healthy controls (HC). Notably, PER2 expression was significantly recovered in UC patients in remission (R-UC) compared to that in active UC patients (A-UC) but not in CD patients. It was negatively correlated with the Ulcerative Colitis Endoscopic Index of Severity (UCEIS), Crohn's Disease Activity Index (CDAI), Simple Endoscopic Score for Crohn's disease (SES-CD), and C-reactive protein (CRP), respectively. Overexpression of PER2 markedly inhibited IFN-γ production in UC CD4+ T cells. RNA-seq analysis showed that overexpression of PER2 could repress the expression of a disintegrin and metalloproteinase 12 (ADAM12), a costimulatory molecule that determines Th1 cell fate. Mechanistically, cleavage under targets and tagmentation (CUT&Tag) analysis revealed that PER2 down-regulated ADAM12 expression by reducing its binding activity, thereby suppressing IFN-γ production in UC CD4+ T cells. Additionally, our data further demonstrated that ADAM12 was upregulated in CD4+ T cells and inflamed mucosa of A-UC patients compared to HC. Our study reveals a critical role of PER2 in regulating CD4+ T cell differentiation and highlights its potential as a therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Yulan Ye
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou 215008, China
| | - Changqin Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ruijin Wu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Dengfeng Kang
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Han Gao
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Huiying Lv
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhongsheng Feng
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Yanhong Shi
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhanju Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China.
| | - Liang Chen
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China.
| |
Collapse
|
3
|
Xu L, Wang Y, Yan D, Li M, Qiao L, Chen Z, Wu M, Zhong G. Albumin binding domain fusion improved the therapeutic efficacy of Inhibitor of Differentiation-2 protein in colitis mice. Life Sci 2024; 359:123237. [PMID: 39532259 DOI: 10.1016/j.lfs.2024.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
AIMS The human Inhibitor of Differentiation-2 (hID2) protein is a promising candidate for the treatment of colitis. However, its relatively low molecular weight limits its clinical application. To extend the therapeutic half-life, an albumin-binding domain (ABD), known for its high affinity for human serum albumin (HSA), was fused to hID2, resulting in a recombinant ABD-hID2. The anti-colitis bioactivity of ABD-hID2 than that of hID2 was evaluated in this study. MAIN METHODS Western blotting, size-exclusion high-performance chromatography, HSA binding assay, and pharmacokinetic studies were used to characterise ABD-hID2, which was induced by dextran sulfate sodium salt (DSS), Citrobacter rodentium (CR), and ABD-hID2 and hID2. The Disease Activity Index, histological pathologies, inflammatory response, Alcian blue or tuft cell staining, and tight junction proteins were determined. Alterations in the intestinal microbiota after ABD-hID2 treatment were analysed via 16S rRNA gene sequencing. KEY FINDINGS Compared with hID2, ABD-hID2 exhibited a decreased dimer complex, bound to HSA with high affinity, and demonstrated an extended blood retention time in vivo. Consequently, ABD-hID2 exhibited increased therapeutic efficacy in both DSS- and CR-induced colitis mouse models, as evidenced by the alleviation of colitis symptoms, preservation of goblet and tuft cell functions, restoration of the intestinal mucus barrier, and suppression of abnormal immune-inflammatory responses. Additionally, the modulation of the gut microbiota may play a role in the protective effects of ABD-hID2 in mice with CR-induced ulcerative colitis. SIGNIFICANCE ABD-hID2 enhances the bioactivity of hID2 and has the potential for further development as a treatment for colitis.
Collapse
Affiliation(s)
- Lingyun Xu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yuxin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Dong Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Min Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Lin Qiao
- Department of Medical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Zhiguo Chen
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China
| | - Minna Wu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Genshen Zhong
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China.
| |
Collapse
|
4
|
Shi Y, Ma C, Wu S, Ye X, Zhuang Q, Ning M, Xia J, Shen S, Dong Z, Chen D, Liu Z, Wan X. ETS translocation variant 5 (ETV5) promotes CD4 + T cell-mediated intestinal inflammation and fibrosis in inflammatory bowel diseases. Mucosal Immunol 2024; 17:584-598. [PMID: 38555025 DOI: 10.1016/j.mucimm.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
E26 transformation-specific translocation variant 5 (ETV5) has been implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the exact roles of ETV5 in regulating CD4+ T cell-mediated intestinal inflammation and fibrosis formation remain unclear. Here, we reveal that ETV5 overexpression induced interleukin (IL)-9 and its transcription factor IRF4 expression in IBD CD4+ T cells under T helper type 9 (Th9) cells-polarizing conditions. The silencing of IRF4 inhibited ETV5-induced IL-9 expression. CD4+ T cell-specific ETV5 deletion ameliorated intestinal inflammation and fibrosis in trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis and CD4+ T cell-transferred recombination-activating gene-1 knockout (Rag1-/-) colitis mice, characterized by less CD4+ T cell infiltration and lower fibroblast activation and collagen deposition in the colonic tissues. Furthermore, IL-9 treatment aggressive TNBS-induced intestinal fibrosis in CD4+ T cell-specific ETV5 deletion and wild-type control mice. In vitro, human intestinal fibroblasts cocultured with ETV5 overexpressed-Th9 cells expressed higher levels of collagen I and III, whereas an inclusion of anti-IL-9 antibody could reverse this effect. Ribonucleic acid sequencing analysis demonstrated that IL-9 upregulated TAF1 expression in human intestinal fibroblasts. Clinical data showed that number of α-smooth muscle actin+TAF1+ fibroblasts are higher in inflamed mucosa of patients with IBD. Importantly, TAF1 small interfering ribonucleic acid treatment suppressed IL-9-mediated profibrotic effect in vitro. These findings reveal that CD4+ T cell-derived ETV5 promotes intestinal inflammation and fibrosis through upregulating IL-9-mediated intestinal inflammatory and fibrotic response in IBD. Thus, the ETV5/IL-9 signal pathway in T cells might represent a novel therapeutic target for intestinal inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Yan Shi
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiyun Ma
- Center for InflammatoryBowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shan Wu
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Ning
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xia
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dafan Chen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanju Liu
- Center for InflammatoryBowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Zhang J, Li Y, Chen J, Huang T, Lin J, Pi Y, Hao H, Wang D, Liang X, Fu S, Yu J. TOB1 modulates neutrophil phenotypes to influence gastric cancer progression and immunotherapy efficacy. Front Immunol 2024; 15:1369087. [PMID: 38617839 PMCID: PMC11010640 DOI: 10.3389/fimmu.2024.1369087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Introduction The ErbB-2.1(TOB1) signaling transducer protein is a tumor-suppressive protein that actively suppresses the malignant phenotype of gastric cancer cells. Yet, TOB1 negatively regulates the activation and growth of different immune cells. Understanding the expression and role of TOB1 in the gastric cancer immune environment is crucial to maximize its potential in targeted immunotherapy. Methods This study employed multiplex immunofluorescence analysis to precisely delineate and quantify the expression of TOB1 in immune cells within gastric cancer tissue microarrays. Univariate and multivariate Cox analyses were performed to assess the influence of clinical-pathological parameters, immune cells, TOB1, and double-positive cells on the prognosis of gastric cancer patients. Subsequent experiments included co-culture assays of si-TOB1-transfected neutrophils with AGS or HGC-27 cells, along with EdU, invasion, migration assays, and bioinformatics analyses, aimed at elucidating the mechanisms through which TOB1 in neutrophils impacts the prognosis of gastric cancer patients. Results We remarkably revealed that TOB1 exhibits varying expression levels in both the nucleus (nTOB1) and cytoplasm (cTOB1) of diverse immune cell populations, including CD8+ T cells, CD66b+ neutrophils, FOXP3+ Tregs, CD20+ B cells, CD4+ T cells, and CD68+ macrophages within gastric cancer and paracancerous tissues. Significantly, TOB1 was notably concentrated in CD66b+ neutrophils. Survival analysis showed that a higher density of cTOB1/nTOB1+CD66b+ neutrophils was linked to a better prognosis. Subsequent experiments revealed that, following stimulation with the supernatant of tumor tissue culture, the levels of TOB1 protein and mRNA in neutrophils decreased, accompanied by enhanced apoptosis. HL-60 cells were successfully induced to neutrophil-like cells by DMSO. Neutrophils-like cells with attenuated TOB1 gene expression by si-TOB1 demonstrated heightened apoptosis, consequently fostering a malignant phenotype in AGS and HCG-27 cells upon co-cultivation. The subsequent analysis of the datasets from TCGA and TIMER2 revealed that patients with high levels of TOB1 combined neutrophils showed better immunotherapy response. Discussion This study significantly advances our comprehension of TOB1's role within the immune microenvironment of gastric cancer, offering promising therapeutic targets for immunotherapy in this context.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunlong Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tongtong Huang
- Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Lin
- Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yilin Pi
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huiting Hao
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Dong Wang
- Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jingcui Yu
- Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
6
|
Ozato Y, Hara T, Meng S, Sato H, Tatekawa S, Uemura M, Yabumoto T, Uchida S, Ogawa K, Doki Y, Eguchi H, Ishii H. RNA methylation in inflammatory bowel disease. Cancer Sci 2024; 115:723-733. [PMID: 38263895 PMCID: PMC10920996 DOI: 10.1111/cas.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024] Open
Abstract
RNA modifications, including the renowned m6A, have recently garnered significant attention. This chemical alteration, present in mRNA, exerts a profound influence on protein expression levels by affecting splicing, nuclear export, stability, translation, and other critical processes. Although the role of RNA methylation in the pathogenesis and progression of IBD and colorectal cancer has been reported, many aspects remain unresolved. In this comprehensive review, we present recent studies on RNA methylation in IBD and colorectal cancer, with a particular focus on m6A and its regulators. We highlight the pivotal role of m6A in the pathogenesis of IBD and colorectal cancer and explore the potential applications of m6A modifications in the diagnosis and treatment of these diseases.
Collapse
Grants
- 18KK0251 19K22658 20H00541 21K19526 Ministry of Education, Culture, Sports, Science and Technology
- 22H03146 22K19559 23K19505 16H06279 (PAGS) Ministry of Education, Culture, Sports, Science and Technology
- grant nos. 17cm0106414h0002 JP21lm0203007 Ministry of Education, Culture, Sports, Science and Technology
- 2021-48 Mitsubishi Foundation
- Ministry of Education, Culture, Sports, Science and Technology
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Yuki Ozato
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Tomoaki Hara
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
| | - Sikun Meng
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
| | - Hiromichi Sato
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Shotaro Tatekawa
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Mamoru Uemura
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | | | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA MedicineAalborg UniversityCopenhagen SVDenmark
| | - Kazuhiko Ogawa
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yuichiro Doki
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Hideshi Ishii
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
7
|
Zhang S, Gu J, Shi LL, Qian B, Diao X, Jiang X, Wu J, Wu Z, Shen A. A pan-cancer analysis of anti-proliferative protein family genes for therapeutic targets in cancer. Sci Rep 2023; 13:21607. [PMID: 38062199 PMCID: PMC10703880 DOI: 10.1038/s41598-023-48961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The recently discovered APRO (anti-proliferative protein) family encodes a group of trans-membrane glycoproteins and includes 6 members: TOB1, TOB2, BTG1, BTG2, BTG3 and BTG4. The APRO family is reportedly associated with the initiation and progression of cancers. This study aims to undertake a comprehensive investigation of the APRO family of proteins as a prognostic biomarker in various human tumors. We performed a pan-cancer analysis of the APRO family based on The Cancer Genome Atlas (TCGA). With the bioinformatics methods, we explored the prognostic value of the APRO family and the correlation between APRO family expression and tumor mutation burden (TMB), microsatellite instability (MSI), drug sensitivity, and immunotherapy in numerous cancers. Our results show that the APRO family was primarily down-regulated in cancer samples. The expression of APRO family members was linked with patient prognosis. In addition, APRO family genes showed significant association with immune infiltrate subtypes, tumor microenvironment, and tumor cell stemness. Finally, our study also demonstrated the relationship between APRO family genes and drug sensitivity. This study provides comprehensive information to understand the APRO family's role as an oncogene and predictor of survival in some tumor types.
Collapse
Affiliation(s)
- Siming Zhang
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jue Gu
- Affiliated Hospital of Nantong University, Nantong, China
| | - Ling-Ling Shi
- Affiliated Nantong Hospital Third of Nantong University, Nantong, China
| | - Bo Qian
- Maternal and Child Care Hospital of Qidong, Nantong, China
| | - Xun Diao
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaohui Jiang
- Department of General Surgery, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jindong Wu
- Department of General Surgery, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Zhijun Wu
- Department of Oncology, Nantong Traditional Chinese Medicine Hospital, Nantong, China.
| | - Aiguo Shen
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
8
|
Xu W, Zhang W, Zhao D, Wang Q, Zhang M, Li Q, Zhu W, Xu C. Unveiling the role of regulatory T cells in the tumor microenvironment of pancreatic cancer through single-cell transcriptomics and in vitro experiments. Front Immunol 2023; 14:1242909. [PMID: 37753069 PMCID: PMC10518406 DOI: 10.3389/fimmu.2023.1242909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background In order to investigate the impact of Treg cell infiltration on the immune response against pancreatic cancer within the tumor microenvironment (TME), and identify crucial mRNA markers associated with Treg cells in pancreatic cancer, our study aims to delve into the role of Treg cells in the anti-tumor immune response of pancreatic cancer. Methods The ordinary transcriptome data for this study was sourced from the GEO and TCGA databases. It was analyzed using single-cell sequencing analysis and machine learning. To assess the infiltration level of Treg cells in pancreatic cancer tissues, we employed the CIBERSORT method. The identification of genes most closely associated with Treg cells was accomplished through the implementation of weighted gene co-expression network analysis (WGCNA). Our analysis of single-cell sequencing data involved various quality control methods, followed by annotation and advanced analyses such as cell trajectory analysis and cell communication analysis to elucidate the role of Treg cells within the pancreatic cancer microenvironment. Additionally, we categorized the Treg cells into two subsets: Treg1 associated with favorable prognosis, and Treg2 associated with poor prognosis, based on the enrichment scores of the key genes. Employing the hdWGCNA method, we analyzed these two subsets to identify the critical signaling pathways governing their mutual transformation. Finally, we conducted PCR and immunofluorescence staining in vitro to validate the identified key genes. Results Based on the results of immune infiltration analysis, we observed significant infiltration of Treg cells in the pancreatic cancer microenvironment. Subsequently, utilizing the WGCNA and machine learning algorithms, we ultimately identified four Treg cell-related genes (TRGs), among which four genes exhibited significant correlations with the occurrence and progression of pancreatic cancer. Among them, CASP4, TOB1, and CLEC2B were associated with poorer prognosis in pancreatic cancer patients, while FYN showed a correlation with better prognosis. Notably, significant differences were found in the HIF-1 signaling pathway between Treg1 and Treg2 cells identified by the four genes. These conclusions were further validated through in vitro experiments. Conclusion Treg cells played a crucial role in the pancreatic cancer microenvironment, and their presence held a dual significance. Recognizing this characteristic was vital for understanding the limitations of Treg cell-targeted therapies. CASP4, FYN, TOB1, and CLEC2B exhibited close associations with infiltrating Treg cells in pancreatic cancer, suggesting their involvement in Treg cell functions. Further investigation was warranted to uncover the mechanisms underlying these associations. Notably, the HIF-1 signaling pathway emerged as a significant pathway contributing to the duality of Treg cells. Targeting this pathway could potentially revolutionize the existing treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenjia Zhang
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Man Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Laboratory of Emergency Medicine, School of the Secondary Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wenxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Gastroenterology, Kunshan Third People’s Hospital, Suzhou, Jiangsu, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Ikeda Y, Taniguchi K, Yoshikawa S, Sawamura H, Tsuji A, Matsuda S. A budding concept with certain microbiota, anti-proliferative family proteins, and engram theory for the innovative treatment of colon cancer. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic disease. Patients with IBD have an increased risk of developing colorectal cancer which has become a major health concern. IBD might exert a role of engrams for making the condition of specific inflammation in the gut. Dysregulation of immune cells induced by the command of engrams might be crucial in the pathogenesis of damages in gut epithelium. The anti-proliferative (APRO) family of anti-proliferative proteins characterized by immediate early responsive gene-products that might be involved in the machinery of the carcinogenesis in IBD. Herein, it is suggested that some probiotics with specific bacteria could prevent the development and/or progression of the IBD related tumors. In addition, consideration regarding the application of studying APRO family proteins for the comprehension of IBD related tumors has been presented. It is hypothesized that overexpression of Tob1, a member of APRO family proteins, in the epithelium of IBD could suppress the function of adjacent cytotoxic immune cells possibly via the paracrine signaling.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
10
|
Lin J, Lu Z, Li G, Zhang C, Lu H, Gao S, Zhu R, Huang H, Aden K, Wang J, Cong Y, Wu H, Liu Z. MCPIP-1-Mediated Immunosuppression of Neutrophils Exacerbates Acute Bacterial Peritonitis and Liver Injury. J Innate Immun 2022; 15:262-282. [PMID: 36273448 PMCID: PMC10643898 DOI: 10.1159/000526784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2023] Open
Abstract
Monocyte chemotactic protein-1-induced protein-1 (MCPIP-1) is highly expressed in activated immune cells and negatively regulates immune responses, while the mechanisms underlying the immunoregulation of neutrophils in acute bacterial infection and liver injury remain elusive. Here, we examined the role of MCPIP-1 in regulating neutrophil functions during acute bacterial peritonitis and liver injury. Mice with myeloid cell-specific overexpression (McpipMye-tg) or knockout (McpipΔMye) of MCPIP-1 were generated. We found that reactive oxygen species and myeloperoxidase production, formation of neutrophil extracellular traps, and migratory capacity were deficient in McpipMye-tg neutrophils but enhanced in McpipΔMye neutrophils. The recruitment of neutrophils and pathogen clearance were markedly suppressed in McpipMye-tg mice following intraperitoneal infection with Salmonella typhimurium while intensified in McpipΔMye mice. Severe acute S. typhimurium-infected peritonitis and liver injury occurred in McpipMye-tg mice but were alleviated in McpipΔMye mice. RNA sequencing, RNA-binding protein immunoprecipitation and qPCR analysis revealed that MCPIP-1 downregulated the protective functions of neutrophils via degrading the mRNA of cold inducible RNA-binding protein. Consistently, MCPIP-1 was highly expressed in neutrophils of patients with acute infectious diseases, especially in those with liver injury. Collectively, we uncover that MCPIP-1 negatively regulates the antibacterial capacities of neutrophils, leading to exacerbating severe acute bacterial peritonitis and liver injury. It may serve as a candidate target for maintaining neutrophil homeostasis to control acute infectious diseases.
Collapse
Affiliation(s)
- Jian Lin
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University School of Medicine, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, China
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengfeng Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University School of Medicine, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University School of Medicine, Shanghai, China
| | - Huiying Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University School of Medicine, Shanghai, China
| | - Sheng Gao
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Konrad Aden
- Department of Internal Medicine I, Institute of Clinical Molecular Biology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jianhua Wang
- Storr Liver Unit, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Huili Wu
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
ETS-1 facilitates Th1 cell-mediated mucosal inflammation in inflammatory bowel diseases through upregulating CIRBP. J Autoimmun 2022; 132:102872. [DOI: 10.1016/j.jaut.2022.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
|
12
|
Lin R, Wu W, Chen H, Gao H, Wu X, Li G, He Q, Lu H, Sun M, Liu Z. GPR65 promotes intestinal mucosal Th1 and Th17 cell differentiation and gut inflammation through downregulating NUAK2. Clin Transl Med 2022; 12:e771. [PMID: 35343079 PMCID: PMC8958354 DOI: 10.1002/ctm2.771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/15/2023] Open
Abstract
G protein-coupled receptor 65 (GPR65), a susceptibility gene for inflammatory bowel diseases (IBD), has been identified to promote Th17 cell pathogenicity and induce T cell apoptosis. However, the potential role of GPR65 in modulating CD4+ T cell immune responses in the pathogenesis of IBD stills not entirely understood. Here, we displayed that GPR65 expression was increased in inflamed intestinal mucosa of IBD patients and positively associated with disease activity. It was expressed in CD4+ T cells and robustly upregulated through the TNF-α-caspase 3/8 signalling pathway. Ectopic expression of GPR65 significantly promoted the differentiation of peripheral blood (PB) CD4+ T cells from IBD patients and HC to Th1 and Th17 cells in vitro. Importantly, conditional knockout of Gpr65 in CD4+ T cells ameliorated trinitrobenzene sulfonic acid (TNBS)-induced acute murine colitis and a chronic colitis in Rag1-/- mice reconstituted with CD45RBhigh CD4+ T cells in vivo, characterised by attenuated Th1 and Th17 cell immune response in colon mucosa and decreased infiltration of CD4+ T cells, neutrophils and macrophages. RNA-seq analysis of Gpr65ΔCD4 and Gpr65flx/flx CD4+ T cells revealed that NUAK family kinase 2 (Nuak2) acts as a functional target of Gpr65 to restrict Th1 and Th17 cell immune response. Mechanistically, GPR65 deficiency promoted NUAK2 expression via the cAMP-PKA-C-Raf-ERK1/2-LKB1-mediated signalling pathway. Consistently, silencing of Nuak2 facilitated the differentiation of Gpr65ΔCD4 and Gpr65flx/flx CD4+ T cells into Th1 and Th17 cells. Therefore, our data point out that GPR65 promotes Th1 and Th17 cell immune response and intestinal mucosal inflammation by suppressing NUAK2 expression, and that targeting GPR65 and NUAK2 in CD4+ T cells may represent a novel therapeutic approach for IBD.
Collapse
Affiliation(s)
- Ritian Lin
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Wei Wu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Huimin Chen
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Han Gao
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Gengfeng Li
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Qiong He
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Huiying Lu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Mingming Sun
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| |
Collapse
|