1
|
Jaydhar AK, Pal SC, Saha A, Islam ARMT, Ruidas D, Costache R. Hydrogeochemical properties of groundwater and associated human health hazards in coastal multiaquifers of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18054-18073. [PMID: 37233935 DOI: 10.1007/s11356-023-27765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Due to the scarcity of water supplies, coastal groundwater quality most importantly influences sustainable development in the coastal region. Rising groundwater pollution through heavy metal contamination is an intense health hazard and environmental concern worldwide. This study shows that 27%, 32%, and 10% of the total area come under the categories very high, high, and very low human health hazard index (HHHI) accordingly. This area's water quality is also much polluted; the study shows approximately 1% has very good water quality. High concentrations of Fe, As, TDS, Mg2+, Na, and Cl- are relatively noticed in the portion of the western part of this district. The concentration of heavy metals in coastal aquifers influences the groundwater pollution of that region. The average heavy metal concentration in this region is 0.20 mg/l (As) and 1.160 mg/l (TDS). The groundwater quality and hydrogeochemical properties are determined through the Piper diagram. The study stated that TDS, Cl- (mg/l), and Na+ (mg/l) are the most regulatory issues of vulnerability. In the present study region, a huge number of alkaline substances are present resulting in the water being unfit for drinking purposes. Lastly, it is clear from the study's findings that multiple risks exist there like As, TDS, Cl-, and other hydrochemical parameters in the groundwater. The proposed approach applied in this research work may be a pivotal tool for predicting groundwater vulnerability in other regions.
Collapse
Affiliation(s)
- Asit Kumar Jaydhar
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India.
| | - Asish Saha
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | | | - Dipankar Ruidas
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Romulus Costache
- Department of Civil Engineering, Transilvania University of Brasov, 5, Turnului Str, 500152, Brasov, Romania
- Danube Delta National Institute for Research and Development, 165 Babadag Street, 820112, Tulcea, Romania
| |
Collapse
|
2
|
Saha A, Pal SC, Islam ARMT, Islam A, Alam E, Islam MK. Hydro-chemical based assessment of groundwater vulnerability in the Holocene multi-aquifers of Ganges delta. Sci Rep 2024; 14:1265. [PMID: 38218993 PMCID: PMC10787756 DOI: 10.1038/s41598-024-51917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 01/15/2024] Open
Abstract
Determining the degree of high groundwater arsenic (As) and fluoride (F-) risk is crucial for successful groundwater management and protection of public health, as elevated contamination in groundwater poses a risk to the environment and human health. It is a fact that several non-point sources of pollutants contaminate the groundwater of the multi-aquifers of the Ganges delta. This study used logistic regression (LR), random forest (RF) and artificial neural network (ANN) machine learning algorithm to evaluate groundwater vulnerability in the Holocene multi-layered aquifers of Ganges delta, which is part of the Indo-Bangladesh region. Fifteen hydro-chemical data were used for modelling purposes and sophisticated statistical tests were carried out to check the dataset regarding their dependent relationships. ANN performed best with an AUC of 0.902 in the validation dataset and prepared a groundwater vulnerability map accordingly. The spatial distribution of the vulnerability map indicates that eastern and some isolated south-eastern and central middle portions are very vulnerable in terms of As and F- concentration. The overall prediction demonstrates that 29% of the areal coverage of the Ganges delta is very vulnerable to As and F- contents. Finally, this study discusses major contamination categories, rising security issues, and problems related to groundwater quality globally. Henceforth, groundwater quality monitoring must be significantly improved to successfully detect and reduce hazards to groundwater from past, present, and future contamination.
Collapse
Affiliation(s)
- Asish Saha
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India.
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata, 700014, India
| | - Edris Alam
- Faculty of Resilience, Rabdan Academy, 22401, Abu Dhabi, United Arab Emirates
- Department of Geography and Environmental Studies, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Kamrul Islam
- Department of Civil and Environmental Engineering College of Engineering, King Faisal University, 31982, AlAhsa, Saudi Arabia
| |
Collapse
|
3
|
Molla SH, Rukhsana, Hasan MSU. Deployment of entropy information theory in the Indian Sundarban region using hydrogeochemical parameters and GIS for assessment of irrigation suitability. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1227. [PMID: 37725200 DOI: 10.1007/s10661-023-11847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
The evaluation of irrigation suitability plays a crucial role for the socio-economic development of the society, especially in the region of Sundarban. For sustainable agricultural practices, groundwater quality must be suitable for irrigation; otherwise, it can degrade soil and diminish crop yield. The entropy information theory, several irrigational indices, multivariate statistics, GIS, and geostatistics are used in this work to evaluate the geographical distribution and quality of groundwater in the Indian Sundarban region. In total, 33 groundwater samples were collected in 2018 (April and May), and they were evaluated for major cations, anions, as well as other parameters like electrical conductivity (EC), soluble sodium percentage (SSP), potential salinity (PS), total dissolved solids (TDS), Kelly ratio (KR), sodium absorption ratio (SAR), permeability index (PI), residual sodium carbonate (RSC), magnesium hazard (MH), and residual sodium bicarbonate (RSBC). The overall trend of the principal cations and anions is in the sequence of Na+ ≥ Mg2+ ≥ Ca2+ ≥ K2+ and HCO3- ≥ Cl- ≥ NO3- ≥ SO42- ≥ F-, respectively, whereas the spatial variation of %Na, SAR, RSBC, and MH demonstrate very poor irrigation water quality, and spatial variation of KR, RSC, SSP, PI, and PS signifies that the irrigation water quality is excellent to good. In order to identify the specific association and potential source of the dissolved chemical in the groundwater, statistical techniques like correlation and principal component analysis were also employed. The hydrochemical facies indicates that mixed type makes up the bulk (51.51%) of the water samples. Following the Wilcox plot, more than 75% of the water samples are good to doubtful; however, by the US salinity hazard map, roughly 60.60% of the samples had high salinity (C3-S1 zone). The EWQII reports that no samples fall into the very good (no restriction) category, whereas 30.30%, 30.30%, and 39.40% of the sample wells record good (low restriction), average (moderate restriction), and poor (severe restriction) irrigation water quality, respectively. Based on this study, the bulk of the groundwater samples taken from the study area are unsuitable for cultivation. The findings of this study will also help decision-makers develop adequate future plans for irrigation and groundwater resource management.
Collapse
Affiliation(s)
| | - Rukhsana
- Department of Geography, Aliah University, Kolkata, India.
| | | |
Collapse
|
4
|
Kumar P, Mukherjee S. Impact of limestone caves and seawater intrusion on coastal aquifer of middle Andaman. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 256:104197. [PMID: 37178540 DOI: 10.1016/j.jconhyd.2023.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Seawater intrusion has become a common problem in coastal and island aquifers with the rise in climate change that greatly affects the majority of developing countries. The island hydrology is very complex and associated with a unique set of environmental characteristics with the dynamic interaction of groundwater, surface water, and seawater. Further, Sea level rise, erratic rainfall, and over-extraction of groundwater triggered salt-water intrusion. A study on seawater intrusion and the effect of limestone caves on groundwater was carried out in middle Andaman using a combination of ionic ratios of major ions. A total of 24 samples and a reference sample from the sea were collected and analysed using ICP, spectrophotometer, and flame photometer. A combination of 10 ionic ratios Cl/HCO3, Ca/(HCO3 + SO4), (Ca + Mg)/Cl, Ca/Mg, Ca/Na, Cl/(SO4 + HCO3), Ca/SO4, K/Cl, Mg/Cl, and SO4/Cl was used to assess the dissolution of limestone minerals and the level of saltwater intrusion into groundwater. The geospatial method was used to extract and combine all the hydrogeochemical parameters and ionic ratios in the GIS platform. Durov plot was used for the interpretation of groundwater chemistry and the identification of natural processes controlling the hydrogeochemistry of the area. The dominance of Ca-HCO3 and Na-HCO3 was confirmed in 48% and 24% of the sample respectively. The equiline graph of chloride with other major ions showed the enrichment of alkali and alkaline earth metal salt in groundwater. Schoeller's diagram depicted the dominance of Cl, Ca, and the sum of CO3 and HCO3 in seawater near Mayabunder. The lower concentration of Na with respect to Cl (64%) and Ca (100%) showed the presence of a reverse ion exchange process. Further, the correlation matrix showed a strong relationship between Cl, K, Ca, and Na. The analysis of X-ray diffraction of the rock samples confirmed the presence of limestones such as Aragonite, Calcite, Chlorite, Chromite, Dolomite, Magnetite, and Pyrite in the study area. The integration of ionic ratios showed moderately affected and slightly affected saline regions in 44% and 54% of the region respectively. Finally, the role of tectonic activities and active lineaments connected to the sea was found to play a major role in the intrusion of seawater where interconnected faults created an opening for surface water to recharge groundwater leading to the deep aquifer.
Collapse
Affiliation(s)
- Pardeep Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Biswas T, Pal SC, Saha A. Hydro-chemical assessment of coastal groundwater aquifers for human health risk from elevated arsenic and fluoride in West Bengal, India. MARINE POLLUTION BULLETIN 2023; 186:114440. [PMID: 36481559 DOI: 10.1016/j.marpolbul.2022.114440] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The vulnerability of groundwater in the coastal regions in terms of As, F-, and NO3- exposure is growing rapidly. Hence, the present study focused on assessing groundwater quality, ecological richness, and HR in the coastal districts of West Bengal by applying field-based CD, GWQI, ERI, and HRI techniques. After assessing the GW vulnerability, it is stated that approximately 40-50 % area of the two selected coastal district's GW is poor to very poor in quality, the ecology of GW is threatened, and human health is faced serious risk for both dry and wet season. The Wilcox and USSL diagram verified that nearly 50 % GW aquifers of coastal district of West Bengal are not fit for irrigation and drinking. The findings of this study will be beneficial to manage and control groundwater vulnerability in the coastal regions for water scientists, policy makers, and researchers as well in sustainable way.
Collapse
Affiliation(s)
- Tanmoy Biswas
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104, India.
| | - Asish Saha
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104, India
| |
Collapse
|
6
|
Chandra Pal S, Towfiqul Islam ARM, Chakrabortty R, Islam MS, Saha A, Shit M. Application of data-mining technique and hydro-chemical data for evaluating vulnerability of groundwater in Indo-Gangetic Plain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115582. [PMID: 35772277 DOI: 10.1016/j.jenvman.2022.115582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/08/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Vulnerability of groundwater is critical for the sustainable development of groundwater resources, especially in freshwater-limited coastal Indo-Gangetic plains. Here, we intend to develop an integrated novel approach for delineating groundwater vulnerability using hydro-chemical analysis and data-mining methods, i.e., Decision Tree (DT) and K-Nearest Neighbor (KNN) via k-fold cross-validation (CV) technique. A total of 110 of groundwater samples were obtained during the dry and wet seasons to generate an inventory map. Four K-fold CV approach was used to delineate the vulnerable region from sixteen vulnerability causal factors. The statistical error metrics i.e., receiver operating characteristic-area under the curve (AUC-ROC) and other advanced metrices were adopted to validate model outcomes. The results demonstrated the excellent ability of the proposed models to recognize the vulnerability of groundwater zones in the Indo-Gangetic plain. The DT model revealed higher performance (AUC = 0.97) followed by KNN model (AUC = 0.95). The north-central and north-eastern parts are more vulnerable due to high salinity, Nitrate (NO3-), Fluoride (F-) and Arsenic (As) concentrations. Policy-makers and groundwater managers can utilize the proposed integrated novel approach and the outcome of groundwater vulnerability maps to attain sustainable groundwater development and safeguard human-induced activities at the regional level.
Collapse
Affiliation(s)
- Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
| | | | - Rabin Chakrabortty
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Asish Saha
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Manisa Shit
- Department of Geography, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| |
Collapse
|
7
|
Zhang C, Huang G, Yan D, Wang H, Zeng G, Wang S, Li Y. Analysis of South American climate and teleconnection indices. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 244:103915. [PMID: 34788718 DOI: 10.1016/j.jconhyd.2021.103915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Oceanic heat anomalies affect climate in remote regions through the atmospheric cycle. South America (SA) was the first region found associated with EI Niño, which affects the fishery, agriculture, forestry, and livestock industry of SA. As approximately 60% of the total water is used for agriculture, climate changes in SA caused by ocean anomalies have led to the variability of available water, especially for irrigation water. Where the precipitation is low and/or the temperature is high, the availability and quality of water resources are under pressure. For instance, droughts associated with La Niña severely limited water supply and irrigation requirements between 25°S - 40°S in west-central Argentina and central Chile. In order to study the relationship between ocean variability and the climate of SA, 19 teleconnection indices (TI) related to Ocean abnormity are considered. The 19 indices are: the sea surface temperature (SST) and their anomaly in 4 Niño regions (SST1 + 2, SST3, SST3.4, SST4, ANOM1 + 2, ANOM3, ANOM3.4, ANOM4), Southern Oscillation Index (SOI), Oceanic Niño Index (ONI), Outgoing Longwave Radiation (OLR), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Pacific-North America (PNA), Atlantic Multi-decadal Oscillation (AMO), West and East of Indian Ocean Dipole (IODW, IODE), and the difference between IODW and IODE (IODd). High-resolution gridded climate data (1982-2016) from the Global Precipitation Climatology Centre (GPCC), the Climate Prediction Center (CPC), and the National Centers for Environmental Prediction (NCEP) are applied for correlation analyses. The results show that the 89.4% area of South American climate has a significant correlation with the SST in Niño region 1 + 2, the mean correlation coefficient is 0.55 for NCEP precipitation and 0.54 for CPC temperature. The lag duration for the remote correlation is around 2-3 months. It is the first attempt to analyze the correlation relationship based on 19 TIs, which can provide comprehensive insight into the climate of SA at a high-resolution scale. These findings are helpful for identifying the sensitive factors that affect climate in SA, for projecting the climate variables of SA, and for managing the irrigation water resources of SA.
Collapse
Affiliation(s)
- Chong Zhang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Guohe Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Denghua Yan
- China Institute of Water Resources and Hydropower Research, A-1 Fuxing Road, Beijing 100038, China
| | - Hao Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Siyu Wang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yongping Li
- Environment and Sustainable Communities, University of Regina, Regina, Sask S4S 7H9, Canada
| |
Collapse
|
8
|
Nath A, Samanta S, Banerjee S, Danda AA, Hazra S. Threat of arsenic contamination, salinity and water pollution in agricultural practices of Sundarban Delta, India, and mitigation strategies. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04544-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractThe paper through a critical appraisal of the agricultural practices in the Indian Sundarban deltaic region explores the tripartite problems of arsenic biomagnification, salinity of arable lands and ingress of agrochemical pollutants into the freshwater resources, which endanger the health, livelihood and food security of the rural population inhabiting the delta. The threefold problem has rendered a severe blow to the agrarian economy consequently triggering large-scale outmigration of the rural population from the region. Although recent studies have addressed these issues separately, the inter-connectivity among these elements and their possible long-term impact upon sustainability in the Sundarbans are yet to be elucidated. In the current scenario, the study emphasizes that the depleting freshwater resources is at the heart of the threefold problems affecting the Sundarbans. Owing to the heavy siltation of the local river systems, freshwater resources from the local ravines have salinized beyond the point of being used for agricultural purposes. At the same time, increasing salinity levels resulting from fluctuation of pre- and post-monsoon rainfall, frequent cyclones and capillary movement of salinized groundwater (primarily during the Rabi season) have severely hampered the agricultural practices. Salinization of above groundwater reserves has forced the farmers toward utilization of groundwater, which are lifted using STWs, especially for rice and other cultivations in the Rabi season. The Holocene aquifers of the region retain toxic levels of arsenic which are lifted during the irrigation process and are deposited on to the agricultural fields, resulting in bioaccumulation of As in the food products resourced from the area. The compound effect of consuming arsenic-contaminated food and drinking water has resulted in severe health issues recorded among the local population in the delta. Furthermore, due to the sub-optimal conditions for sustaining agriculture under saline stress, farmers often opt for the cultivation of post-green revolution high-yielding varieties, which require additional inputs of nitrogen-based fertilizers, organophosphate herbicides and pesticides that are frequently washed away by runoff from the watershed into the low-lying catchment areas of the biosphere reserve. Such practices have endangered the vulnerable conditions of local flora and fauna. In the present situation, the study proposes mitigation strategies which necessitate the smart use of locally obtainable resources like water, adaptable cultivars and sustainable agronomic practices like organic farming. The study also suggests engaging of conventional plant breeding strategies such as “Evolutionary plant breeding” for obtaining cultivars adapted to the shifting ecological conditions of the delta in the long run.
Collapse
|