1
|
Wang Y, Zhao Q, Guo Y, Hu S, Tian G, Zhang M, Cao X, Liu H, Zhang J. Interfacial interactions of nanoscale zero-valent iron particles with clay minerals in the aquatic environments: Experimental and theoretical calculation study. WATER RESEARCH 2024; 264:122220. [PMID: 39116613 DOI: 10.1016/j.watres.2024.122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
The environmental transport and fate of nanoscale zero-valent iron particles (nZVI) in soil and groundwater can be altered by their hetero-aggregation with clay mineral particles (CMP). This study examines the interactions between bare or carboxymethyl cellulose (CMC)-coated nZVI with typical CMP, specifically kaolinite and montmorillonite. Methods include co-settling experiments, aggregation kinetic studies, electron microscopy, Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (EDLVO) energy analysis, and density functional theory calculations, focusing on the pH dependency of these interactions. The EDLVO theory effectively described the interactions between nZVI and CMP in aquatic environments. Under acidic conditions (pH 3.5), the interfacial interaction between bare nZVI and kaolinite is regulated by van der Waals forces, while complexation, van der Waals forces, and electrostatic attraction govern the interaction of bare nZVI with montmorillonite, primarily depositing on the SiO face. In contrast, the positively charged AlO face and edge of CMP are the main deposition sites for CMC-coated nZVI through hydrogen bonding, van der Waals forces, and electrostatic attraction. At neutral (pH 6.5) and alkaline (pH 9.5) conditions, both bare and CMC-coated nZVI predominantly attach to the AlO face and edge, facilitated by complexation or hydrogen bonding, alongside van der Waals forces. The attachment of CMC-coated nZVI to CMP surfaces shows reversible aggregation or deposition due to the steric repulsion from the CMC coating. These findings hold significant implications for the environmental applications and risk of nZVI.
Collapse
Affiliation(s)
- Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qinghui Zhao
- Center for Soil Pollution Control of Shandong, Department of Ecological Environment Shandong Province, Jinan 250101, China
| | - Yuanfeng Guo
- Qingdao Huayi Environmental Protection Science & Technology CO., LTD, Qingdao 266000, China
| | - Shugang Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Guoqing Tian
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mengcheng Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
2
|
Mahata A, Pal SK, Ohshima H, Gopmandal PP. Electrophoresis of polyelectrolyte-adsorbed soft particle with hydrophobic inner core. Electrophoresis 2024. [PMID: 39286949 DOI: 10.1002/elps.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
This article deals with the electrophoresis of hydrophobic colloids absorbed by a layer of polymers with an exponential distribution of the polymer segments. The functional groups present in the polymer layer further follow the exponential distribution. We made an extensive mathematical study of the electrophoresis of such core-shell structured soft particles considering the combined impact of heterogeneity in polymer segment distribution, ion steric effect, and hydrodynamic slippage of the inner core. The mathematical model is based on the flat-plate formalism and deduced numerical results for electrophoretic mobility are valid for weak to highly charged particles for which the particle size well exceeds the Debye-layer thickness. In addition, we have derived closed form analytical results for electrophoretic mobility of the particle under several electrohydrodynamic limits. We have further illustrated the results for electrophoretic mobility considering a charged and hydrophobic inner core coated with an uncharged polymer layer or a polymer layer that entraps either positive or negatively charged functional groups. The impact of pertinent parameters on the overall electrophoretic motion is further illustrated.
Collapse
Affiliation(s)
- Asim Mahata
- Department of Mathematics, Jadavpur University, Kolkata, West Bengal, India
| | - Sanjib Kumar Pal
- Department of Mathematics, Jadavpur University, Kolkata, West Bengal, India
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| |
Collapse
|
3
|
Liang W, Zhang W, Shao X, Gong K, Su C, Zhang W, Peng C. Organic matters adsorbed on goethite inhibited the heterogeneous aggregation and adsorption of CdSe quantum dots: Experiments and extended DLVO theory. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133769. [PMID: 38359758 DOI: 10.1016/j.jhazmat.2024.133769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The widespread use of Cd-based quantum dots (Cd-QDs) has led to their inevitable release into the environment, and the prevalent iron oxides and natural organic matter (NOM) are the key factors affecting the environmental behavior and fate of Cd-QDs. However, the impact of NOM adsorbed on iron oxides on the behavior of Cd-QDs with iron oxides and the mechanism of its interaction are not clear. In this study, two kinds of water-soluble QDs (CdSe QDs and core-shell CdSe/ZnS QDs) were selected to study the aggregation and adsorption behavior on goethite (Goe) and goethite-humic acid/fulvic acid composites (Goe-HA/FA). Aggregation kinetics and adsorption experiments between QDs and Goe(-HA/FA), characterization, and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory calculations indicated that electrostatic interaction was the dominant force for QDs adsorption on Goe(-HA/FA). HA/FA changed the surface charge of Goe and increased the electrostatic repulsion and steric hindrance between the particles, which in turn inhibited the adsorption of QDs on Goe. Besides, unsubstituted aromatic carbons, carboxy carbons, and carbonyl carbons played an important role in the adsorption process, and chemisorption occurred between QDs and Goe(-HA/FA). Our findings are important for better assessing the transport, fate, and potential environmental impacts and risks of Cd-QDs in iron-rich environments.
Collapse
Affiliation(s)
- Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Krishna YSR, Seetha N, Hassanizadeh SM. Experimental and numerical investigation of the effect of temporal variation in ionic strength on colloid retention and remobilization in saturated porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 251:104079. [PMID: 36155204 DOI: 10.1016/j.jconhyd.2022.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Temporal variations in the chemistry of infiltrating water into the subsurface are known to cause remobilization of colloids from the grain surfaces, thereby increasing the travel distance of the colloidal contaminants. Hence, it is essential to thoroughly understand the transport, deposition, and release mechanisms of colloids in the subsurface, through laboratory experiments and modeling. There are only a few experiments in which the chemistry of inflow water is changed rapidly during colloid transport. Also, although some models have been presented for simulating the effect of transient chemistry on the fate of colloids, there is no consensus in this regard, as the proposed models suffer from shortcomings. In this study, we systematically investigated the effect of temporal variations in ionic strength on the remobilization of deposited colloids in saturated porous media through laboratory column experiments and numerical modeling. Four sets of column experiments were performed, in which we injected carboxylate-modified latex colloids at a given ionic strength for a specified period. After breakthrough of colloids, the ionic strength of inflowing water was decreased in a stepwise manner to 0 mM (DI water). The initial ionic strength values of the four experiments were 100, 50, 25, and 10 mM. We observed partial release of deposited colloids after several steps of ionic strength decrease with significant release observed only when the ionic strength was reduced to below 10 mM. We also found that the fraction of released colloids decreased with increasing value of initial ionic strength of inflow water. We have developed a mathematical model incorporating a novel formulation for ionic strength-dependent deposition and release. The model is found to capture the colloid breakthrough curves reasonably well for all experiments with the same set of parameter values, except the one at the initial ionic strength of 25 mM.
Collapse
Affiliation(s)
| | - N Seetha
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| | - S Majid Hassanizadeh
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India; Stuttgart Center for Simulation Science (SIMTECH), Integrated Research Training Group SFB 1313, Stuttgart University, Germany; Department of Earth Sciences, Utrecht University, 3584, CB, Utrecht, the Netherlands
| |
Collapse
|
5
|
Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: What we know or not? GEOSCIENCE FRONTIERS 2022; 13. [PMID: 37521131 PMCID: PMC8730742 DOI: 10.1016/j.gsf.2021.101346] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The global outbreak of coronavirus infectious disease-2019 (COVID-19) draws attentions in the transport and spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in aerosols, wastewater, surface water and solid wastes. As pathogens eventually enter the subsurface system, e.g., soils in the vadose zone and groundwater in the aquifers, they might survive for a prolonged period of time owing to the uniqueness of subsurface environment. In addition, pathogens can transport in groundwater and contaminate surrounding drinking water sources, possessing long-term and concealed risks to human society. This work critically reviews the influential factors of pathogen migration, unravelling the impacts of pathogenic characteristics, vadose zone physiochemical properties and hydrological variables on the migration of typical pathogens in subsurface system. An assessment algorithm and two rating/weighting schemes are proposed to evaluate the migration abilities and risks of pathogens in subsurface environment. As there is still no evidence about the presence and distribution of SARS-CoV-2 in the vadose zones and aquifers, this study also discusses the migration potential and behavior of SARS-CoV-2 viruses in subsurface environment, offering prospective clues and suggestions for its potential risks in drinking water and effective prevention and control from hydrogeological points of view.
Collapse
|
6
|
Chakraborty S, Foppen JW, Schijven JF. Effect of concentration of silica encapsulated ds-DNA colloidal microparticles on their transport through saturated porous media. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Gopmandal PP, Duval JF. Electrostatics and electrophoresis of engineered nanoparticles and particulate environmental contaminants: beyond zeta potential-based formulation. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Ling X, Yan Z, Lu G. Vertical transport and retention behavior of polystyrene nanoplastics in simulated hyporheic zone. WATER RESEARCH 2022; 219:118609. [PMID: 35598467 DOI: 10.1016/j.watres.2022.118609] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The ecological risk of microplastics (MPs) usually depends on their environmental behavior, however, few studies focused on the impact of hydrodynamic perturbations on the fate of MPs in hyporheic zone. This study chose quartz sand (250-425 μm) as simulated porous medium to investigate the transport of 100 nm polystyrene nanoplastics (PSNPs) under hydrodynamic factors, including flow rates (0.5, 1.0, and 2.0 mL/min), flow orientations (up-flow, down-flow, and horizontal-flow), and water saturations (50%, 80%, and 100%), as well as different salinities and temperatures. The breakthrough curves (BTCs) and retained profiles (RPs) of PSNPs were compared and analyzed by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Due to the small size and moderate density of PSNPs, as well as high flow rates, the flow orientation exhibited little effect on the PSNP transport. However, high flow rate, low salinity, high water saturation, and low temperature would facilitate the mobility of PSNPs. The increase in salinity from zero to 35 PSU (practical salinity units) caused the compression of electrical double layer and weakened the electrostatic repulsion between PSNPs and sands, which dramatically decreased the penetration rate from 100% to zero. Especially, the lower energy barrier of PSNPs-PSNPs at 3.5 and 35 PSU (16.45 kBT and zero, respectively) facilitated the adsorption of PSNPs on sand via ripening mechanism. Due to the strong adsorption of PSNPs by sand at high salinity, the effect of flow rate on PSNP transport was more pronounced at low salinity. The mobility of PSNPs at 0.035 PSU was enhanced by 41.4%-75.3% as the flow rate increased from 0.5 to 2.0 mL/min, which was contributed from the reversible deposition in lower secondary energy minimum depth at low salinity and the stronger hydrodynamic drag force generated by the high flow rate. However, the sufficient molecular diffusion at low flow rate promoted the occupation of PSNPs on adsorption sites. In addition, the penetration rate of PSNPs decreased by 25.0% as the water saturation decreased from 100% to 50%, indicating that the film straining at the air-water interface would hinder the transport of PSNPs. Finally, temperature increase impeded the penetration of PSNPs by 6.26%-23.1% via blocking mechanism. Our results suggest that low-salinity, high-flow river systems may be at greater risk of MPs contamination due to enhanced vertical transport capability.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
9
|
Yang Y, Yuan W, Hou J, You Z. Review on physical and chemical factors affecting fines migration in porous media. WATER RESEARCH 2022; 214:118172. [PMID: 35196620 DOI: 10.1016/j.watres.2022.118172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Permeability reduction and formation damage in porous media caused by fines (defined as unconfined solid particles present in the pore spaces) migration is one of the major reasons for productivity decline. It is well accepted that particle detachment occurs under imbalanced torques arising from hydrodynamic and adhesive forces exerted on attached particles. This paper reviewed current understanding on primary factors influencing fines migration as well as mathematical formulations for quantification. We also introduced salinity-related experimental observations that contradict theoretical predictions based on torque balance criteria, such as delayed particle release and attachment-detachment hysteresis. The delay of particle release during low-salinity water injection was successfully explained and formulated by the Nernst-Planck diffusion of ions in a narrow contact area. In addition to the widely recognized explanation by surface heterogeneity and the presence of low-velocity regions, we proposed a hypothesis that accounts for the shifting of equilibrium positions, providing new insight into the interpretation of elusive attachment-detachment hysteresis both physically and mathematically. The review was finalized by discussing the quantification of anomalous salinity effect on adhesion force at low- and high-salinity conditions.
Collapse
Affiliation(s)
- Yulong Yang
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102200, China.
| | - Weifeng Yuan
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102200, China
| | - Jirui Hou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102200, China
| | - Zhenjiang You
- Center for Sustainable Energy and Resources, Edith Cowan University, Joondalup, WA 6027, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Natural Gas, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Won J, Kim T, Kang M, Choe Y, Choi H. Kaolinite and illite colloid transport in saturated porous media. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Huang Q, Wang W, Vikesland PJ. Implications of the Coffee-Ring Effect on Virus Infectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11260-11268. [PMID: 34525305 DOI: 10.1021/acs.langmuir.1c01610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The factors contributing to the survival of enveloped viruses (e.g., influenza and SARS-CoV-2) on fomite surfaces are of societal interest. The bacteriophage Phi6 is an enveloped viral surrogate commonly used to study viability. To investigate how viability changes during the evaporation of droplets on polypropylene, we conducted experiments using a fixed initial Phi6 concentration while systematically varying the culture concentration and composition (by amendment with 2% fetal bovine serum (FBS), 0.08 wt % BSA, or 0.5 wt % SDS). The results were consistent with the well-founded relative humidity (RH) effect on virus viability; however, the measured viability change was greater than that previously reported for droplets containing either inorganic salts or proteins alone, and the protein effects diverged in 1× Dulbecco's modified Eagle's medium (DMEM). We attribute this discrepancy to changes in virus distribution during droplet evaporation that arise due to the variable solute drying patterns (i.e., the "coffee-ring" effect) that are a function of the droplet biochemical composition. To test this hypothesis, we used surface-enhanced Raman spectroscopy (SERS) imaging and three types of gold nanoparticles (pH nanoprobe, positively charged (AuNPs(+)), and negatively charged (AuNPs(-))) as physical surrogates for Phi6 and determined that lower DMEM concentrations, as well as lower protein concentrations, suppressed the coffee-ring effect. This result was observed irrespective of particle surface charge. The trends in the coffee-ring effect correlate well with the measured changes in virus infectivity. The correlation suggests that conditions resulting in more concentrated coffee rings provide protective effects against inactivation when viruses and proteins aggregate.
Collapse
Affiliation(s)
- Qishen Huang
- Civil and Environmental Engineering and Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Wang
- Civil and Environmental Engineering and Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter J Vikesland
- Civil and Environmental Engineering and Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Ling X, Yan Z, Liu Y, Lu G. Transport of nanoparticles in porous media and its effects on the co-existing pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117098. [PMID: 33857878 DOI: 10.1016/j.envpol.2021.117098] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Nanomaterials are widely used in daily life owing to their superior characteristics. The release and transport of nanoparticles (NPs) in the environment is inevitable during their entire life cycle, posing a risk to the aquatic environment. Thus, considerable attention has been focused on the fate and behavior of NPs in porous media, as well as the co-transport of NPs with other pollutants. In this review, current knowledge about the retention and transport behavior of NPs in porous media is summarized. NP transport in porous media is dominated by various internal and external factors, including the characteristics of NPs, porous media, and water flow. Generally, NPs with high density, small particle size, and surface coating are easily transported in porous media with the characteristics of large size, smooth surface, and low water saturation. Meanwhile, high pH and velocity, low temperature, and natural organic matter-containing fluids are also conducive to NP transport. Aggregation, adsorption, straining, and blocking are the primary mechanisms by which NPs affect the transport of co-existing pollutants in porous media. Current research on NP transport has been performed predominantly using modal porous media (e.g., sand and glass beads); however, there is a large gap between simulated and natural porous media. Further studies should focus on the transport, fate, and interaction of NPs and coexistent pollutants in natural porous media, as well as the coupling mechanisms under actual environmental conditions.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
13
|
Alimi OS, Farner JM, Tufenkji N. Exposure of nanoplastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments. WATER RESEARCH 2021; 189:116533. [PMID: 33271413 DOI: 10.1016/j.watres.2020.116533] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Despite plastic pollution being a significant environmental concern, the impact of environmental conditions such as temperature cycling on the fate of nanoplastics in cold climates remains unknown. To better understand nanoplastic mobility in subsurface environments following freezing and thawing cycles, the transport of 28 nm polystyrene nanoplastics exposed to either constant (10°C) temperature or freeze-thaw (FT) cycles (-10°C to 10°C) was investigated in saturated quartz sand. The stability and transport of nanoplastic suspensions were examined both in the presence and absence of natural organic matter (NOM) over a range of ionic strengths (3-100 mM NaCl). Exposure to 10 FT cycles consistently led to significant aggregation and reduced mobility compared to nanoplastics held at 10°C, especially at low ionic strengths in the absence of NOM. While NOM increased nanoplastic mobility, it did not prevent the aggregation of nanoplastics exposed to FT. We compare our findings with existing literature and show that nanoplastics will largely aggregate and associate with soils rather than undergo long range transport in groundwater in colder climates following freezing temperatures. In fact, FT exposure leads to the formation of stable aggregates that are not prone to disaggregation. As one of the first studies to examine the coupled effect of cold temperature and NOM, this work highlights the need to account for climate and temperature changes when assessing the risks associated with nanoplastic release in aquatic systems.
Collapse
Affiliation(s)
- Olubukola S Alimi
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Jeffrey M Farner
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
| |
Collapse
|
14
|
Ramazanpour Esfahani A, Batelaan O, Hutson JL, Fallowfield HJ. Transport and retention of graphene oxide nanoparticles in sandy and carbonaceous aquifer sediments: Effect of physicochemical factors and natural biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111419. [PMID: 33126193 DOI: 10.1016/j.jenvman.2020.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
There is a paucity of information regarding the interaction between GONPs and natural aquifer sediments. Therefore, batch and column experiments were carried out to determine the transport, retention and attachment behavior of GONPs with the surfaces of native aquifer sediments. The experiments were performed with sediments comprising contrasting mineralogical features (sand grains, quartz and limestone sediments), at different temperatures, ionic strength and compositions. Uniquely, this research also investigated the effect of natural biofilm on the retention behavior of nanoparticles in porous media. The retention rate of GONPs at 22 °C was higher than at 4 °C. Moreover, there was greater retention of GONPs onto the surfaces of collectors at higher ionic strengths and cation valence. The retention profiles (RPs) of GONPs in pristine porous media at low ionic strength were linear, which contrasted with hyper-exponential shape of RPs at high ionic strength. The size-distribution analysis of retained GONPs showed decreasing particle diameter with increasing distance from the column inlet at high ionic strength and equal diameter at low ionic strengths. The GONP retention rate was higher for natural porous media than for sand, due to the presence of metal oxides heterogeneities. The presence of biofilm on porous media increased the retention rate of GONPs when compared to the porous media in the absence of biofilm.
Collapse
Affiliation(s)
- Amirhosein Ramazanpour Esfahani
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia.
| | - Okke Batelaan
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| | - John L Hutson
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Howard J Fallowfield
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| |
Collapse
|
15
|
Linley S, Thomson NR, McVey K, Sra K, Gu FX. Factors affecting pluronic-coated iron oxide nanoparticle binding to petroleum hydrocarbon-impacted sediments. CHEMOSPHERE 2020; 254:126732. [PMID: 32320831 DOI: 10.1016/j.chemosphere.2020.126732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Effective targeted delivery of nanoparticle agents may enhance the remediation of soils and site characterization efforts. Nanoparticles coated with Pluronic, an amphiphilic block co-polymer, demonstrated targeted binding behaviour toward light non-aqueous phase liquids such as heavy crude oil. Various factors including coating concentration, oil concentration, oil type, temperature, and pH were assessed to determine their effect on nanoparticle binding to heavy crude oil-impacted sandy aquifer material. Nanoparticle binding was increased by decreasing the coating concentration, increasing oil concentration, using heavier oil types, and increasing temperature, while pH over the range of 5-9 was found to have no effect. Nanoparticle transport and binding in columns packed with clean and oily porous media demonstrated the ability for efficient nanoparticle targeted binding. For the conditions explored, the attachment rate coefficient in columns packed with clean sand was 2.10 ± 0.66 × 10-4 s-1; however, for columns packed with oil-impacted sand a minimum attachment rate coefficient of 8.86 ± 0.43 × 10-4 s-1 was estimated. The higher attachment rate for the oil-impacted sand system indicates that nanoparticles may preferentially accumulate to oil-impacted zones present at heterogeneous impacted sites. Simulations were used to demonstrate this hypothesis using the set of parameters generated in this effort. This work contributes to our understanding of the application conditions that are required for efficient targeted binding of nanoparticles to crude-oil impacted porous media.
Collapse
Affiliation(s)
- Stuart Linley
- Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Neil R Thomson
- Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Kevin McVey
- Chevron Energy Technology Company, Houston, TX, USA
| | | | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Ren W, Su X, Zhang X, Chen Y, Shi Y. Influence of hydraulic gradient and temperature on the migration of E. coli in saturated porous media during bank filtration: a case study at the Second Songhua River, Songyuan, Northeastern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1977-1990. [PMID: 31705401 DOI: 10.1007/s10653-019-00459-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
River bank filtration can effectively reduce the number of pathogenic microorganisms infiltrating into groundwater from surface water. Groundwater seepage velocity and temperature are considered to be important factors affecting the process, but the magnitude and mechanism of their impacts have not been clear for a long time. Based on the actual monitoring data of the Escherichia coli concentrations and soil samples of Second Songhua riverside source area, the migration of E. coli in saturated porous media under different velocities and different temperatures was studied using saturated soil column transport experiments. Concurrently, the migration characteristics of E. coli in the riverside source area were replicated by mathematical simulation. According to the field monitoring results, the concentration of E. coli decreased in the riverbank infiltration zone, and the removal rate was greater than 96%. The column experimental results showed that the lower the flow velocity was and the higher the temperature was, the greater the removal rate of E. coli was. And the flow velocity was the main factor affecting the removal of E. Coli. The mathematical simulation results showed that under the conditions of the largest hydraulic gradient (20%) and the highest concentration of E. coli (2500 MPN/100 mL) in river water, the safe exploitation distance of groundwater that did not cause a risk of E. coli pollution was more than 7 m away from the river bank. These findings are expected to provide a scientific basis for the design of water intake schemes and the optimization of mining technology.
Collapse
Affiliation(s)
- Wanli Ren
- College of Construction Engineering, Jilin University, Changchun, 130021, China
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xiaosi Su
- College of Construction Engineering, Jilin University, Changchun, 130021, China.
- Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Xue Zhang
- China Nuclear Power Engineering Co., Ltd., Beijing, 100840, China
| | - Yaoxuan Chen
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yakun Shi
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| |
Collapse
|
17
|
Yan Z, Huang X, Shui L, Yang C. Kinetics of colloidal particle deposition in microfluidic systems under temperature gradients: experiment and modelling. SOFT MATTER 2020; 16:3649-3656. [PMID: 32202268 DOI: 10.1039/c9sm02102g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The deposition of colloidal particles can cause particulate fouling on solid walls and the formation of clogs during the transport of colloidal suspensions in microchannels. The particle deposition rate grows over time and blocks the microchannels eventually. The process of particle deposition is affected by various physicochemical parameters. In this paper, we investigate the effect of temperature gradient on the particle deposition of a pressure-driven suspension flow in a microchannel. We designed a microfluidic device which can allow direct observation of the real-time process of particle deposition with single-particle resolution along the direction of applied temperature gradient. The experimental results show that particle deposition rate is decreased by increasing the applied temperature gradients. Based on the framework of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, we then derive a mass transport model to describe the particle deposition under different temperature gradients. The model shows that the observed reduction of particle deposition rate with temperature gradient is due to the collective effect of the temperature gradient and the bulk solution temperature in the two steps of the particle deposition process, including the particle transport and the particle attachment. Our work illustrates the critical effects of temperature gradients on the particle deposition in microchannels, and is expected to provide a better understanding of thermally driven particulate fouling and clogging in microfluidic devices.
Collapse
Affiliation(s)
- Zhibin Yan
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China. and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xiaoyang Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Lingling Shui
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China. and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China and School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
18
|
Li X, Xu H, Gao B, Sun Y, Shi X, Wu J. Transport of a PAH-degrading bacterium in saturated limestone media under various physicochemical conditions: Common and unexpected retention and remobilization behaviors. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120858. [PMID: 31302357 DOI: 10.1016/j.jhazmat.2019.120858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Laboratory saturated columns packed with granular limestone grains were used to explore the retention and remobilization of functional bacteria FA1 under various physicochemical conditions. The unique surface properties of limestone and FA1 caused some unexpected phenomena. Solution IS, cation type, temperature and surface biological property all affected FA1 retention in the columns. The IS effect was temperature dependent and initial solution pH showed little influence due to the strong buffering ability of limestone. Perturbations of solution IS caused slight release of previously retained bacteria in some columns with NaCl as the background electrolyte, while increase in flow rate caused no release at all. When CaCl2 was the background, bacterial remobilization only occurred following both cation exchange and IS reduction. DLVO forces incorporating with surface roughness calculation were determined to assist with interpretation of interaction mechanisms. All the experimental evidences suggest the importance of cation bridging, cation exchange, surface roughness, and hydrophobic interaction in controlling bacterium transport in saturated limestone porous media.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Shi
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
19
|
Sasidharan S, Bradford SA, Šimůnek J, Torkzaban S. Minimizing Virus Transport in Porous Media by Optimizing Solid Phase Inactivation. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1058-1067. [PMID: 30272798 DOI: 10.2134/jeq2018.01.0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The influence of virus type (PRD1 and ΦX174), temperature (flow at 4 and 20°C), a no-flow storage duration (0, 36, 46, and 70 d), and temperature cycling (flow at 20°C and storage at 4°C) on virus transport and fate were investigated in saturated sand-packed columns. The vast majority (84-99.5%) of viruses were irreversibly retained on the sand, even in the presence of deionized water and beef extract at pH = 11. The reversibly retained virus fraction () was small (1.6 × 10 to 0.047) but poses a risk of long-term virus contamination. The value of and associated transport risk was lower at a higher temperature and for increases in the no-flow storage period due to the temperature dependency of the solid phase inactivation. A model that considered advective-dispersive transport, attachment (), detachment (), solid phase inactivation (μ), and liquid phase inactivation (μ) coefficients, and a Langmuirian blocking function provided a good description of the early portion of the breakthrough curve. The removal parameters were found to be in the order of > μ >> μ. Furthermore, μ was an order of magnitude higher than μ for PRD1, whereas μ was two and three orders of magnitude higher than μ for ΦX174 at 4 and 20°C, respectively. Transport modeling with two retention, release, and inactivation sites demonstrated that a small fraction of viruses exhibited a much slower release and solid phase inactivation rate, presumably because variations in the sand and virus surface roughness caused differences in the strength of adhesion. These findings demonstrate the importance of solid phase inactivation, temperature, and storage periods in eliminating virus transport in porous media. This research has potential implications for managed aquifer recharge applications and guidelines to enhance the virus removal by controlling the temperature and aquifer residence time.
Collapse
|
20
|
Wang M, Gao B, Tang D, Yu C. Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:350-357. [PMID: 29304468 DOI: 10.1016/j.envpol.2017.12.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/08/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
Simultaneous aggregation and retention of nanoparticles can occur during their transport in porous media. In this work, the concurrent aggregation and transport of GO in saturated porous media were investigated under the conditions of different combinations of temperature, cation type (valence), and electrolyte concentration. Increasing temperature (6-24 °C) at a relatively high electrolyte concentration (i.e., 50 mM for Na+, 1 mM for Ca2+, 1.75 mM for Mg2+, and 0.03 and 0.05 mM for Al3+) resulted in enhanced GO retention in the porous media. For instance, when the temperature increased from 6 to 24 °C, GO recovery rate decreased from 31.08% to 6.53% for 0.03 mM Al3+ and from 27.11% to 0 for 0.05 mM Al3+. At the same temperature, increasing cation valence and electrolyte concentration also promoted GO retention. Although GO aggregation occurred in the electrolytes during the transport, the deposition mechanisms of GO retention in the media depended on cation type (valence). For 50 mM Na+, surface deposition via secondary minima was the dominant GO retention mechanism. For multivalent cation electrolytes, GO aggregation was rapid and thus other mechanisms such as physical straining and sedimentation also played important roles in controlling GO retention in the media. After passing through the columns, the GO particles in the effluents showed better stability with lower initial aggregation rates. This was probably because less stable GO particles with lower surface charge densities in the porewater were filtered by the porous media, resulting in more stable GO particle with higher surface charge densities in the effluents. An advection-dispersion-reaction model was applied to simulate GO breakthrough curves and the simulations matched all the experimental data well.
Collapse
Affiliation(s)
- Mei Wang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Deshan Tang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Congrong Yu
- State Key Lab of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, Jiangsu 210098, China; College of Hydrology and Water Conservancy and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|