1
|
Duan X, Li N, Chen X, Zhu N. Characterization of Tissue Scaffolds Using Synchrotron Radiation Microcomputed Tomography Imaging. Tissue Eng Part C Methods 2021; 27:573-588. [PMID: 34670397 DOI: 10.1089/ten.tec.2021.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Distinguishing from other traditional imaging, synchrotron radiation microcomputed tomography (SR-μCT) imaging allows for the visualization of three-dimensional objects of interest in a nondestructive and/or in situ way with better spatial resolution, deep penetration, relatively fast speed, and/or high contrast. SR-μCT has been illustrated promising for visualizing and characterizing tissue scaffolds for repairing or replacing damaged tissue or organs in tissue engineering (TE), which is of particular advance for longitudinal monitoring and tracking the success of scaffolds once implanted in animal models and/or human patients. This article presents a comprehensive review on recent studies of characterization of scaffolds based on SR-μCT and takes scaffold architectural properties, mechanical properties, degradation, swelling and wettability, and biological properties as five separate sections to introduce SR-μCT wide applications. We also discuss and highlight the unique opportunities of SR-μCT in various TE applications; conclude this article with the suggested future research directions, including the prospective applications of SR-μCT, along with its challenges and methods for improvement in the field of TE.
Collapse
Affiliation(s)
- Xiaoman Duan
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Naitao Li
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Ning Zhu
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Canadian Light Source, Saskatoon, Canada
| |
Collapse
|
2
|
Martinez-Zelaya VR, Archilha NL, Calasans-Maia M, Farina M, Rossi AM. Trabecular architecture during the healing process of a tibial diaphysis defect. Acta Biomater 2021; 120:181-193. [PMID: 32860947 DOI: 10.1016/j.actbio.2020.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
The adaptation of trabecular bone microstructure to mechanical loads has been intensively investigated. However, loading-unrelated aspects of trabecular architecture remain unclear. We used synchrotron radiation-based X-ray microtomography to study the 3D microarchitecture of newly formed trabecular tissue in a defect produced in the cortical region of the rat tibia diaphysis, in the absence (7, 14, and 21 days) or the presence (21 days) of carbonated hydroxyapatite/alginate (cHA) microspheres. This work provides the first evidence that the woven bone trabecular network, formed during the healing process, displays a well-organized 3D microarchitecture consisting of nodes with 3 (3-N), 4 (4-N) and 5 (5-N) connecting trabeculae, with a mean relative abundance of (3-N)/(4-N)/(5-N) = 66/24/7, for the analyzed periods. The measured inter-trabecular angles (ITA) distribution presented a Gaussian profile, with mean value at 115° for 3-N nodes, and 105° for 4-N nodes, close to the angles of idealized 3D regular structures (120° and 109.5°, respectively). Changes in the dispersion of ITA distribution suggested that a highly symmetric trabecular fabric organized under tensegrity principles is formed early during the bone healing process. Post-implantation, cHA disaggregated into multiple fragments (~20-400 μm), stimulating osteoconduction and bone growth toward the interior of the medullary cavity. The presence of biomaterials in bone defects affected the trabecular dimensions; however, it did not interfere with the formation of geometrical motifs with topological parameters similar to those found in the sham-defects. STATEMENT OF SIGNIFICANCE: The trabecular bone microstructure enables the tissue to meet the necessary mechanical and functional demands. However, the process of trabecular microarchitecture formation during healing, in the absence or presence of a bone graft, is not yet well understood. This work demonstrated that, from the beginning of its formation in cortical bone defects, the woven-bone trabecular network is spatially organized according to the principle of tensegrity. This microarchitecture is comprised of highly symmetric geometric motifs and is an intrinsic characteristic of trabecular growth, regardless of hierarchical scale or mechanical stimulation. The addition of a biodegradable nanostructured calcium phosphate graft did not disrupt trabecular microarchitecture; however, graft biodegradation should be controlled to optimize the reproduction of intrinsic trabecular motifs throughout the defect.
Collapse
Affiliation(s)
- Victor R Martinez-Zelaya
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970 Campinas, Sao Paulo, Brazil; Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Zip Code 22290-180 Rio de Janeiro, RJ, Brazil.
| | - Nathaly L Archilha
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970 Campinas, Sao Paulo, Brazil
| | - Mônica Calasans-Maia
- Oral Surgery Department, Fluminense Federal University, Zip Code 24020-140 Niterói, RJ, Brazil
| | - Marcos Farina
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Zip Code 21941-902 Rio de Janeiro, RJ, Brazil
| | - Alexandre M Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Zip Code 22290-180 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Ex vivo estimation of cementless femoral stem stability using an instrumented hammer. Clin Biomech (Bristol, Avon) 2020; 76:105006. [PMID: 32388077 DOI: 10.1016/j.clinbiomech.2020.105006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The success of cementless hip arthroplasty depends on the primary stability of the femoral stem. It remains difficult to assess the optimal number of impacts to guarantee the femoral stem stability while avoiding bone fracture. The aim of this study is to validate a method using a hammer instrumented with a force sensor to monitor the insertion of femoral stem in bovine femoral samples. METHODS Different cementless femoral stem were impacted into five bovine femur samples, leading to 99 configurations. Three methods were used to quantify the insertion endpoint: the impact hammer, video motion tracking and the surgeon proprioception. For each configuration, the number of impacts performed by the surgeon until he felt a correct insertion was noted Nsurg. The insertion depth E was measured through video motion tracking, and the impact number Nvid corresponding to the end of the insertion was estimated. Two indicators, noted I and D, were determined from the analysis of the time variation of the force, and the impact number Nd corresponding to a threshold reached in D variation was estimated. FINDINGS The pullout force of the femoral stem was significantly correlated with I (R2 = 0.81). The values of Nsurg, Nvid and Nd were similar for all configurations. INTERPRETATION The results validate the use of the impact hammer to assess the primary stability of the femoral stem and the moment when the surgeon should stop the impaction procedure for an optimal insertion, which could lead to the development of a decision support system.
Collapse
|
4
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Isaksson H, Le Cann S, Perdikouri C, Turunen MJ, Kaestner A, Tägil M, Hall SA, Tudisco E. Neutron tomographic imaging of bone-implant interface: Comparison with X-ray tomography. Bone 2017; 103:295-301. [PMID: 28739417 DOI: 10.1016/j.bone.2017.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/14/2023]
Abstract
Metal implants, in e.g. joint replacements, are generally considered to be a success. As mechanical stability is important for the longevity of a prosthesis, the biological reaction of the bone to the mechanical loading conditions after implantation and during remodelling determines its fate. The bone reaction at the implant interface can be studied using high-resolution imaging. However, commonly used X-ray imaging suffers from image artefacts in the close proximity of metal implants, which limit the possibility to closely examine the bone at the bone-implant interface. An alternative ex vivo 3D imaging method is offered by neutron tomography. Neutrons interact with matter differently than X-rays; therefore, this study explores if neutron tomography may be used to enrich studies on bone-implant interfaces. A stainless steel screw was implanted in a rat tibia and left to integrate for 6weeks. After extracting the tibia, the bone-screw construct was imaged using X-ray and neutron tomography at different resolutions. Artefacts were visible in all X-ray images in the close proximity of the implant, which limited the ability to accurately quantify the bone around the implant. In contrast, neutron images were free of metal artefacts, enabling full analysis of the bone-implant interface. Trabecular structural bone parameters were quantified in the metaphyseal bone away from the implant using all imaging modalities. The structural bone parameters were similar for all images except for the lowest resolution neutron images. This study presents the first proof-of-concept that neutron tomographic imaging can be used for ex-vivo evaluation of bone microstructure and that it constitutes a viable, new tool to study the bone-implant interface tissue remodelling.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Sweden; Department of Orthopaedics, Lund University, Sweden.
| | - Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Sweden.
| | | | - Mikael J Turunen
- Department of Biomedical Engineering, Lund University, Sweden; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Anders Kaestner
- Swiss Spallation Source, Paul Scherrer Institut, Switzerland.
| | - Magnus Tägil
- Department of Orthopaedics, Lund University, Sweden.
| | | | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Sweden.
| |
Collapse
|
6
|
Neldam CA, Sporring J, Rack A, Lauridsen T, Hauge EM, Jørgensen HL, Jørgensen NR, Feidenhansl R, Pinholt EM. Synchrotron radiation μCT and histology evaluation of bone-to-implant contact. J Craniomaxillofac Surg 2017; 45:1448-1457. [DOI: 10.1016/j.jcms.2017.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 04/21/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022] Open
|
7
|
Sanz-Martin I, Vignoletti F, Nuñez J, Permuy M, Muñoz F, Sanz-Esporrín J, Fierravanti L, Shapira L, Sanz M. Hard and soft tissue integration of immediate and delayed implants with a modified coronal macrodesign: Histological, micro-CT and volumetric soft tissue changes from a pre-clinical in vivo study. J Clin Periodontol 2017; 44:842-853. [DOI: 10.1111/jcpe.12747] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Ignacio Sanz-Martin
- Section of Periodontology; Faculty of Odontology; University Complutense of Madrid; Madrid Spain
| | - Fabio Vignoletti
- Section of Periodontology; Faculty of Odontology; University Complutense of Madrid; Madrid Spain
| | - Javier Nuñez
- Section of Periodontology; Faculty of Odontology; University Complutense of Madrid; Madrid Spain
| | - Maria Permuy
- Faculty of Veterinary Lugo; University of Santiago de Compostela; Lugo Spain
| | - Fernando Muñoz
- Faculty of Veterinary Lugo; University of Santiago de Compostela; Lugo Spain
| | - Javier Sanz-Esporrín
- Section of Periodontology; Faculty of Odontology; University Complutense of Madrid; Madrid Spain
| | - Ludovica Fierravanti
- Section of Periodontology; Faculty of Odontology; University Complutense of Madrid; Madrid Spain
| | - Lior Shapira
- Department of Periodontology; Hebrew University - Hadassah Faculty of Dental Medicine; Jerusalem Israel
| | - Mariano Sanz
- Section of Periodontology; Faculty of Odontology; University Complutense of Madrid; Madrid Spain
| |
Collapse
|
8
|
Le Cann S, Tudisco E, Perdikouri C, Belfrage O, Kaestner A, Hall S, Tägil M, Isaksson H. Characterization of the bone-metal implant interface by Digital Volume Correlation of in-situ loading using neutron tomography. J Mech Behav Biomed Mater 2017; 75:271-278. [PMID: 28759839 DOI: 10.1016/j.jmbbm.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/19/2017] [Accepted: 07/01/2017] [Indexed: 12/22/2022]
Abstract
Metallic implants are commonly used as surgical treatments for many orthopedic conditions. The long-term stability of implants relies on an adequate integration with the surrounding bone. Unsuccessful integration could lead to implant loosening. By combining mechanical loading with high-resolution 3D imaging methods, followed by image analysis such as Digital Volume Correlation (DVC), we aim at evaluating ex vivo the mechanical resistance of newly formed bone at the interface. X-rays tomography is commonly used to image bone but induces artefacts close to metallic components. Utilizing a different interaction with matter, neutron tomography is a promising alternative but has not yet been used in studies of bone mechanics. This work demonstrates that neutron tomography during in situ loading is a feasible tool to characterize the mechanical response of bone-implant interfaces, especially when combined with DVC. Experiments were performed where metal screws were implanted in rat tibiae during 4 weeks. The screws were pulled-out while the samples were sequentially imaged in situ with neutron tomography. The images were analyzed to quantify bone ingrowth around the implants. DVC was used to track the internal displacements and calculate the strain fields in the bone during loading. The neutron images were free of metal-related artefacts, which enabled accurate quantification of bone ingrowth on the screw (ranging from 60% to 71%). DVC allowed successful identification of the deformation and cracks that occurred during mechanical loading and led to final failure of the bone-implant interface.
Collapse
Affiliation(s)
- Sophie Le Cann
- Department of Biomedical Engineering, Lund University, 22100 Lund, Sweden.
| | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Sweden.
| | | | - Ola Belfrage
- Department of Orthopaedics, Lund University, Sweden.
| | - Anders Kaestner
- Swiss Spallation Source, Paul Sheerer Institute, Switzerland.
| | - Stephen Hall
- Division of Solid Mechanics, Lund University, Sweden.
| | - Magnus Tägil
- Department of Orthopaedics, Lund University, Sweden.
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, 22100 Lund, Sweden; Department of Orthopaedics, Lund University, Sweden.
| |
Collapse
|
9
|
Blery P, Pilet P, Bossche AV, Thery A, Guicheux J, Amouriq Y, Espitalier F, Mathieu N, Weiss P. Vascular imaging with contrast agent in hard and soft tissues using microcomputed-tomography. J Microsc 2015; 262:40-9. [PMID: 27002484 DOI: 10.1111/jmi.12339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022]
Abstract
Vascularization is essential for many tissues and is a main requisite for various tissue-engineering strategies. Different techniques are used for highlighting vasculature, in vivo and ex vivo, in 2-D or 3-D including histological staining, immunohistochemistry, radiography, angiography, microscopy, computed tomography (CT) or micro-CT, both stand-alone and synchrotron system. Vascularization can be studied with or without a contrast agent. This paper presents the results obtained with the latest Skyscan micro-CT (Skyscan 1272, Bruker, Belgium) following barium sulphate injection replacing the bloodstream in comparison with results obtained with a Skyscan In Vivo 1076. Different hard and soft tissues were perfused with contrast agent and were harvested. Samples were analysed using both forms of micro-CT, and improved results were shown using this new micro-CT. This study highlights the vasculature using micro-CT methods. The results obtained with the Skyscan 1272 are clearly defined compared to results obtained with Skyscan 1076. In particular, this instrument highlights the high number of small vessels, which were not seen before at lower resolution. This new micro-CT opens broader possibilities in detection and characterization of the 3-D vascular tree to assess vascular tissue engineering strategies.
Collapse
Affiliation(s)
- P Blery
- Inserm U791, LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France.,Faculté de chirurgie dentaire, Université de Nantes, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| | - P Pilet
- Inserm U791, LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| | - A Vanden- Bossche
- Inserm U1059, Laboratoire de Biologie intégrative du Tissu Osseux, Faculté de Médecine, 15 rue Ambroise Paré, 42023 Saint-Etienne cedex
| | - A Thery
- Inserm U791, LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France.,Service d'ORL et de chirurgie cervico-faciale, CHU Hôtel Dieu, 1 place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| | - J Guicheux
- Inserm U791, LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| | - Y Amouriq
- Inserm U791, LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France.,Faculté de chirurgie dentaire, Université de Nantes, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| | - F Espitalier
- Inserm U791, LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France.,Service d'ORL et de chirurgie cervico-faciale, CHU Hôtel Dieu, 1 place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| | - N Mathieu
- IRSN Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PRP-HOM/SRBE/LR2I, 31 avenue de la division Leclerc BP17, 92260 Fontenay aux roses, France
| | - P Weiss
- Inserm U791, LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France.,Faculté de chirurgie dentaire, Université de Nantes, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| |
Collapse
|
10
|
Korn P, Elschner C, Schulz M, Range U, Mai R, Scheler U. MRI and dental implantology: Two which do not exclude each other. Biomaterials 2015; 53:634-45. [DOI: 10.1016/j.biomaterials.2015.02.114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 11/25/2022]
|
11
|
Neldam CA, Lauridsen T, Rack A, Lefolii TT, Jørgensen NR, Feidenhans’l R, Pinholt EM. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration. J Craniomaxillofac Surg 2015; 43:682-7. [DOI: 10.1016/j.jcms.2015.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022] Open
|