1
|
Application of Fibrin Associated with Photobiomodulation as a Promising Strategy to Improve Regeneration in Tissue Engineering: A Systematic Review. Polymers (Basel) 2022; 14:polym14153150. [PMID: 35956667 PMCID: PMC9370794 DOI: 10.3390/polym14153150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Fibrin, derived from proteins involved in blood clotting (fibrinogen and thrombin), is a biopolymer with different applications in the health area since it has hemostasis, biocompatible and three-dimensional physical structure properties, and can be used as scaffolds in tissue regeneration or drug delivery system for cells and/or growth factors. Fibrin alone or together with other biomaterials, has been indicated for use as a biological support to promote the regeneration of stem cells, bone, peripheral nerves, and other injured tissues. In its diversity of forms of application and constitution, there are platelet-rich fibrin (PRF), Leukocyte- and platelet-rich fibrin (L-PRF), fibrin glue or fibrin sealant, and hydrogels. In order to increase fibrin properties, adjuvant therapies can be combined to favor tissue repair, such as photobiomodulation (PBM), by low-level laser therapy (LLLT) or LEDs (Light Emitting Diode). Therefore, this systematic review aimed to evaluate the relationship between PBM and the use of fibrin compounds, referring to the results of previous studies published in PubMed/MEDLINE, Scopus and Web of Science databases. The descriptors “fibrin AND low-level laser therapy” and “fibrin AND photobiomodulation” were used, without restriction on publication time. The bibliographic search found 44 articles in PubMed/MEDLINE, of which 26 were excluded due to duplicity or being outside the eligibility criteria. We also found 40 articles in Web of Science and selected 1 article, 152 articles in Scopus and no article selected, totaling 19 articles for qualitative analysis. The fibrin type most used in combination with PBM was fibrin sealant, mainly heterologous, followed by PRF or L-PRF. In PBM, the gallium-aluminum-arsenide (GaAlAs) laser prevailed, with a wavelength of 830 nm, followed by 810 nm. Among the preclinical studies, the most researched association of fibrin and PBM was the use of fibrin sealants in bone or nerve injuries; in clinical studies, the association of PBM with medication-related treatments osteonecrosis of the jaw (MRONJ). Therefore, there is scientific evidence of the contribution of PBM on fibrin composites, constituting a supporting therapy that acts by stimulating cell activity, angiogenesis, osteoblast activation, axonal growth, anti-inflammatory and anti-edema action, increased collagen synthesis and its maturation, as well as biomolecules.
Collapse
|
2
|
Mangione F, Salmon B, EzEldeen M, Jacobs R, Chaussain C, Vital S. Characteristics of Large Animal Models for Current Cell-Based Oral Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:489-505. [PMID: 33882717 DOI: 10.1089/ten.teb.2020.0384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent advances in the field of cell-based therapeutics open promising perspectives for oral tissue regeneration. The development of large animal models, which overcome the limits of the rodent models and allow to emulate clinical situations, is crucial for the validation of regenerative strategies to move toward clinical application. Currently, porcine, canine, and ovine models are mainly developed for oral regeneration and their specific characteristics have an impact on the outcomes of the studies. Thus, this systematic review investigates the application of porcine, canine, and ovine models in present cell-based oral regeneration, according to the species characteristics and the targeted tissue to regenerate. A customized search of PubMed, EMBASE, Scopus, and Web of Science databases from January 2015 to March 2020 was conducted. Relevant articles about cell-based oral tissues engineering in porcine, canine, and ovine models were evaluated. Among the evaluated articles, 58 relevant studies about cell-based oral regeneration in porcine, canine, and ovine models matched the eligibility criteria and were selected for full analysis. Porcine models, the most similar species with humans, were mostly used for bone and periodontium regeneration; tooth regeneration was reported only in pig, except for one study in dog. Canine models were the most transversal models, successfully involved for all oral tissue regeneration and notably in implantology. However, differences with humans and ethical concerns affect the use of these models. Ovine models, alternative to porcine and canine ones, were mainly used for bone and, scarcely, periodontium regeneration. The anatomy and physiology of these animals restrain their involvement. If consistency was found in defect specificities and cell trends among different species animal models of bone, dentin-pulp complex, or tooth regeneration, variability appeared in periodontium. Regeneration assessment methods were more elaborate in porcines and canines than in ovines. Risk of bias was low for selection, attrition and reporting, but unclear for performance and detection. Overall, if none of the large animal models can be considered an ideal one, they are of deemed importance for oral cell-based tissue engineering and researchers should consider their relevance to establish favorable conditions for a given preclinical cell-based therapeutics.
Collapse
Affiliation(s)
- Francesca Mangione
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Salmon
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Mostafa EzEldeen
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Catherine Chaussain
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Sibylle Vital
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| |
Collapse
|
3
|
Shi L, Tee BC, Emam H, Prokes R, Larsen P, Sun Z. Enhancement of bone marrow aspirate concentrate with local self-healing corticotomies. Tissue Cell 2020; 66:101383. [PMID: 32933706 DOI: 10.1016/j.tice.2020.101383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
Abstract
Bone marrow aspirate concentrate (BMAC) is a potentially useful biological product for bone regeneration. This study investigated whether BMAC can be enriched by local minor corticotomies. Five 4-month-old domestic pigs were used with each pig undergoing two minor corticotomies at one randomly-selected tibia. Two weeks after the operation, bone marrow was aspirated from both tibiae and processed into BMAC samples. The amount of mesenchymal stem cells (MSCs) and the concentration of several regenerative growth factors contained in BMAC, as well as the proliferative and osteogenic differentiation capacity of MSCs, were compared between the corticotomy and the control sides. Another four weeks later, healing of the corticotomies was evaluated by radiographic and histological methods. The results demonstrated that BMAC from the corticotomy side contained significantly more MSCs than the control side. MSCs from the corticotomy side also proliferated significantly faster and tended to have stronger osteogenic differentiation than those from the control side. In contrast, the protein concentration of TGF-β, BMP-2 and PDGF contained in BMAC was only minimally changed by the corticotomies. The corticotomies in all pigs healed uneventfully, showing complete obliteration of the corticotomy gaps on CT images. Comparison between the two sides showed that the corticotomy side had thicker and denser cortical bone and more abundant osteogenic cell differentiation than the control side. These findings suggest that the quantity and proliferative/osteogenic differentiation capacity of MSCs contained in local BMAC can be enhanced by minor corticotomies, and spontaneous healing of the corticotomy can be completed within 6 weeks of the operation.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pediatric Dentistry, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China; Division of Orthodontics, College of Dentistry, The Ohio State University, Rm 4088 Postle Hall, 305 W 12th Ave, 43210 Columbus, OH, USA
| | - Boon Ching Tee
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Hany Emam
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Rachael Prokes
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Peter Larsen
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, The Ohio State University, Rm 4088 Postle Hall, 305 W 12th Ave, 43210 Columbus, OH, USA.
| |
Collapse
|
4
|
Bou Assaf R, Fayyad-Kazan M, Al-Nemer F, Makki R, Fayyad-Kazan H, Badran B, Berbéri A. Evaluation of the Osteogenic Potential of Different Scaffolds Embedded with Human Stem Cells Originated from Schneiderian Membrane: An In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2868673. [PMID: 30766881 PMCID: PMC6350594 DOI: 10.1155/2019/2868673] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/07/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Novel treatments for bone defects, particularly in patients with poor regenerative capacity, are based on bone tissue engineering strategies which include mesenchymal stem cells (MSCs), bioactive factors, and convenient scaffold supports. OBJECTIVE In this study, we aimed at comparing the potential for different scaffolds to induce osteogenic differentiation of human maxillary Schneiderian sinus membrane- (hMSSM-) derived cells. Methods. hMSSM-derived cells were seeded on gelatin, collagen, or Hydroxyapatite β-Tricalcium phosphate-Fibrin (Haβ-TCP-Fibrin) scaffolds. Cell viability was determined using an MTT assay. Alizarin red staining method, Alkaline phosphatase (ALP) activity assay, and quantitative real-time PCR analysis were performed to assess hMSSM-derived cells osteogenic differentiation. RESULTS Cell viability, calcium deposition, ALP activity, and osteoblastic markers transcription levels were most striking in gelatin scaffold-embedded hMSSM-derived cells. CONCLUSION Our findings suggest a promising potential for gelatin-hMSSM-derived cell construct for treating bone defects.
Collapse
Affiliation(s)
- Rita Bou Assaf
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon
| | - Fatima Al-Nemer
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon
| | - Rawan Makki
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon
| | - Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Beirut, Lebanon
| |
Collapse
|
5
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Verboket R, Leiblein M, Seebach C, Nau C, Janko M, Bellen M, Bönig H, Henrich D, Marzi I. Autologous cell-based therapy for treatment of large bone defects: from bench to bedside. Eur J Trauma Emerg Surg 2018; 44:649-665. [PMID: 29352347 PMCID: PMC6182650 DOI: 10.1007/s00068-018-0906-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Reconstruction of long segmental bone defects is demanding for patients and surgeons, and associated with long-term treatment periods and substantial complication rates in addition to high costs. While defects up to 4-5 cm length might be filled up with autologous bone graft, heterologous bone from cadavers, or artificial bone graft substitutes, current options to reconstruct bone defects greater than 5 cm consist of either vascularized free bone transfers, the Masquelet technique or the Ilizarov distraction osteogenesis. Alternatively, autologous cell transplantation is an encouraging treatment option for large bone defects as it eliminates problems such as limited autologous bone availability, allogenic bone immunogenicity, and donor-site morbidity, and might be used for stabilizing loose alloplastic implants. METHODS The authors show different cell therapies without expansion in culture, with ex vivo expansion and cell therapy in local bone defects, bone healing and osteonecrosis. Different kinds of cells and scaffolds investigated in our group as well as in vivo transfer studies and BMC used in clinical phase I and IIa clinical trials of our group are shown. RESULTS Our research history demonstrated the great potential of various stem cell species to support bone defect healing. It was clearly shown that the combination of different cell types is superior to approaches using single cell types. We further demonstrate that it is feasible to translate preclinically developed protocols from in vitro to in vivo experiments and follow positive convincing results into a clinical setting to use autologous stem cells to support bone healing.
Collapse
Affiliation(s)
- R. Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Leiblein
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - C. Seebach
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - C. Nau
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Janko
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Bellen
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - H. Bönig
- Department of Transfusion Medicine and Immune Hematology, University Hospital Frankfurt and DRK Blood Donor Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - D. Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - I. Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Zhang Y, Husch JFA, van den Beucken JJJP. Intraoperative Construct Preparation: A Practical Route for Cell-Based Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:403-417. [PMID: 29631489 DOI: 10.1089/ten.teb.2018.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cell-based bone tissue engineering based on the combination of a scaffold and expanded autologous mesenchymal stem cells (MSCs) represents the current state-of-the-art treatment for bone defects and fractures. However, the procedure of such construct preparation requires extensive ex vivo manipulation of patient's cells to achieve enough stem cells. Therefore, it is impractical and not cost-effective compared to other therapeutic interventions. For these reasons, a more practical strategy circumventing any ex vivo manipulation and an additional surgery for the patient would be advantageous. Intraoperative concept-based bone tissue engineering, where constructs are prepared with easily accessible autologous cells within the same surgical procedure, allows for such a simplification. In this study, we discuss the concept of intraoperative construct preparation for bone tissue engineering and summarize the available cellular options for intraoperative preparation. Furthermore, we propose methods to prepare intraoperative constructs, and review data of currently available preclinical and clinical studies using intraoperatively prepared constructs for bone regenerative applications. We identify several obstacles hampering the application of this emerging approach and highlight perspectives of technological innovations to advance the future developments of intraoperative construct preparation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | | | | |
Collapse
|
8
|
Applications of Mesenchymal Stem Cells in Sinus Lift Augmentation as a Dental Implant Technology. Stem Cells Int 2018; 2018:3080139. [PMID: 29760723 PMCID: PMC5926478 DOI: 10.1155/2018/3080139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/13/2018] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
The potential application of stem cell biology in human dentistry is a new and emerging field of research. The objective of the current review was to study the efficiency of mesenchymal stem cells (MSCs) in sinus lift augmentation (SLA). A literature review was performed in PubMed Central using MeSH keywords such as sinus lift, MSCs, dental implants, and augmentation. The searches involved full-text papers written in English, published in the past 10 years (2007–2017). The review included in vitro and in vivo studies on the use of MSCs in SLA. Electronic searching provided 45 titles, and among them, 8 papers were chosen as suitable based on the inclusion requirements of this review. The reviewed studies have revealed the potential of MSCs in SLA. According to these papers, stem cell therapy combined with different biomaterials may considerably improve bone regeneration in previous steps of dental implantation and may veritably lead to efficient clinical usages in the recent future. However, the identification of an ideal source of stem cells as well as long-term studies is vital to assess the success rate of this technology. Further clinical trials are also needed to approve the potential of MSCs in SLA.
Collapse
|
9
|
Smith MM, Duncan WJ, Coates DE. Attributes of Bio-Oss ® and Moa-Bone ® graft materials in a pilot study using the sheep maxillary sinus model. J Periodontal Res 2017; 53:80-90. [PMID: 28868669 DOI: 10.1111/jre.12490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE The aim of this pilot study was to characterize surface morphology and to evaluate resorption and osseous healing of two deproteinated bovine bone graft materials after sinus grafting in a large animal model. MATERIAL AND METHODS Surfaces of a novel particulate bovine bone graft, Moa-Bone® were compared with Bio-Oss® using scanning electron microscopy. Six sheep then had maxillary sinus grafting bilaterally, covered with BioGide® . Grafted maxillae were harvested after 4, 6 and 12 weeks. Healing was described for half of each site using resin-embedded ground sections. For the other half, paraffin-embedded sections were examined using tartrate resistant acid phosphatase staining for osteoclast activity, runt-related transcription factor2 immunohistochemistry for pre-osteoblasts and osteoblasts and proliferating cell nuclear antigen for proliferative cells. RESULTS Moa-Bone® had a smoother, more porous fibrous structure with minimal globular particles compared with Bio-Oss® . After 4 weeks, woven bone formed on both grafts and the Moa-Bone® particles also showed signs of resorption. After 12 weeks, Moa-Bone® continued to be resorbed, however Bio-Oss® did not; both grafts were surrounded by maturing lamellar bone. Moa-Bone® was associated with earlier evidence of runt-related transcription factor 2-positive cells. Moa-Bone® but not Bio-Oss® was associated with strong tartrate resistant acid phosphatase-positive osteoclasts on the graft surface within resorption lacunae at both 4 and 6 weeks post-grafting. CONCLUSION Both materials supported osseous healing and maturation without inflammation. Moa-Bone® showed marked osteoclast activity after 4 and 6 weeks and demonstrated positive attributes for grafting, if complete remodeling of the graft within the site is desired. Further optimization of Moa-Bone® for maxillofacial applications is warranted.
Collapse
Affiliation(s)
- M M Smith
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - W J Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - D E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Patel N, Kim B, Zaid W, Spagnoli D. Tissue Engineering for Vertical Ridge Reconstruction. Oral Maxillofac Surg Clin North Am 2016; 29:27-49. [PMID: 27890226 DOI: 10.1016/j.coms.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This article provides an overview of basic tissue engineering principles as they are applied to vertical ridge defects and reconstructive techniques for these types of deficiencies. Presented are multiple clinical cases ranging from office-based dentoalveolar procedures to the more complex reconstruction of postresection mandibular defects. Several different types of regenerative tissue constructs are presented; either used alone or in combination with traditional reconstructive techniques and procedures, such as maxillary sinus augmentation, Le Fort I osteotomy, and microvascular free tissue transfer. The goal is to also familiarize the reconstructive surgeon to potential future strategies in vertical alveolar ridge augmentation.
Collapse
Affiliation(s)
- Neel Patel
- Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Ave, Box 220, Room 5303, New Orleans, LA 70119, USA.
| | - Beomjune Kim
- Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 220, Room 5303, New Orleans, LA, USA
| | - Waleed Zaid
- Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 220, Room 5303, New Orleans, LA, USA
| | - Daniel Spagnoli
- Private Practice, Brunswick Oral and Maxillofacial Surgery, 621-B North Fodale Avenue, Southport, NC 28461, USA
| |
Collapse
|
11
|
Seebach C, Henrich D, Meier S, Nau C, Bonig H, Marzi I. Safety and feasibility of cell-based therapy of autologous bone marrow-derived mononuclear cells in plate-stabilized proximal humeral fractures in humans. J Transl Med 2016; 14:314. [PMID: 27846890 PMCID: PMC5111224 DOI: 10.1186/s12967-016-1066-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Background Local implantation of ex vivo concentrated, washed and filtrated human bone marrow-derived mononuclear cells (BMC) seeded onto β-tricalciumphosphate (TCP) significantly enhanced bone healing in a preclinical segmental defect model. Based on these results, we evaluated in a first clinical phase-I trial safety and feasibility of augmentation with preoperatively isolated autologous BMC seeded onto β-TCP in combination with angle stable plate fixation for the therapy of proximal humeral fractures as a potential alternative to autologous bone graft from the iliac crest. Methods 10 patients were enrolled to assess whether cell therapy with 1.3 × 106 autologous BMC/ml/ml β-TCP, collected on the day preceding the definitive surgery, is safe and feasible when seeded onto β-TCP in patients with a proximal humeral fracture. 5 follow-up visits for clinical and radiological controls up to 12 weeks were performed. Results β-tricalciumphosphate fortification with BMC was feasible and safe; specifically, neither morbidity at the harvest site nor at the surgical wound site were observed. Neither local nor systemic inflammation was noted. All fractures healed within the observation time without secondary dislocation. Three adverse events were reported: one case each of abdominal wall shingles, tendon loosening and initial screw perforation, none of which presumed related to the IND. Conclusions Cell therapy with autologous BMC for bone regeneration appeared to be safe and feasible with no drug-related adverse reactions being described to date. The impression of efficacy was given, although the study was not powered nor controlled to detect such. A clinical trial phase-II will be forthcoming in order to formally test the clinical benefit of BMC-laden β-TCP for PHF patients. Trial registration The study was registered in the European Clinical Trial Register as EudraCT No. 2012-004037-17. Date of registration 30th of August 2012. Informed consent was signed from all patients enrolled.
Collapse
Affiliation(s)
- Caroline Seebach
- Department of Trauma Surgery, Johann-Wolfgang-Goethe University, Theodor-Stern-Kai 7, Main, 60590, Frankfurt, Germany.
| | - Dirk Henrich
- Department of Trauma Surgery, Johann-Wolfgang-Goethe University, Theodor-Stern-Kai 7, Main, 60590, Frankfurt, Germany
| | - Simon Meier
- Department of Trauma Surgery, Johann-Wolfgang-Goethe University, Theodor-Stern-Kai 7, Main, 60590, Frankfurt, Germany
| | - Christoph Nau
- Department of Trauma Surgery, Johann-Wolfgang-Goethe University, Theodor-Stern-Kai 7, Main, 60590, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immune Hematology, Johann-Wolfgang-Goethe University, and DRK-Blutspendedienst Baden-Württemberg-Hessen, Main, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma Surgery, Johann-Wolfgang-Goethe University, Theodor-Stern-Kai 7, Main, 60590, Frankfurt, Germany
| |
Collapse
|
12
|
Lappalainen OP, Karhula S, Haapea M, Kyllönen L, Haimi S, Miettinen S, Saarakkala S, Korpi J, Ylikontiola LP, Serlo WS, Sándor GK. Bone healing in rabbit calvarial critical-sized defects filled with stem cells and growth factors combined with granular or solid scaffolds. Childs Nerv Syst 2016; 32:681-8. [PMID: 26782995 DOI: 10.1007/s00381-016-3017-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/06/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE In pediatric neurosurgery, decompressive craniectomy and correction of congenital cranial anomalies can result in major cranial defects. Corrective cranioplasty for the repair of these critical-sized defects is not only a cosmetic issue. The limited availability of suitable autogenous bone and the morbidity of donor site harvesting have driven the search for new approaches with biodegradable and bioactive materials. This study aimed to assess the healing of rabbit calvarial critical-sized defects filled with osteogenic material, either with bioactive glass scaffolds or tricalcium phosphate granules in various combinations with adipose stem cells or bone marrow stem cells, BMP-2, BMP-7, or VEGF to enhance osteogenesis. METHODS Eighty-two bicortical full thickness critical-sized calvarial defects were operated. Five defects were left empty as negative control defects. The remaining 77 defects were filled with solid bioactive glass scaffolds or tricalcium phosphate granules seeded with adipose or bone marrow derived stem cells in combination with BMP-2, BMP-7, or VEGF. The defects were allowed to heal for 6 weeks before histologic and micro-CT analyses. RESULTS Micro-CT examination at the 6-week post-operative time point revealed that defects filled with stem cell-seeded tricalcium phosphate granules resulted in new bone formation of 6.0 %, whereas defects with bioactive glass scaffolds with stem cells showed new bone formation of 0.5 to 1.7 %, depending on the growth factor used. CONCLUSIONS This study suggests that tricalcium phosphate granules combined with stem cells have osteogenic potential superior to solid bioactive glass scaffolds with stem cells and growth factors.
Collapse
Affiliation(s)
- Olli-Pekka Lappalainen
- Department of Oral and Maxillofacial Surgery, Oulu University Hospital and Medical Research Center, University of Oulu, Oulu, Finland
| | - Sakari Karhula
- Research Group of Medical Imaging, Physics and Technology, Infotech Doctoral Program, University of Oulu, Oulu, Finland
| | - Marianne Haapea
- Department of Diagnostic Radiology, University of Oulu, Oulu, Finland
| | - Laura Kyllönen
- BioMediTech, Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Suvi Haimi
- BioMediTech, Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Susanna Miettinen
- BioMediTech, Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Simo Saarakkala
- Research Group of Medical Imaging, Physics and Technology, Infotech Doctoral Program, Department of Diagnostic Radiology, Medical Research Center, University of Oulu, Oulu, Finland
| | - Jarkko Korpi
- Department of Otolaryngology, Head and Neck Surgery, Oulu University Hospital, Oulu, Finland
| | - Leena P Ylikontiola
- Department of Oral and Maxillofacial Surgery, Oulu University Hospital and Medical Research Center, University of Oulu, Oulu, Finland
| | - Willy S Serlo
- Department of Children and Adolescents, Division of Pediatric Surgery, Oulu University Hospital, Medical Research Center, PEDEGO Research Center, University of Oulu, Oulu, Finland
| | - George K Sándor
- Department of Oral and Maxillofacial Surgery, Oulu University Hospital and Medical Research Center, University of Oulu, Oulu, Finland.
- BioMediTech, Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.
| |
Collapse
|