1
|
Sharifan H, Bagheri M, Wang D, Burken JG, Higgins CP, Liang Y, Liu J, Schaefer CE, Blotevogel J. Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145427. [PMID: 33736164 DOI: 10.1016/j.scitotenv.2021.145427] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a heterogeneous group of persistent organic pollutants that have been detected in various environmental compartments around the globe. Emerging research has revealed the preferential accumulation of PFASs in shallow soil horizons, particularly at sites impacted by firefighting activities, agricultural applications, and atmospheric deposition. Once in the vadose zone, PFASs can sorb to soil, accumulate at interfaces, become volatilized, be taken up in biota, or leach to the underlying aquifer. At the same time, polyfluorinated precursor species may transform into highly recalcitrant perfluoroalkyl acids, changing their chemical identity and thus transport behavior along the way. In this review, we critically discuss the current state of the knowledge and aim to interconnect the complex processes that control the fate and transport of PFASs in the vadose zone. Furthermore, we identify key challenges and future research needs. Consequently, this review may serve as an interdisciplinary guide for the risk assessment and management of PFAS-contaminated sites.
Collapse
Affiliation(s)
- Hamidreza Sharifan
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Majid Bagheri
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, USA
| | - Dan Wang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Joel G Burken
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | | | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
2
|
Lyu Y, Brusseau ML, Chen W, Yan N, Fu X, Lin X. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7745-7753. [PMID: 29944343 PMCID: PMC6312111 DOI: 10.1021/acs.est.8b02348] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Miscible-displacement experiments are conducted with perfluorooctanoic acid (PFOA) to determine the contribution of adsorption at the air-water interface to retention during transport in water-unsaturated porous media. Column experiments were conducted with two sands of different diameter at different PFOA input concentrations, water saturations, and pore-water velocities to evaluate the impact of system variables on retardation. The breakthrough curves for unsaturated conditions exhibited greater retardation than those obtained for saturated conditions, demonstrating the significant impact of air-water interfacial adsorption on PFOA retention. Retardation was greater for lower water saturations and smaller grain diameter, consistent with the impact of system conditions on the magnitude of air-water interfacial area in porous media. Retardation was greater for lower input concentrations of PFOA for a given water saturation, consistent with the nonlinear nature of surfactant fluid-fluid interfacial adsorption. Retardation factors predicted using independently determined parameter values compared very well to the measured values. The results showed that adsorption at the air-water interface is a significant source of retention for PFOA, contributing approximately 50-75% of total retention, for the test systems. The significant magnitude of air-water interfacial adsorption measured in this work has ramifications for accurate determination of PFAS migration potential in vadose zones.
Collapse
Affiliation(s)
- Ying Lyu
- Soil, Water and Environmental Science Department, Hydrology and Atmospheric Sciences Department, School of Earth and Environmental Sciences , University of Arizona , 429 Shantz Building , Tucson , Arizona 85721 , United States
| | - Mark L Brusseau
- Soil, Water and Environmental Science Department, Hydrology and Atmospheric Sciences Department, School of Earth and Environmental Sciences , University of Arizona , 429 Shantz Building , Tucson , Arizona 85721 , United States
| | - Wei Chen
- Soil, Water and Environmental Science Department, Hydrology and Atmospheric Sciences Department, School of Earth and Environmental Sciences , University of Arizona , 429 Shantz Building , Tucson , Arizona 85721 , United States
| | - Ni Yan
- Soil, Water and Environmental Science Department, Hydrology and Atmospheric Sciences Department, School of Earth and Environmental Sciences , University of Arizona , 429 Shantz Building , Tucson , Arizona 85721 , United States
| | - Xiaori Fu
- Soil, Water and Environmental Science Department, Hydrology and Atmospheric Sciences Department, School of Earth and Environmental Sciences , University of Arizona , 429 Shantz Building , Tucson , Arizona 85721 , United States
| | | |
Collapse
|
3
|
Costanza-Robinson MS, Zheng Z, Henry EJ, Estabrook BD, Littlefield MH. Implications of surfactant-induced flow for miscible-displacement estimation of air-water interfacial areas in unsaturated porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11206-12. [PMID: 23033988 DOI: 10.1021/es303003v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Surfactant miscible-displacement experiments represent a conventional means of estimating air-water interfacial area (A(I)) in unsaturated porous media. However, changes in surface tension during the experiment can potentially induce unsaturated flow, thereby altering interfacial areas and violating several fundamental method assumptions, including that of steady-state flow. In this work, the magnitude of surfactant-induced flow was quantified by monitoring moisture content and perturbations to effluent flow rate during miscible-displacement experiments conducted using a range of surfactant concentrations. For systems initially at 83% moisture saturation (S(W)), decreases of 18-43% S(W) occurred following surfactant introduction, with the magnitude and rate of drainage inversely related to the surface tension of the surfactant solution. Drainage induced by 0.1 mM sodium dodecyl benzene sulfonate, commonly used for A(I) estimation, resulted in effluent flow rate increases of up to 27% above steady-state conditions and is estimated to more than double the interfacial area over the course of the experiment. Depending on the surfactant concentration and the moisture content used to describe the system, A(I) estimates varied more than 3-fold. The magnitude of surfactant-induced flow is considerably larger than previously recognized and casts doubt on the reliability of A(I) estimation by surfactant miscible-displacement.
Collapse
Affiliation(s)
- Molly S Costanza-Robinson
- Program for Environmental Studies and Department of Chemistry and Biochemistry, Middlebury College, 287 Bicentennial Way, Middlebury, Vermont 05753, USA.
| | | | | | | | | |
Collapse
|