1
|
Sillmann YM, Monteiro JLGC, Eber P, Baggio AMP, Peacock ZS, Guastaldi FPS. Empowering surgeons: will artificial intelligence change oral and maxillofacial surgery? Int J Oral Maxillofac Surg 2025; 54:179-190. [PMID: 39341693 DOI: 10.1016/j.ijom.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Artificial Intelligence (AI) can enhance the precision and efficiency of diagnostics and treatments in oral and maxillofacial surgery (OMS), leveraging advanced computational technologies to mimic intelligent human behaviors. The study aimed to examine the current state of AI in the OMS literature and highlight the urgent need for further research to optimize AI integration in clinical practice and enhance patient outcomes. A scoping review of journals related to OMS focused on OMS-related applications. PubMed was searched using terms "artificial intelligence", "convolutional networks", "neural networks", "machine learning", "deep learning", and "automation". Ninety articles were analyzed and classified into the following subcategories: pathology, orthognathic surgery, facial trauma, temporomandibular joint disorders, dentoalveolar surgery, dental implants, craniofacial deformities, reconstructive surgery, aesthetic surgery, and complications. There was a significant increase in AI-related studies published after 2019, 95.6% of the total reviewed. This surge in research reflects growing interest in AI and its potential in OMS. Among the studies, the primary uses of AI in OMS were in pathology (e.g., lesion detection, lymph node metastasis detection) and orthognathic surgery (e.g., surgical planning through facial bone segmentation). The studies predominantly employed convolutional neural networks (CNNs) and artificial neural networks (ANNs) for classification tasks, potentially improving clinical outcomes.
Collapse
Affiliation(s)
- Y M Sillmann
- Division of Oral and Maxillofacial Surgery, Massachusetts General Hospital, and Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA
| | - J L G C Monteiro
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - P Eber
- Division of Oral and Maxillofacial Surgery, Massachusetts General Hospital, and Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA
| | - A M P Baggio
- Division of Oral and Maxillofacial Surgery, Massachusetts General Hospital, and Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA
| | - Z S Peacock
- Division of Oral and Maxillofacial Surgery, Massachusetts General Hospital, and Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA
| | - F P S Guastaldi
- Division of Oral and Maxillofacial Surgery, Massachusetts General Hospital, and Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Gong B, Chang Q, Shi T, Wang S, Wang Y, Zuo F, Xie X, Bai Y. Research of Orthodontic Soft Tissue Profile Prediction Based on Conditional Generative Adversarial Networks. J Dent 2025:105570. [PMID: 39864612 DOI: 10.1016/j.jdent.2025.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
OBJECTIVE This study constructed a new conditional generative adversarial network (CGAN) model to predict changes in lateral appearance following orthodontic treatment. METHODS Lateral cephalometric radiographs of adult patients were obtained before (T1) and after (T2) orthodontic treatment. The expanded dataset was divided into training, validation, and test sets by random sampling in a ratio of 8:1:1. The existing networks-Pix2Pix, CycleGAN, and CGAN-were trained to generate post-treatment outcomes. A new deep learning model, soft-P-CGAN, was proposed and incorporated a conditional vector input module, U-Net-based generator module, and PatchGAN-based discriminator module. Soft loss was designed to enhance generating soft tissue contours; a multiscale feature pyramid refined image quality. Predicted and actual post-treatment radiographs were superimposed and compared based on soft-tissue landmarks using mean radial error (MRE) and successful detection rate (SDR) within 2.0, 2.5, 3.0, and 4.0 mm. Any parameters of PT2 and T2 outcomes were compared using paired t-tests or Wilcoxon tests. RESULTS Soft-P-CGAN showed superior performance using quantitative image quality assessment. The average MRE was 1.08±0.75 mm with SDRs of 2.0, 2.5, 3.0, and 4.0 mm at 88.8%, 95.1%, 97.8%, and 100%, respectively. Soft tissue point A was the most accurate landmark, whereas predictions in the mandibular region were relatively inaccurate. None of the cephalometric predictions differed significantly from the actual results (P > 0.05). CONCLUSIONS Soft-P-CGAN could predict post-treatment lateral appearance changes by learning the relationship between soft and hard tissue changes in lateral cephalograms. Most predictions were clinically acceptable, aiding clinicians in setting orthodontic treatment goals. CLINICAL SIGNIFICANCE This study explored and validated the use of image generation networks for predicting orthodontic lateral profiles and proposed new methods for enhancing their accuracy and interpretability.
Collapse
Affiliation(s)
- Beiwen Gong
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qiao Chang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Tianlei Shi
- LargeV Instrument Corp., Ltd., Beijing 100084, China
| | - Shaofeng Wang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yajie Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China; LargeV Instrument Corp., Ltd., Beijing 100084, China
| | - Feifei Zuo
- LargeV Instrument Corp., Ltd., Beijing 100084, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
3
|
Dang RR, Kadaikal B, Abbadi SE, Brar BR, Sethi A, Chigurupati R. The current landscape of artificial intelligence in oral and maxillofacial surgery- a narrative review. Oral Maxillofac Surg 2025; 29:37. [PMID: 39820789 DOI: 10.1007/s10006-025-01334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
OBJECTIVE This narrative review aims to explore the current applications and future prospects of AI within the subfields of oral and maxillofacial surgery (OMS), emphasizing its potential benefits and anticipated challenges. METHODS A detailed review of the literature was conducted to evaluate the role of AI in oral and maxillofacial surgery. All domains within OMS were reviewed with a focus on diagnostic, therapeutic and prognostic interventions. RESULTS AI has been successfully integrated into surgical specialties to enhance clinical outcomes. In OMS, AI demonstrates potential to improve clinical and administrative workflows in both ambulatory and hospital-based settings. Notable applications include more accurate risk prediction, minimally invasive surgical techniques, and optimized postoperative management. CONCLUSION OMS stands to benefit enormously from the integration of AI. However, significant roadblocks, such as ethical concerns, data security, and integration challenges, must be addressed to ensure effective adoption. Further research and innovation are needed to fully realize the potential of AI in this specialty.
Collapse
Affiliation(s)
- Rushil Rajiv Dang
- Department of Oral and Maxillofacial, Boston University and Boston Medical Center, 635 Albany Street, 02118, Boston, MA, USA.
| | - Balram Kadaikal
- Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Sam El Abbadi
- Consultant, Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital OWL, Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Branden R Brar
- Department of Oral and Maxillofacial, Boston University and Boston Medical Center, Boston, MA, USA
| | - Amit Sethi
- Department of Oral and Maxillofacial, Boston University and Boston Medical Center, Boston, MA, USA
| | - Radhika Chigurupati
- Department of Oral and Maxillofacial surgery, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Chen W, Dhawan M, Liu J, Ing D, Mehta K, Tran D, Lawrence D, Ganhewa M, Cirillo N. Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review. Clin Exp Dent Res 2024; 10:e70035. [PMID: 39600121 PMCID: PMC11599430 DOI: 10.1002/cre2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Artificial intelligence (AI) is an emerging field in dentistry. AI is gradually being integrated into dentistry to improve clinical dental practice. The aims of this scoping review were to investigate the application of AI in image analysis for decision-making in clinical dentistry and identify trends and research gaps in the current literature. MATERIAL AND METHODS This review followed the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR). An electronic literature search was performed through PubMed and Scopus. After removing duplicates, a preliminary screening based on titles and abstracts was performed. A full-text review and analysis were performed according to predefined inclusion criteria, and data were extracted from eligible articles. RESULTS Of the 1334 articles returned, 276 met the inclusion criteria (consisting of 601,122 images in total) and were included in the qualitative synthesis. Most of the included studies utilized convolutional neural networks (CNNs) on dental radiographs such as orthopantomograms (OPGs) and intraoral radiographs (bitewings and periapicals). AI was applied across all fields of dentistry - particularly oral medicine, oral surgery, and orthodontics - for direct clinical inference and segmentation. AI-based image analysis was use in several components of the clinical decision-making process, including diagnosis, detection or classification, prediction, and management. CONCLUSIONS A variety of machine learning and deep learning techniques are being used for dental image analysis to assist clinicians in making accurate diagnoses and choosing appropriate interventions in a timely manner.
Collapse
Affiliation(s)
- Wei Chen
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Monisha Dhawan
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Jonathan Liu
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Damie Ing
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Kruti Mehta
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Daniel Tran
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | | | - Max Ganhewa
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| | - Nicola Cirillo
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| |
Collapse
|
5
|
Hartoonian S, Hosseini M, Yousefi I, Mahdian M, Ghazizadeh Ahsaie M. Applications of artificial intelligence in dentomaxillofacial imaging: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:641-655. [PMID: 38637235 DOI: 10.1016/j.oooo.2023.12.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 04/20/2024]
Abstract
BACKGROUND Artificial intelligence (AI) technology has been increasingly developed in oral and maxillofacial imaging. The aim of this systematic review was to assess the applications and performance of the developed algorithms in different dentomaxillofacial imaging modalities. STUDY DESIGN A systematic search of PubMed and Scopus databases was performed. The search strategy was set as a combination of the following keywords: "Artificial Intelligence," "Machine Learning," "Deep Learning," "Neural Networks," "Head and Neck Imaging," and "Maxillofacial Imaging." Full-text screening and data extraction were independently conducted by two independent reviewers; any mismatch was resolved by discussion. The risk of bias was assessed by one reviewer and validated by another. RESULTS The search returned a total of 3,392 articles. After careful evaluation of the titles, abstracts, and full texts, a total number of 194 articles were included. Most studies focused on AI applications for tooth and implant classification and identification, 3-dimensional cephalometric landmark detection, lesion detection (periapical, jaws, and bone), and osteoporosis detection. CONCLUSION Despite the AI models' limitations, they showed promising results. Further studies are needed to explore specific applications and real-world scenarios before confidently integrating these models into dental practice.
Collapse
Affiliation(s)
- Serlie Hartoonian
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matine Hosseini
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Yousefi
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Mahdian
- Department of Prosthodontics and Digital Technology, Stony Brook University School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Mitra Ghazizadeh Ahsaie
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Koç O, Meral SE, Tosun E, Tüz HH. Comprehensive analysis of alar base inclination and lip line cant following orthognathic correction of maxillomandibular asymmetry: A retrospective study. J Craniomaxillofac Surg 2024; 52:1293-1298. [PMID: 39232861 DOI: 10.1016/j.jcms.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
This paper examines the relationship between roll rotation of the jaws and changes in alar base or lip line asymmetry in the coronal plane following orthognathic correction. The study involved patients with preoperative frontal alar base and lip line asymmetries greater than 0.5° (because it corresponds to the minimum asymmetry perception threshold) and underwent bimaxillary orthognathic surgery without (Group I) or with (Group II) genioplasty. The alar base angle (ABA), lip line cant angle (LLCA), maxillary cant angle (MxCA), and mandibular cant angle (MnCA) were measured using preoperative and 12 months postoperative cone beam computed tomography (CBCT) images. Thirty-four patients were included in the study. Significant correlations were found between changes in MxCA and ABA besides between changes in MnCA and LCA in Groups I (P = 0.016, P˂0.001, respectively) and II (P = 0.002, P˂0.001, respectively). The mean of the change in ABA/the change in MxCA and the change in LLCA/the change in MnCA ratios for Group I were 0.59 ± 1.57 and 0.73 ± 0.94, respectively, while those for Group II were 0.46 ± 3.70 and 0.39 ± 2.00, respectively. Angular measurements from jugular and mental foramina points, aligned with the bony midline, offer a convenient tool for predicting alar base and lip symmetry during bimaxillary orthognathic surgery planning.
Collapse
Affiliation(s)
- Onur Koç
- Hacettepe University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey.
| | - Salih Eren Meral
- Hacettepe University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey
| | - Emre Tosun
- Hacettepe University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey
| | - Hakan Hıfzı Tüz
- Hacettepe University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey
| |
Collapse
|
7
|
Chang JS, Ma CY, Ko EWC. Prediction of surgery-first approach orthognathic surgery using deep learning models. Int J Oral Maxillofac Surg 2024; 53:942-949. [PMID: 38821731 DOI: 10.1016/j.ijom.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
The surgery-first approach (SFA) orthognathic surgery can be beneficial due to reduced overall treatment time and earlier profile improvement. The objective of this study was to utilize deep learning to predict the treatment modality of SFA or the orthodontics-first approach (OFA) in orthognathic surgery patients and assess its clinical accuracy. A supervised deep learning model using three convolutional neural networks (CNNs) was trained based on lateral cephalograms and occlusal views of 3D dental model scans from 228 skeletal Class III malocclusion patients (114 treated by SFA and 114 by OFA). An ablation study of five groups (lateral cephalogram only, mandible image only, maxilla image only, maxilla and mandible images, and all data combined) was conducted to assess the influence of each input type. The results showed the average validation accuracy, precision, recall, F1 score, and AUROC for the five folds were 0.978, 0.980, 0.980, 0.980, and 0.998 ; the average testing results for the five folds were 0.906, 0.986, 0.828, 0.892, and 0.952. The lateral cephalogram only group had the least accuracy, while the maxilla image only group had the best accuracy. Deep learning provides a novel method for an accelerated workflow, automated assisted decision-making, and personalized treatment planning.
Collapse
Affiliation(s)
- J-S Chang
- Graduate Institute of Dental and Craniofacial Science, Chang Gung University, Taoyuan, Taiwan; Department of Craniofacial Orthodontics, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - C-Y Ma
- Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan; Artificial Intelligence Research Center, Chang Gung University, Taoyuan, Taiwan; Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - E W-C Ko
- Graduate Institute of Dental and Craniofacial Science, Chang Gung University, Taoyuan, Taiwan; Department of Craniofacial Orthodontics, Chang Gung Memorial Hospital, Taipei, Taiwan; Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
8
|
Sankar H, Alagarsamy R, Lal B, Rana SS, Roychoudhury A, Agrawal A, Wankhar S. Role of artificial intelligence in treatment planning and outcome prediction of jaw corrective surgeries by using 3-D imaging-a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 2024:S2212-4403(24)00507-8. [PMID: 39701860 DOI: 10.1016/j.oooo.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Artificial intelligence (AI) has been increasingly utilized in diagnosis of skeletal deformities, while its role in treatment planning and outcome prediction of jaw corrective surgeries with 3-dimensional (3D) imaging remains underexplored. METHODS The comprehensive search was done in PubMed, Google scholar, Semantic scholar and Cochrane Library between January 2000 and May 2024. Inclusion criteria encompassed studies on AI applications in treatment planning and outcome prediction for jaw corrective surgeries using 3D imaging. Data extracted included study details, AI algorithms, and performance metrics. Modified PROBAST tool was used to assess the risk of bias (ROB). RESULTS Fourteen studies were included. 11 studies used deep learning algorithms, and 3 employed machine learning on CT data. In treatment planning the prediction error was 0.292 to 3.32 mm (N = 5), and Dice score was 92.24 to 96% (N = 2). Accuracy of outcome predictions varied from 85.7% to 99.98% (N = 2). ROB was low in most of the included studies. A meta-analysis was not conducted due to significant heterogeneity and insufficient data reporting in the included studies. CONCLUSION 3D imaging-based AI models in treatment planning and outcome prediction for jaw corrective surgeries show promise but remain at proof-of-concept. Further, prospective multicentric studies are needed to validate these findings.
Collapse
Affiliation(s)
- Hariram Sankar
- Department of Dentistry, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Ragavi Alagarsamy
- Department of Burns, Plastic and Maxillofacial Surgery, VMMC and Safdarjung hospital, New Delhi, India
| | - Babu Lal
- Department of Trauma and Emergency Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India.
| | - Shailendra Singh Rana
- Department of Dentistry, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Ajoy Roychoudhury
- Department of Oral & Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Syrpailyne Wankhar
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
9
|
Dong F, Yan J, Zhang X, Zhang Y, Liu D, Pan X, Xue L, Liu Y. Artificial intelligence-based predictive model for guidance on treatment strategy selection in oral and maxillofacial surgery. Heliyon 2024; 10:e35742. [PMID: 39170321 PMCID: PMC11336844 DOI: 10.1016/j.heliyon.2024.e35742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Application of deep learning (DL) and machine learning (ML) is rapidly increasing in the medical field. DL is gaining significance for medical image analysis, particularly, in oral and maxillofacial surgeries. Owing to the ability to accurately identify and categorize both diseased and normal soft- and hard-tissue structures, DL has high application potential in the diagnosis and treatment of tumors and in orthognathic surgeries. Moreover, DL and ML can be used to develop prediction models that can aid surgeons to assess prognosis by analyzing the patient's medical history, imaging data, and surgical records, develop more effective treatment strategies, select appropriate surgical modalities, and evaluate the risk of postoperative complications. Such prediction models can play a crucial role in the selection of treatment strategies for oral and maxillofacial surgeries. Their practical application can improve the utilization of medical staff, increase the treatment accuracy and efficiency, reduce surgical risks, and provide an enhanced treatment experience to patients. However, DL and ML face limitations, such as data drift, unstable model results, and vulnerable social trust. With the advancement of social concepts and technologies, the use of these models in oral and maxillofacial surgery is anticipated to become more comprehensive and extensive.
Collapse
Affiliation(s)
- Fanqiao Dong
- School of Stomatology, China Medical University, Shenyang, China
| | - Jingjing Yan
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiyue Zhang
- School of Stomatology, China Medical University, Shenyang, China
| | - Yikun Zhang
- School of Stomatology, China Medical University, Shenyang, China
| | - Di Liu
- School of Stomatology, China Medical University, Shenyang, China
| | - Xiyun Pan
- School of Stomatology, China Medical University, Shenyang, China
| | - Lei Xue
- School of Stomatology, China Medical University, Shenyang, China
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yu Liu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
Salazar D, Rossouw PE, Javed F, Michelogiannakis D. Artificial intelligence for treatment planning and soft tissue outcome prediction of orthognathic treatment: A systematic review. J Orthod 2024; 51:107-119. [PMID: 37772513 DOI: 10.1177/14653125231203743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
BACKGROUND The accuracy of artificial intelligence (AI) in treatment planning and outcome prediction in orthognathic treatment (OGT) has not been systematically reviewed. OBJECTIVES To determine the accuracy of AI in treatment planning and soft tissue outcome prediction in OGT. DESIGN Systematic review. DATA SOURCES Unrestricted search of indexed databases and reference lists of included studies. DATA SELECTION Clinical studies that addressed the focused question 'Is AI useful for treatment planning and soft tissue outcome prediction in OGT?' were included. DATA EXTRACTION Study screening, selection and data extraction were performed independently by two authors. The risk of bias (RoB) was assessed using the Cochrane Collaboration's RoB and ROBINS-I tools for randomised and non-randomised clinical studies, respectively. DATA SYNTHESIS Eight clinical studies (seven retrospective cohort studies and one randomised controlled study) were included. Four studies assessed the role of AI for treatment decision making; and four studies assessed the accuracy of AI in soft tissue outcome prediction after OGT. In four studies, the level of agreement between AI and non-AI decision making was found to be clinically acceptable (at least 90%). In four studies, it was shown that AI can be used for soft tissue outcome prediction after OGT; however, predictions were not clinically acceptable for the lip and chin areas. All studies had a low to moderate RoB. LIMITATIONS Due to high methodological inconsistencies among the included studies, it was not possible to conduct a meta-analysis and reporting biases assessment. CONCLUSION AI can be a useful aid to traditional treatment planning by facilitating clinical treatment decision making and providing a visualisation tool for soft tissue outcome prediction in OGT. REGISTRATION PROSPERO CRD42022366864.
Collapse
Affiliation(s)
- Daisy Salazar
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Paul Emile Rossouw
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Fawad Javed
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Dimitrios Michelogiannakis
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| |
Collapse
|
11
|
Olejnik A, Verstraete L, Croonenborghs TM, Politis C, Swennen GRJ. The Accuracy of Three-Dimensional Soft Tissue Simulation in Orthognathic Surgery-A Systematic Review. J Imaging 2024; 10:119. [PMID: 38786573 PMCID: PMC11122049 DOI: 10.3390/jimaging10050119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Three-dimensional soft tissue simulation has become a popular tool in the process of virtual orthognathic surgery planning and patient-surgeon communication. To apply 3D soft tissue simulation software in routine clinical practice, both qualitative and quantitative validation of its accuracy are required. The objective of this study was to systematically review the literature on the accuracy of 3D soft tissue simulation in orthognathic surgery. The Web of Science, PubMed, Cochrane, and Embase databases were consulted for the literature search. The systematic review (SR) was conducted according to the PRISMA statement, and 40 articles fulfilled the inclusion and exclusion criteria. The Quadas-2 tool was used for the risk of bias assessment for selected studies. A mean error varying from 0.27 mm to 2.9 mm for 3D soft tissue simulations for the whole face was reported. In the studies evaluating 3D soft tissue simulation accuracy after a Le Fort I osteotomy only, the upper lip and paranasal regions were reported to have the largest error, while after an isolated bilateral sagittal split osteotomy, the largest error was reported for the lower lip and chin regions. In the studies evaluating simulation after bimaxillary osteotomy with or without genioplasty, the highest inaccuracy was reported at the level of the lips, predominantly the lower lip, chin, and, sometimes, the paranasal regions. Due to the variability in the study designs and analysis methods, a direct comparison was not possible. Therefore, based on the results of this SR, guidelines to systematize the workflow for evaluating the accuracy of 3D soft tissue simulations in orthognathic surgery in future studies are proposed.
Collapse
Affiliation(s)
- Anna Olejnik
- Division of Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan, Ruddershove 10, 8000 Bruges, Belgium
- Maxillofacial Surgery Unit, Department of Head and Neck Surgery, Craniomaxillofacial Center for Children and Young Adults, Regional Specialized Children’s Hospital, ul. Zolnierska 18A, 10-561 Olsztyn, Poland
| | - Laurence Verstraete
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tomas-Marijn Croonenborghs
- Division of Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan, Ruddershove 10, 8000 Bruges, Belgium
| | - Constantinus Politis
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Gwen R. J. Swennen
- Division of Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan, Ruddershove 10, 8000 Bruges, Belgium
| |
Collapse
|
12
|
Fang X, Kim D, Xu X, Kuang T, Lampen N, Lee J, Deng HH, Liebschner MAK, Xia JJ, Gateno J, Yan P. Correspondence attention for facial appearance simulation. Med Image Anal 2024; 93:103094. [PMID: 38306802 PMCID: PMC11265218 DOI: 10.1016/j.media.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/02/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
In orthognathic surgical planning for patients with jaw deformities, it is crucial to accurately simulate the changes in facial appearance that follow the bony movement. Compared with the traditional biomechanics-based methods like the finite-element method (FEM), which are both labor-intensive and computationally inefficient, deep learning-based methods offer an efficient and robust modeling alternative. However, current methods do not account for the physical relationship between facial soft tissue and bony structure, causing them to fall short in accuracy compared to FEM. In this work, we propose an Attentive Correspondence assisted Movement Transformation network (ACMT-Net) to predict facial changes by correlating facial soft tissue changes with bony movement through a point-to-point attentive correspondence matrix. To ensure efficient training, we also introduce a contrastive loss for self-supervised pre-training of the ACMT-Net with a k-Nearest Neighbors (k-NN) based clustering. Experimental results on patients with jaw deformities show that our proposed solution can achieve significantly improved computational efficiency over the state-of-the-art FEM-based method with comparable facial change prediction accuracy.
Collapse
Affiliation(s)
- Xi Fang
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Daeseung Kim
- Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xuanang Xu
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Tianshu Kuang
- Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Nathan Lampen
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jungwook Lee
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hannah H Deng
- Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - James J Xia
- Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Medical College, Cornell University, New York, NY, 10021, USA
| | - Jaime Gateno
- Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Medical College, Cornell University, New York, NY, 10021, USA.
| | - Pingkun Yan
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
13
|
Zhou G, Zhang Y, Zhao J, Tian L, Jia G, Ma Q. A rapid identification method for soft tissue markers of dentofacial deformities based on heatmap regression. BDJ Open 2024; 10:14. [PMID: 38429260 PMCID: PMC10907697 DOI: 10.1038/s41405-024-00189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVE The purpose of this study was to construct a facial deformity dataset and a network model based on heatmap regression for the recognition of facial soft tissue landmarks to provide a basis for clinicians to perform cephalometric analysis of soft tissue. MATERIALS AND METHODS A 34-point face marker detection model, the Back High-Resolution Network (BHR-Net), was constructed based on the heatmap regression algorithm, and a custom dataset of 1780 facial detection images for orthognathic surgery was collected. The mean normalized error (MNE) and 10% failure rate (FR10%) were used to evaluate the performance of BHR-Net, and a test set of 50 patients was used to verify the accuracy of the landmarks and their measurement indicators. The test results were subsequently validated in 30 patients. RESULTS Both the MNE and FR10% of BHR-Net were optimal compared with other models. In the test set (50 patients), the accuracy of the markers excluding the nose root was 86%, and the accuracy of the remaining markers reached 94%. In the model validation (30 patients), using the markers detected by BHR-Net, the diagnostic accuracy of doctors was 100% for Class II and III deformities, 100% for the oral angle plane, and 70% for maxillofacial asymmetric deformities. CONCLUSIONS BHR-Net, a network model based on heatmap regression, can be used to effectively identify landmarks in maxillofacial multipose images, providing a reliable way for clinicians to perform cephalometric measurements of soft tissue objectively and quickly.
Collapse
Affiliation(s)
- Guilong Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Clinical Research Centre for Oral Diseases, Department of Orthognathic Trauma Surgery, The Third Affiliated Hospital of Air Force Medical University, 710032, Xi'an, China
- Hospital 987, Joint Logistics Support Force, 721000, Baoji, China
| | - Yu Zhang
- School of Computer Science and Technology, Xidian University, 710071, Xi'an, China
| | - Jinlong Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Clinical Research Centre for Oral Diseases, Department of Orthognathic Trauma Surgery, The Third Affiliated Hospital of Air Force Medical University, 710032, Xi'an, China
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Clinical Research Centre for Oral Diseases, Department of Orthognathic Trauma Surgery, The Third Affiliated Hospital of Air Force Medical University, 710032, Xi'an, China.
- Oral Biomechanics Basic and Clinical Research Innovation Team, 710032, Xi'an, China.
| | - Guang Jia
- School of Computer Science and Technology, Xidian University, 710071, Xi'an, China.
| | - Qin Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Clinical Research Centre for Oral Diseases, Department of Orthognathic Trauma Surgery, The Third Affiliated Hospital of Air Force Medical University, 710032, Xi'an, China.
| |
Collapse
|
14
|
Ritschl LM, Classen C, Kilbertus P, Eufinger J, Storck K, Fichter AM, Wolff KD, Grill FD. Comparison of three-dimensional imaging of the nose using three different 3D-photography systems: an observational study. Head Face Med 2024; 20:7. [PMID: 38267982 PMCID: PMC10807178 DOI: 10.1186/s13005-024-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND New 3D technologies for superficial soft tissue changes, especially in plastic and reconstructive surgical procedures, can improve the planning and documentation of facial surgeries. The purpose of this study was to compare and determine the applicability and feasibility of three different 3D-photography systems in clinical practice imaging the nose. METHODS A total of 16 healthy non-operated noses were included in this prospective study. A plaster model of each nose was produced, digitized, and converted to a .stl mesh (= ground truth model). Three-dimensional images of each nose were then taken using Artec Space Spider (gold standard), Planmeca ProFace®, and the Bellus3D Dental Pro application. All resulting .stl files were aligned to the ground truth model using MeshLab software, and the root mean square error (RMSE), mean surface distance (MSD), and Hausdorff distance (HD) were calculated. RESULTS The Artec Space Spider 3D-photography system showed significantly better results compared to the two other systems in regard to RMSE, MSD, and HD (each p < 0.001). There was no significant difference between Planmeca ProFace® and Bellus3D Dental Pro in terms of RMSE, MSD, and HD. Overall, all three camera systems showed a clinically acceptable deviation to the reference model (range: -1.23-1.57 mm). CONCLUSIONS The three evaluated 3D-photography systems were suitable for nose imaging in the clinical routine. While Artec Space Spider showed the highest accuracy, the Bellus3D Dental Pro app may be the most feasible option for everyday clinical use due to its portability, ease of use, and low cost. This study presents three different systems, allowing readers to extrapolate to other systems when planning to introduce 3D photography in the clinical routine.
Collapse
Affiliation(s)
- Lucas M Ritschl
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Carolina Classen
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany.
- Department of Oral and Maxillofacial Surgery, Saarland University Medical Centre, 66421, Homburg, Germany.
| | - Paul Kilbertus
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Julia Eufinger
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Katharina Storck
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Andreas M Fichter
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Florian D Grill
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
- Private Practice Oral and Maxillofacial Surgery, Wolfratshausen, Germany
| |
Collapse
|
15
|
Atiyeh B, Emsieh S, Hakim C, Chalhoub R. A Narrative Review of Artificial Intelligence (AI) for Objective Assessment of Aesthetic Endpoints in Plastic Surgery. Aesthetic Plast Surg 2023; 47:2862-2873. [PMID: 37000298 DOI: 10.1007/s00266-023-03328-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Notoriously characterized by subjectivity and lack of solid scientific validation, reporting aesthetic outcome in plastic surgery is usually based on ill-defined end points and subjective measures very often from the patients' and/or providers' perspective. With the tremendous increase in demand for all types of aesthetic procedures, there is an urgent need for better understanding of aesthetics and beauty in addition to reliable and objective outcome measures to quantitate what is perceived as beautiful and attractive. In an era of evidence-based medicine, recognition of the importance of science with evidence-based approach to aesthetic surgery is long overdue. View the many limitations of conventional outcome evaluation tools of aesthetic interventions, objective outcome analysis provided by tools described to be reliable is being investigated such as advanced artificial intelligence (AI). The current review is intended to analyze available evidence regarding advantages as well as limitations of this technology in objectively documenting outcome of aesthetic interventions. It has shown that some AI applications such as facial emotions recognition systems are capable of objectively measuring and quantitating patients' reported outcomes and defining aesthetic interventions success from the patients' perspective. Though not reported yet, observers' satisfaction with the results and their appreciation of aesthetic attributes may also be measured in the same manner.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Bishara Atiyeh
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Saif Emsieh
- American University of Beirut Medical Center, Beirut, Lebanon.
| | | | - Rawad Chalhoub
- American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
16
|
Hagen N, Weichel F, Kühle R, Knaup P, Freudlsperger C, Eisenmann U. Automated calculation of ontology-based planning proposals: An application in reconstructive oral and maxillofacial surgery. Int J Med Robot 2023; 19:e2545. [PMID: 37395309 DOI: 10.1002/rcs.2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Structured modelling of surgical knowledge and its automated processing is still challenging. The aim of this work is to introduce a novel approach for automated calculation of ontology-based planning proposals in mandibular reconstruction and conduct a feasibility study. METHODS The presented approach is composed of an RDF(S) ontology, a 3D mandible template and a calculator-optimiser algorithm to automatically calculate reconstruction proposals with fibula grafts. To validate the viability of the approach, a feasibility study was conducted on 164 simulated mandibular reconstructions. RESULTS The ontology defines 244 different reconstruction variants and 80 analyses for optimization. In 146 simulated cases, a proposal could be automatically calculated (average time 8.79 ± 4.03 s). The assessments of the proposals by three clinical experts indicate the viability of the approach. CONCLUSIONS Due to the modular separation between computational logic and domain knowledge, the developed concepts can be easily maintained, reused and adapted for other applications.
Collapse
Affiliation(s)
- Niclas Hagen
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Frederic Weichel
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Reinald Kühle
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Petra Knaup
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Freudlsperger
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Urs Eisenmann
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
17
|
Ruggiero F, Borghi A, Bevini M, Badiali G, Lunari O, Dunaway D, Marchetti C. Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details. PLoS One 2023; 18:e0294640. [PMID: 38011187 PMCID: PMC10681161 DOI: 10.1371/journal.pone.0294640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Three-dimensional virtual simulation of orthognathic surgery is now a well-established method in maxillo-facial surgery. The commercial software packages are still burdened by a consistent imprecision on soft tissue predictions. In this study, the authors produced an anatomically detailed patient specific numerical model for simulation of soft tissue changes in orthognathic surgery. Eight patients were prospectively enrolled. Each patient underwent CBCT and planar x-rays prior to surgery and in addition received an MRI scan. Postoperative soft-tissue change was simulated using Finite Element Modeling (FEM) relying on a patient-specific 3D models generated combining data from preoperative CBCT (hard tissue) scans and MRI scans (muscles and skin). An initial simulation was performed assuming that all the muscles and the other soft tissue had the same material properties (Homogeneous Model). This model was compared with the postoperative CBCT 3D simulation for validation purpose. Design of experiments (DoE) was used to assess the effect of the presence of the muscles considered and of their variation in stiffness. The effect of single muscles was evaluated in specific areas of the midface. The quantitative distance error between the homogeneous model and actual patient surfaces for the midface area was 0.55 mm, standard deviation 2.9 mm. In our experience, including muscles in the numerical simulation of orthognathic surgery, brought an improvement in the quality of the simulation obtained.
Collapse
Affiliation(s)
| | - Alessandro Borghi
- Department of Engineering, Durham University, Durham, United Kingdom
| | - Mirko Bevini
- Oral and Maxillofacial Surgery Unit, IRCCS AOU di Bologna, Bologna, Italy
| | - Giovanni Badiali
- DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Oral and Maxillofacial Surgery Unit, IRCCS AOU di Bologna, Bologna, Italy
| | - Ottavia Lunari
- Oral and Maxillofacial Surgery Unit, IRCCS AOU di Bologna, Bologna, Italy
| | - David Dunaway
- Craniofacial Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Claudio Marchetti
- DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Oral and Maxillofacial Surgery Unit, IRCCS AOU di Bologna, Bologna, Italy
| |
Collapse
|
18
|
Morita D, Kawarazaki A, Koimizu J, Tsujiko S, Soufi M, Otake Y, Sato Y, Numajiri T. Automatic orbital segmentation using deep learning-based 2D U-net and accuracy evaluation: A retrospective study. J Craniomaxillofac Surg 2023; 51:609-613. [PMID: 37813770 DOI: 10.1016/j.jcms.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/25/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
The purpose of this study was to verify whether the accuracy of automatic segmentation (AS) of computed tomography (CT) images of fractured orbits using deep learning (DL) is sufficient for clinical application. In the surgery of orbital fractures, many methods have been reported to create a 3D anatomical model for use as a reference. However, because the orbit bone is thin and complex, creating a segmentation model for 3D printing is complicated and time-consuming. Here, the training of DL was performed using U-Net as the DL model, and the AS output was validated with Dice coefficients and average symmetry surface distance (ASSD). In addition, the AS output was 3D printed and evaluated for accuracy by four surgeons, each with over 15 years of clinical experience. One hundred twenty-five CT images were prepared, and manual orbital segmentation was performed in all cases. Ten orbital fracture cases were randomly selected as validation data, and the remaining 115 were set as training data. AS was successful in all cases, with good accuracy: Dice, 0.860 ± 0.033 (mean ± SD); ASSD, 0.713 ± 0.212 mm. In evaluating AS accuracy, the expert surgeons generally considered that it could be used for surgical support without further modification. The orbital AS algorithm developed using DL in this study is extremely accurate and can create 3D models rapidly at low cost, potentially enabling safer and more accurate surgeries.
Collapse
Affiliation(s)
- Daiki Morita
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Ayako Kawarazaki
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jungen Koimizu
- Department of Plastic and Reconstructive Surgery, Omihachiman Community Medical Center, Shiga, Japan
| | - Shoko Tsujiko
- Department of Plastic and Reconstructive Surgery, Saiseikai Shigaken Hospital, Shiga, Japan
| | - Mazen Soufi
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Yoshito Otake
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Yoshinobu Sato
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Toshiaki Numajiri
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Bonny T, Al Nassan W, Obaideen K, Al Mallahi MN, Mohammad Y, El-damanhoury HM. Contemporary Role and Applications of Artificial Intelligence in Dentistry. F1000Res 2023; 12:1179. [PMID: 37942018 PMCID: PMC10630586 DOI: 10.12688/f1000research.140204.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 11/10/2023] Open
Abstract
Artificial Intelligence (AI) technologies play a significant role and significantly impact various sectors, including healthcare, engineering, sciences, and smart cities. AI has the potential to improve the quality of patient care and treatment outcomes while minimizing the risk of human error. Artificial Intelligence (AI) is transforming the dental industry, just like it is revolutionizing other sectors. It is used in dentistry to diagnose dental diseases and provide treatment recommendations. Dental professionals are increasingly relying on AI technology to assist in diagnosis, clinical decision-making, treatment planning, and prognosis prediction across ten dental specialties. One of the most significant advantages of AI in dentistry is its ability to analyze vast amounts of data quickly and accurately, providing dental professionals with valuable insights to enhance their decision-making processes. The purpose of this paper is to identify the advancement of artificial intelligence algorithms that have been frequently used in dentistry and assess how well they perform in terms of diagnosis, clinical decision-making, treatment, and prognosis prediction in ten dental specialties; dental public health, endodontics, oral and maxillofacial surgery, oral medicine and pathology, oral & maxillofacial radiology, orthodontics and dentofacial orthopedics, pediatric dentistry, periodontics, prosthodontics, and digital dentistry in general. We will also show the pros and cons of using AI in all dental specialties in different ways. Finally, we will present the limitations of using AI in dentistry, which made it incapable of replacing dental personnel, and dentists, who should consider AI a complimentary benefit and not a threat.
Collapse
Affiliation(s)
- Talal Bonny
- Department of Computer Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wafaa Al Nassan
- Department of Computer Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Khaled Obaideen
- Sustainable Energy and Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Maryam Nooman Al Mallahi
- Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain City, Abu Dhabi, 27272, United Arab Emirates
| | - Yara Mohammad
- College of Engineering and Information Technology, Ajman University, Ajman University, Ajman, Ajman, United Arab Emirates
| | - Hatem M. El-damanhoury
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
20
|
Vinayahalingam S, Kempers S, Schoep J, Hsu TMH, Moin DA, van Ginneken B, Flügge T, Hanisch M, Xi T. Intra-oral scan segmentation using deep learning. BMC Oral Health 2023; 23:643. [PMID: 37670290 PMCID: PMC10481506 DOI: 10.1186/s12903-023-03362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023] Open
Abstract
OBJECTIVE Intra-oral scans and gypsum cast scans (OS) are widely used in orthodontics, prosthetics, implantology, and orthognathic surgery to plan patient-specific treatments, which require teeth segmentations with high accuracy and resolution. Manual teeth segmentation, the gold standard up until now, is time-consuming, tedious, and observer-dependent. This study aims to develop an automated teeth segmentation and labeling system using deep learning. MATERIAL AND METHODS As a reference, 1750 OS were manually segmented and labeled. A deep-learning approach based on PointCNN and 3D U-net in combination with a rule-based heuristic algorithm and a combinatorial search algorithm was trained and validated on 1400 OS. Subsequently, the trained algorithm was applied to a test set consisting of 350 OS. The intersection over union (IoU), as a measure of accuracy, was calculated to quantify the degree of similarity between the annotated ground truth and the model predictions. RESULTS The model achieved accurate teeth segmentations with a mean IoU score of 0.915. The FDI labels of the teeth were predicted with a mean accuracy of 0.894. The optical inspection showed excellent position agreements between the automatically and manually segmented teeth components. Minor flaws were mostly seen at the edges. CONCLUSION The proposed method forms a promising foundation for time-effective and observer-independent teeth segmentation and labeling on intra-oral scans. CLINICAL SIGNIFICANCE Deep learning may assist clinicians in virtual treatment planning in orthodontics, prosthetics, implantology, and orthognathic surgery. The impact of using such models in clinical practice should be explored.
Collapse
Affiliation(s)
- Shankeeth Vinayahalingam
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Department of Artificial Intelligence, Radboud University, Nijmegen, the Netherlands
- Department of Oral and Maxillofacial Surgery, Universitätsklinikum Münster, Münster, Germany
| | - Steven Kempers
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Department of Artificial Intelligence, Radboud University, Nijmegen, the Netherlands
| | - Julian Schoep
- Promaton Co. Ltd, 1076 GR, Amsterdam, The Netherlands
| | - Tzu-Ming Harry Hsu
- MIT Computer Science & Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA, 02139, USA
| | | | - Bram van Ginneken
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Tabea Flügge
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Department of Oral and Maxillofacial Surgery, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Marcel Hanisch
- Department of Oral and Maxillofacial Surgery, Universitätsklinikum Münster, Münster, Germany
- Promaton Co. Ltd, 1076 GR, Amsterdam, The Netherlands
| | - Tong Xi
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
21
|
Zhu J, Yang Y, Wong HM. Development and accuracy of artificial intelligence-generated prediction of facial changes in orthodontic treatment: a scoping review. J Zhejiang Univ Sci B 2023; 24:974-984. [PMID: 37961800 PMCID: PMC10646392 DOI: 10.1631/jzus.b2300244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/07/2023] [Indexed: 08/08/2023]
Abstract
Artificial intelligence (AI) has been utilized in soft-tissue analysis and prediction in orthodontic treatment planning, although its reliability has not been systematically assessed. This scoping review was conducted to outline the development of AI in terms of predicting soft-tissue changes after orthodontic treatment, as well as to comprehensively evaluate its prediction accuracy. Six electronic databases (PubMed, EBSCOhost, Web of Science, Embase, Cochrane Library, and Scopus) were searched up to March 14, 2023. Clinical studies investigating the performance of AI-based systems in predicting post-orthodontic soft-tissue alterations were included. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Joanna Briggs Institute (JBI) appraisal checklist for diagnostic test accuracy studies were applied to assess risk of bias, while the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) assessment was conducted to evaluate the certainty of outcomes. After screening 2500 studies, four non-randomized clinical trials were finally included for full-text evaluation. We found a low level of evidence indicating an estimated high overall accuracy of AI-generated prediction, whereas the lower lip and chin seemed to be the least predictable regions. Furthermore, the facial morphology simulated by AI via the fusion of multimodality images was considered to be reasonably true. Since all of the included studies that were not randomized clinical trials (non-RCTs) showed a moderate to high risk of bias, more well-designed clinical trials with sufficient sample size are needed in future work.
Collapse
Affiliation(s)
- Jiajun Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yuxin Yang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Synergy between artificial intelligence and precision medicine for computer-assisted oral and maxillofacial surgical planning. Clin Oral Investig 2023; 27:897-906. [PMID: 36323803 DOI: 10.1007/s00784-022-04706-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The aim of this review was to investigate the application of artificial intelligence (AI) in maxillofacial computer-assisted surgical planning (CASP) workflows with the discussion of limitations and possible future directions. MATERIALS AND METHODS An in-depth search of the literature was undertaken to review articles concerned with the application of AI for segmentation, multimodal image registration, virtual surgical planning (VSP), and three-dimensional (3D) printing steps of the maxillofacial CASP workflows. RESULTS The existing AI models were trained to address individual steps of CASP, and no single intelligent workflow was found encompassing all steps of the planning process. Segmentation of dentomaxillofacial tissue from computed tomography (CT)/cone-beam CT imaging was the most commonly explored area which could be applicable in a clinical setting. Nevertheless, a lack of generalizability was the main issue, as the majority of models were trained with the data derived from a single device and imaging protocol which might not offer similar performance when considering other devices. In relation to registration, VSP and 3D printing, the presence of inadequate heterogeneous data limits the automatization of these tasks. CONCLUSION The synergy between AI and CASP workflows has the potential to improve the planning precision and efficacy. However, there is a need for future studies with big data before the emergent technology finds application in a real clinical setting. CLINICAL RELEVANCE The implementation of AI models in maxillofacial CASP workflows could minimize a surgeon's workload and increase efficiency and consistency of the planning process, meanwhile enhancing the patient-specific predictability.
Collapse
|
23
|
Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review. Oral Radiol 2023; 39:18-40. [PMID: 36269515 DOI: 10.1007/s11282-022-00660-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 01/05/2023]
Abstract
This study aimed at performing a systematic review of the literature on the application of artificial intelligence (AI) in dental and maxillofacial cone beam computed tomography (CBCT) and providing comprehensive descriptions of current technical innovations to assist future researchers and dental professionals. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA) Statement was followed. The study's protocol was prospectively registered. Following databases were searched, based on MeSH and Emtree terms: PubMed/MEDLINE, Embase and Web of Science. The search strategy enrolled 1473 articles. 59 publications were included, which assessed the use of AI on CBCT images in dentistry. According to the PROBAST guidelines for study design, seven papers reported only external validation and 11 reported both model building and validation on an external dataset. 40 studies focused exclusively on model development. The AI models employed mainly used deep learning models (42 studies), while other 17 papers used conventional approaches, such as statistical-shape and active shape models, and traditional machine learning methods, such as thresholding-based methods, support vector machines, k-nearest neighbors, decision trees, and random forests. Supervised or semi-supervised learning was utilized in the majority (96.62%) of studies, and unsupervised learning was used in two (3.38%). 52 publications included studies had a high risk of bias (ROB), two papers had a low ROB, and four papers had an unclear rating. Applications based on AI have the potential to improve oral healthcare quality, promote personalized, predictive, preventative, and participatory dentistry, and expedite dental procedures.
Collapse
|
24
|
Hung KF, Ai QYH, Wong LM, Yeung AWK, Li DTS, Leung YY. Current Applications of Deep Learning and Radiomics on CT and CBCT for Maxillofacial Diseases. Diagnostics (Basel) 2022; 13:110. [PMID: 36611402 PMCID: PMC9818323 DOI: 10.3390/diagnostics13010110] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The increasing use of computed tomography (CT) and cone beam computed tomography (CBCT) in oral and maxillofacial imaging has driven the development of deep learning and radiomics applications to assist clinicians in early diagnosis, accurate prognosis prediction, and efficient treatment planning of maxillofacial diseases. This narrative review aimed to provide an up-to-date overview of the current applications of deep learning and radiomics on CT and CBCT for the diagnosis and management of maxillofacial diseases. Based on current evidence, a wide range of deep learning models on CT/CBCT images have been developed for automatic diagnosis, segmentation, and classification of jaw cysts and tumors, cervical lymph node metastasis, salivary gland diseases, temporomandibular (TMJ) disorders, maxillary sinus pathologies, mandibular fractures, and dentomaxillofacial deformities, while CT-/CBCT-derived radiomics applications mainly focused on occult lymph node metastasis in patients with oral cancer, malignant salivary gland tumors, and TMJ osteoarthritis. Most of these models showed high performance, and some of them even outperformed human experts. The models with performance on par with human experts have the potential to serve as clinically practicable tools to achieve the earliest possible diagnosis and treatment, leading to a more precise and personalized approach for the management of maxillofacial diseases. Challenges and issues, including the lack of the generalizability and explainability of deep learning models and the uncertainty in the reproducibility and stability of radiomic features, should be overcome to gain the trust of patients, providers, and healthcare organizers for daily clinical use of these models.
Collapse
Affiliation(s)
- Kuo Feng Hung
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qi Yong H. Ai
- Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lun M. Wong
- Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Dion Tik Shun Li
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yiu Yan Leung
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Mohaideen K, Negi A, Verma DK, Kumar N, Sennimalai K, Negi A. Applications of artificial intelligence and machine learning in orthognathic surgery: A scoping review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e962-e972. [PMID: 35803558 DOI: 10.1016/j.jormas.2022.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Over the recent years, Artificial Intelligence (AI) has been progressing rapidly with its ability to mimic human cognitive functions. The potential applications of AI technology in diagnosis, treatment planning, and prognosis prediction have been demonstrated in various studies. The present scoping review aimed to provide an overview of AI and Machine Learning (ML) algorithms and their applications in orthognathic surgery. A comprehensive search was conducted in databases including PubMed, Embase, Scopus, Web of Science and OVID Medline until November 2021. This scoping review was conducted following the PRISMA-ScR guidelines. After applying the inclusion and exclusion criteria, a total of 19 studies were included for final review. AI has profoundly impacted the diagnosis and prediction of orthognathic surgeries with a clinically acceptable accuracy range. Furthermore, AI reduces the work burden of the clinician by eliminating the tedious registration procedures, thereby helping in efficient and automated planning. However, focussing on the research gaps, there is a need to foster the AI models/algorithms to contemporize their efficiency in clinical decision making, diagnosis and surgical planning in future studies.
Collapse
Affiliation(s)
- Kaja Mohaideen
- Department of Dentistry, AIIMS Bilaspur, Himachal Pradesh, India
| | - Anurag Negi
- Department of Dentistry, AIIMS Bilaspur, Himachal Pradesh, India.
| | | | - Neeraj Kumar
- Department of Dentistry, AIIMS Bilaspur, Himachal Pradesh, India
| | | | - Amita Negi
- Medical Officer (Dental) Bilaspur, Himachal Pradesh, India
| |
Collapse
|
26
|
Clinical applications of machine learning in predicting 3D shapes of the human body: a systematic review. BMC Bioinformatics 2022; 23:431. [PMID: 36253726 PMCID: PMC9575250 DOI: 10.1186/s12859-022-04979-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Predicting morphological changes to anatomical structures from 3D shapes such as blood vessels or appearance of the face is a growing interest to clinicians. Machine learning (ML) has had great success driving predictions in 2D, however, methods suitable for 3D shapes are unclear and the use cases unknown. OBJECTIVE AND METHODS This systematic review aims to identify the clinical implementation of 3D shape prediction and ML workflows. Ovid-MEDLINE, Embase, Scopus and Web of Science were searched until 28th March 2022. RESULTS 13,754 articles were identified, with 12 studies meeting final inclusion criteria. These studies involved prediction of the face, head, aorta, forearm, and breast, with most aiming to visualize shape changes after surgical interventions. ML algorithms identified were regressions (67%), artificial neural networks (25%), and principal component analysis (8%). Meta-analysis was not feasible due to the heterogeneity of the outcomes. CONCLUSION 3D shape prediction is a nascent but growing area of research in medicine. This review revealed the feasibility of predicting 3D shapes using ML clinically, which could play an important role for clinician-patient visualization and communication. However, all studies were early phase and there were inconsistent language and reporting. Future work could develop guidelines for publication and promote open sharing of source code.
Collapse
|
27
|
Patcas R, Bornstein MM, Schätzle MA, Timofte R. Artificial intelligence in medico-dental diagnostics of the face: a narrative review of opportunities and challenges. Clin Oral Investig 2022; 26:6871-6879. [DOI: 10.1007/s00784-022-04724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Objectives
This review aims to share the current developments of artificial intelligence (AI) solutions in the field of medico-dental diagnostics of the face. The primary focus of this review is to present the applicability of artificial neural networks (ANN) to interpret medical images, together with the associated opportunities, obstacles, and ethico-legal concerns.
Material and methods
Narrative literature review.
Results
Narrative literature review.
Conclusion
Curated facial images are widely available and easily accessible and are as such particularly suitable big data for ANN training. New AI solutions have the potential to change contemporary dentistry by optimizing existing processes and enriching dental care with the introduction of new tools for assessment or treatment planning. The analyses of health-related big data may also contribute to revolutionize personalized medicine through the detection of previously unknown associations. In regard to facial images, advances in medico-dental AI-based diagnostics include software solutions for the detection and classification of pathologies, for rating attractiveness and for the prediction of age or gender. In order for an ANN to be suitable for medical diagnostics of the face, the arising challenges regarding computation and management of the software are discussed, with special emphasis on the use of non-medical big data for ANN training. The legal and ethical ramifications of feeding patients’ facial images to a neural network for diagnostic purposes are related to patient consent, data privacy, data security, liability, and intellectual property. Current ethico-legal regulation practices seem incapable of addressing all concerns and ensuring accountability.
Clinical significance
While this review confirms the many benefits derived from AI solutions used for the diagnosis of medical images, it highlights the evident lack of regulatory oversight, the urgent need to establish licensing protocols, and the imperative to investigate the moral quality of new norms set with the implementation of AI applications in medico-dental diagnostics.
Collapse
|
28
|
A Quantitative and Qualitative Clinical Validation of Soft Tissue Simulation for Orthognathic Surgery Planning. J Pers Med 2022; 12:jpm12091460. [PMID: 36143245 PMCID: PMC9503761 DOI: 10.3390/jpm12091460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to perform a quantitative and qualitative validation of a soft tissue simulation pipeline for orthognathic surgery planning, necessary for clinical use. Simulation results were retrospectively obtained in 10 patients who underwent orthognathic surgery. Quantitatively, error was measured at 9 anatomical landmarks for each patient and different types of comparative analysis were performed considering two mesh resolutions, clinically accepted error, simulation time and error measured by means of percentage of the whole surface. Qualitatively, evaluation and binary questions were asked to two surgeons, both before and after seeing the actual surgical outcome, and their answers were compared. Finally, the quantitative and qualitative results were compared to check if these two types of validation are correlated. The quantitative results were accurate, with greater errors corresponding to gonions and lower lip. Qualitatively, surgeons answered similarly mostly and their evaluations improved when seeing the actual outcome of the surgery. The quantitative validation was not correlated to the qualitative validation. In this study, quantitative and qualitative validations were performed and compared, and the need to carry out both types of analysis in validation studies of soft tissue simulation software for orthognathic surgery planning was proved.
Collapse
|
29
|
Cone-Beam Computed Tomography and the Related Scientific Evidence. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cone-beam computed tomography (CBCT) is the most common three-dimensional (3D) imaging technique used in dentistry [...]
Collapse
|
30
|
Rasteau S, Ernenwein D, Savoldelli C, Bouletreau P. Artificial intelligence for oral and maxillo-facial surgery: A narrative review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:276-282. [PMID: 35091121 DOI: 10.1016/j.jormas.2022.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
Artificial Intelligence (AI) is a set of technologies that simulate human cognition in order to address a specific problem. The improvement in computing speed, the exponential production and the routine collection of data have led to the rapid development of AI in the health sector. In this review, we propose to provide surgeons with the essential technical elements to help them understand the possibilities offered by AI and to review the current applications of AI for oral and maxillofacial surgery (OMFS). The review of the literature reveals a real research boom of AI in all fields in OMFS. The algorithms used are related to machine learning, with a strong representation of the convolutional neural networks specific to deep learning. The complex architecture of these networks gives them the capacity to extract and process the elementary characteristics of an image, and they are therefore particularly used for diagnostic purposes on medical imagery or facial photography. We identified representative articles dealing with AI algorithms providing assistance in diagnosis, therapeutic decision, preoperative planning, or prediction and evaluation of the outcomes. Thanks to their learning, classification, prediction and detection capabilities, AI algorithms complement human skills while limiting their imperfections. However, these algorithms should be subject to rigorous clinical evaluation, and ethical reflection on data protection should be systematically conducted.
Collapse
Affiliation(s)
- Simon Rasteau
- Maxillo-Facial Surgery, Facial Plastic Surgery, Stomatology and Oral Surgery, Hospices Civils de Lyon, Lyon-Sud Hospital - Claude-Bernard Lyon 1 University, 165 Chemin du Grand-Revoyet, Pierre-Bénite 69310, France.
| | - Didier Ernenwein
- Department of Pediatric Oral & Maxillofacial & Plastic Surgery, Children's Hospital Robert-Debré, Paris-Diderot University, Paris, France
| | - Charles Savoldelli
- University Institute of the Face and Neck, Côte d'Azur University, Nice University Hospital, 31 Avenue de Valombrose, Nice 06100, France
| | - Pierre Bouletreau
- Maxillo-Facial Surgery, Facial Plastic Surgery, Stomatology and Oral Surgery, Hospices Civils de Lyon, Lyon-Sud Hospital - Claude-Bernard Lyon 1 University, 165 Chemin du Grand-Revoyet, Pierre-Bénite 69310, France
| |
Collapse
|
31
|
Performance of Artificial Intelligence Models Designed for Diagnosis, Treatment Planning and Predicting Prognosis of Orthognathic Surgery (OGS)—A Scoping Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The technological advancements in the field of medical science have led to an escalation in the development of artificial intelligence (AI) applications, which are being extensively used in health sciences. This scoping review aims to outline the application and performance of artificial intelligence models used for diagnosing, treatment planning and predicting the prognosis of orthognathic surgery (OGS). Data for this paper was searched through renowned electronic databases such as PubMed, Google Scholar, Scopus, Web of science, Embase and Cochrane for articles related to the research topic that have been published between January 2000 and February 2022. Eighteen articles that met the eligibility criteria were critically analyzed based on QUADAS-2 guidelines and the certainty of evidence of the included studies was assessed using the GRADE approach. AI has been applied for predicting the post-operative facial profiles and facial symmetry, deciding on the need for OGS, predicting perioperative blood loss, planning OGS, segmentation of maxillofacial structures for OGS, and differential diagnosis of OGS. AI models have proven to be efficient and have outperformed the conventional methods. These models are reported to be reliable and reproducible, hence they can be very useful for less experienced practitioners in clinical decision making and in achieving better clinical outcomes.
Collapse
|
32
|
Reproducibility of manual transfer of the clinical natural head position: Influence on the soft tissue and hard tissue position of 3D virtual surgical planning. J Oral Maxillofac Surg 2022; 80:1505-1510. [DOI: 10.1016/j.joms.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022]
|
33
|
Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle. Med Biol Eng Comput 2022; 60:1177-1185. [PMID: 35244859 DOI: 10.1007/s11517-022-02541-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
Hyperelastic constitutive laws have been commonly used to model the passive behavior of the human skeletal muscle. Despite many efforts, the use of accurate finite element formulations of hyperelastic constitutive laws is still time-consuming for a real-time medical simulation system. The objective of the present study was to develop a deep learning model to predict the hyperelastic constitutive behaviors of the skeletal muscle toward a fast estimation of the muscle tissue stress.A finite element (FE) model of the right psoas muscle was developed. Neo-Hookean and Mooney-Rivlin laws were used. A tensile test was performed with an applied body force. A learning database was built from this model using an automatic probabilistic generation process. A long-short term memory (LSTM) neural network was implemented to predict the stress evolution of the skeletal muscle tissue. A hyperparameter tuning process was conducted. Root mean square error (RMSE) and associated relative error was quantified to evaluate the precision of the predictive capacity of the developed deep learning model. Pearson correlation coefficients (R) was also computed.The nodal displacements and the maximal stresses range from 70 to 227 mm and from 2.79 to 5.61 MPa for Neo-Hookean and Monney-Rivlin laws, respectively. Regarding the LSTM predictions, the RMSE ranges from 224.3 ± 3.9 Pa (8%) to 227.5 [Formula: see text] 5.7 Pa (4%) for Neo-Hookean and Monney-Rivlin laws, respectively. Pearson correlation coefficients (R) of 0.78 [Formula: see text] 0.02 and 0.77 [Formula: see text] 0.02 were obtained for Neo-Hookean and Monney-Rivlin laws, respectively.The present study showed that, for the first time, the use of a deep learning model can reproduce the time-series behaviors of the complex FE formulations for skeletal muscle modeling. In particular, the use of a LSTM neural network leads to a fast and accurate surrogate model for the in silico prediction of the hyperelastic constitutive behaviors of the skeletal muscle. As perspectives, the developed deep learning model will be integrated into a real-time medical simulation of the skeletal muscle for prosthetic socket design and childbirth simulator.
Collapse
|