1
|
Barbeck M, Kühnel L, Witte F, Pissarek J, Precht C, Xiong X, Krastev R, Wegner N, Walther F, Jung O. Degradation, Bone Regeneration and Tissue Response of an Innovative Volume Stable Magnesium-Supported GBR/GTR Barrier Membrane. Int J Mol Sci 2020; 21:ijms21093098. [PMID: 32353983 PMCID: PMC7247710 DOI: 10.3390/ijms21093098] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: Bioresorbable collagenous barrier membranes are used to prevent premature soft tissue ingrowth and to allow bone regeneration. For volume stable indications, only non-absorbable synthetic materials are available. This study investigates a new bioresorbable hydrofluoric acid (HF)-treated magnesium (Mg) mesh in a native collagen membrane for volume stable situations. Materials and Methods: HF-treated and untreated Mg were compared in direct and indirect cytocompatibility assays. In vivo, 18 New Zealand White Rabbits received each four 8 mm calvarial defects and were divided into four groups: (a) HF-treated Mg mesh/collagen membrane, (b) untreated Mg mesh/collagen membrane (c) collagen membrane and (d) sham operation. After 6, 12 and 18 weeks, Mg degradation and bone regeneration was measured using radiological and histological methods. Results: In vitro, HF-treated Mg showed higher cytocompatibility. Histopathologically, HF-Mg prevented gas cavities and was degraded by mononuclear cells via phagocytosis up to 12 weeks. Untreated Mg showed partially significant more gas cavities and a fibrous tissue reaction. Bone regeneration was not significantly different between all groups. Discussion and Conclusions: HF-Mg meshes embedded in native collagen membranes represent a volume stable and biocompatible alternative to the non-absorbable synthetic materials. HF-Mg shows less corrosion and is degraded by phagocytosis. However, the application of membranes did not result in higher bone regeneration.
Collapse
Affiliation(s)
- Mike Barbeck
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)-176-81022467
| | - Lennart Kühnel
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Witte
- Biotrics Bioimplants GmbH, 12109 Berlin, Germany
| | | | - Clarissa Precht
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Rumen Krastev
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
- Faculty of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| | - Nils Wegner
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany
| | - Ole Jung
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
2
|
Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:431-438. [DOI: 10.1016/j.msec.2016.10.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022]
|
3
|
Profeta AC, Huppa C. Bioactive-glass in Oral and Maxillofacial Surgery. Craniomaxillofac Trauma Reconstr 2015; 9:1-14. [PMID: 26889342 DOI: 10.1055/s-0035-1551543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/24/2015] [Indexed: 10/23/2022] Open
Abstract
The use of synthetic materials to repair craniofacial defects is increasing today and will increase further in the future. Because of the complexity of the anatomy in the head and neck region, reconstruction and augmentation of this area pose a challenge to the surgeon. This review discusses key facts and applications of traditional reconstruction bone substitutes, also offering comparative information. It then describes the properties and clinical applications of bioactive-glass (B-G) and its variants in oral and maxillofacial surgery, and provides clinical findings. The discussion of each compound includes a description of its composition and structure, the advantages and shortcomings of the material, and its current uses in the field of osteoplastic and reconstructive surgery. With a better understanding of the available alloplastic implants, the surgeon can make a more informed decision as to which implant would be most suitable in a particular patient.
Collapse
Affiliation(s)
- Andrea Corrado Profeta
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany
| | - Christoph Huppa
- Department of Oral and Maxillofacial Surgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London, United Kingdom
| |
Collapse
|