1
|
Zhou FZ, Xie LH, Yu XH, Yang XQ, Yin SW. One-Step Generation of O/W/O Double Pickering Emulsions Utilizing Biocompatible Gliadin/Ethyl Cellulose Complex Particles as the Exclusive Stabilizer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12289-12299. [PMID: 37548190 DOI: 10.1021/acs.jafc.3c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Double emulsions hold great potential for various applications due to their compartmentalized internal structures. However, achieving their long-term physical stability remains a challenging task. Here, we present a simple one-step method for producing stable oil-in-water-in-oil (O/W/O) double emulsions using biocompatible gliadin/ethyl cellulose complex particles as the sole stabilizer. The resulting O/W/O systems serve as effective platforms for encapsulating enzymes and as templates for synthesizing porous microspheres. We investigated the impact of particle concentration and water fraction on the properties of Pickering O/W/O emulsions. Our results demonstrate that the number and volume of inner oil droplets increased proportionally with both the water fraction and particle concentration after a 60-day storage period. Moreover, the catalytic reaction rate of the encapsulated lipase within the double emulsion exhibited a significant acceleration, achieving a substrate conversion of 80.9% within 15 min. Remarkably, the encapsulated enzyme showed excellent recyclability, enabling up to 10 cycles of reuse. Additionally, by utilizing the O/W/O systems as templates, we successfully obtained porous microspheres whose size can be controlled by the outer water droplet. These findings have significant implications for the future design of Pickering complex emulsion-based systems, opening avenues for extensive applications in pharmaceuticals, food, cosmetics, material synthesis, and (bio)catalysis.
Collapse
Affiliation(s)
- Fu-Zhen Zhou
- Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Li-Hua Xie
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Guangzhou 510640, P. R. China
| | - Xin-Hao Yu
- Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
| | - Shou-Wei Yin
- Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
- Sino-Singapore International Joint Research Institute, Guangzhou 510641, P. R. China
| |
Collapse
|
2
|
Yousefi S, Rajaei P, Nateghi L, Nodeh HR, Rashidi L. Encapsulation of sesamol and retinol using alginate and chitosan-coated W/O/W multiple emulsions containing Tween 80 and Span 80. Int J Biol Macromol 2023; 242:124766. [PMID: 37164132 DOI: 10.1016/j.ijbiomac.2023.124766] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The conditions of production of multiple W/O/W nanoemulsions containing sesamol and retinol were optimized using response surface methodology (RSM). Span 80 (5, 10, and 15 % w/v), Tween 80 (1, 5.5, and 10 % w/v), and water in oil ratio (W/O) (20, 30, and 40 %) were considered as independent variables while encapsulation efficiency (EE%) and particle size were taken as dependent variables. Alginate (Alg) and chitosan (CS) were also applied to form a deposit layer. An optimum sample with an EE of 92.93 % and particle size of 381.94 nm was produced when Tween 80, Span 80, and W/O were 6.24 %, 10.84 %, and 37.70 %, respectively. Based on the Fourier transform infrared spectroscopy (FTIR), detection of hydrophobic band (2899 cm-1) approved the physical entrapment of biomolecules. Differential scanning calorimetry (DSC) indicated an endothermic peak at 236.48 °C associated with the ionic interactions of Alg-CS. Confocal laser scanning microscopy (CLSM) indicated Alg-CS complex deposit layer formed by electrostatic attraction surrounding the W/O/W multiple layers. The in vitro release of sesamol and retinol was 39 % of sesamol and 22 % of retinol in simulated gastric fluid (SGF) and 56 % and 22 % in simulated intestinal fluid (SIF), respectively.
Collapse
Affiliation(s)
- Shahryar Yousefi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Peyman Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Hamid Rashidi Nodeh
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran
| | - Ladan Rashidi
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran.
| |
Collapse
|
3
|
Yang Y, Yan S, Yu B, Gao C, Wang J. Hydrophobically modified inulin based nanoemulsions for enhanced stability and transdermal delivery of retinyl propionate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Maurya VK, Shakya A, Bashir K, Kushwaha SC, McClements DJ. Vitamin A fortification: Recent advances in encapsulation technologies. Compr Rev Food Sci Food Saf 2022; 21:2772-2819. [PMID: 35384290 DOI: 10.1111/1541-4337.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Vitamin A is an essential micronutrient whose deficiency is still a major health concern in many regions of the world. It plays an essential role in human growth and development, immunity, and vision, but may also help prevent several other chronic diseases. The total amount of vitamin A in the human diet often falls below the recommended dietary allowance of approximately 900-1000 μ $ \umu $ g/day for a healthy adult. Moreover, a significant proportion of vitamin A may be degraded during food processing, storage, and distribution, thereby reducing its bioactivity. Finally, the vitamin A in some foods has a relatively low bioavailability, which further reduces its efficacy. The World Health Organization has recommended fortification of foods and beverages as a safe and cost-effective means of addressing vitamin A deficiency. However, there are several factors that must be overcome before effective fortified foods can be developed, including the low solubility, chemical stability, and bioavailability of this oil-soluble vitamin. Consequently, strategies are required to evenly disperse the vitamin throughout food matrices, to inhibit its chemical degradation, to avoid any adverse interactions with any other food components, to ensure the food is palatable, and to increase its bioavailability. In this review article, we discuss the chemical, physical, and nutritional attributes of vitamin A, its main dietary sources, the factors contributing to its current deficiency, and various strategies to address these deficiencies, including diet diversification, biofortification, and food fortification.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - Amita Shakya
- Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Haryana, India.,Division of Biotechnology, Cytogene Research & Development, Lucknow, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Satish Chand Kushwaha
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Zhi Z, Liu R, Wang W, Dewettinck K, Van Bockstaele F. Recent progress in oil-in-water-in-oil (O/W/O) double emulsions. Crit Rev Food Sci Nutr 2022; 63:6196-6207. [PMID: 35081829 DOI: 10.1080/10408398.2022.2029346] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oil-in-water-in-oil (O/W/O) double emulsions are recognized as an advanced design route for oil structuring that shows promising applications in the pharmaceutical, cosmetic, and food fields. This review summarizes the main research advances of O/W/O double emulsions over the past two decades. It mainly focuses on understanding the preparation strategies, stabilization mechanism, and potential applications of O/W/O double emulsions. Several emulsification strategies are discussed, including traditional two-step emulsification method, phase-inversion approach, membrane emulsification, and microfluidic emulsification. Further, the role of interfacial stabilizers and viscosity in the stability of O/W/O double emulsions will be discussed with a focus on synthetic emulsifiers, natural biopolymer sand solid particles for achieving this purpose. Additionally, analytical methods for evaluating the stability of O/W/O double emulsions, such as advanced microscopy, rheology, and labeling assay are reviewed taking into account potential limitations of these characterization techniques. Moreover, possible innovative food applications are highlighted, such as simulating fat substitutes to decrease the trans- or saturated fatty acid content and developing novel delivery and encapsulation systems. This review paves a solid way for the exploration of O/W/O double emulsions toward large-scale implementation within the food industry.
Collapse
Affiliation(s)
- Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Rui Liu
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Koen Dewettinck
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
6
|
Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Van Gheluwe L, Buchy E, Chourpa I, Munnier E. Three-Step Synthesis of a Redox-Responsive Blend of PEG- block-PLA and PLA and Application to the Nanoencapsulation of Retinol. Polymers (Basel) 2020; 12:E2350. [PMID: 33066418 PMCID: PMC7602167 DOI: 10.3390/polym12102350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 01/06/2023] Open
Abstract
Smart polymeric nanocarriers have been developed to deliver therapeutic agents directly to the intended site of action, with superior efficacy. Herein, a mixture of poly(lactide) (PLA) and redox-responsive poly(ethylene glycol)-block-poly(lactide) (PEG-block-PLA) containing a disulfide bond was synthesized in three steps. The nanoprecipitation method was used to prepare an aqueous suspension of polymeric nanocarriers with a hydrodynamic diameter close to 100 nm. Retinol, an anti-aging agent very common in cosmetics, was loaded into these smart nanocarriers as a model to measure their capacity to encapsulate and to protect a lipophilic active molecule. Retinol was encapsulated with a high efficiency with final loading close to 10% w/w. The stimuli-responsive behavior of these nanocarriers was demonstrated in vitro, in the presence of l-Glutathione, susceptible to break of disulfide bond. The toxicity was low on human keratinocytes in vitro and was mainly related to the active molecule. Those results show that it is not necessary to use 100% of smart copolymer in a nanosystem to obtain a triggered release of their content.
Collapse
Affiliation(s)
- Louise Van Gheluwe
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37 200 Tours, France; (L.V.G.); (I.C.)
| | - Eric Buchy
- Laboratoires Eriger, 39 Rue des Granges Galand, 37550 Saint-Avertin, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37 200 Tours, France; (L.V.G.); (I.C.)
| | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37 200 Tours, France; (L.V.G.); (I.C.)
| |
Collapse
|
8
|
Pal A, Yadav S. Effect of a copolymer poly(4-styrenesufonic acid-co-maleic acid) sodium salt on aggregation behavior of surface active ionic liquid 1-tetradecyl-3-methylimidazolium bromide and structurally similar conventional surfactant tetradecyltrimethylammonium bromide in aqueous media. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1472006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Amalendu Pal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sangeeta Yadav
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
9
|
Pal A, Yadav S. Effect of cationic polyelectrolyte poly(diallyldimethylammonium chloride) on micellization behavior of anionic surface active ionic liquid 1-butyl-3-methylimidazolium dodecylsulfate [C4mim][C12SO4] in aqueous solutions. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4379-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Chowdhury MA. Silica Materials for Biomedical Applications in Drug Delivery, Bone Treatment or Regeneration, and MRI Contrast Agent. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s2079978018020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Simultaneous control of size and surface functionality of silica particle via growing method. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Visentini FF, Sponton OE, Perez AA, Santiago LG. Formation and colloidal stability of ovalbumin-retinol nanocomplexes. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.12.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Du G, Peng J, Zhang Y, Zhang H, Lü J, Fang Y. One-Step Synthesis of Hydrophobic Multicompartment Organosilica Microspheres with Highly Interconnected Macro-mesopores for the Stabilization of Liquid Marbles with Excellent Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5223-5235. [PMID: 28489386 DOI: 10.1021/acs.langmuir.7b00346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of an emulsion template with polymerization is a very convenient approach to the one-step realization of both simple control porous structures via a change in emulsion formulation and easy functionalization via the concomitant choice of an on-demand monomer. A major challenge of this approach is the inherent instability of the oil/water interface in emulsions, especially the occurrence of chemical reactions in oil or aqueous phases. This study reports the pioneering preparation of highly interconnected macro-mesopores and multicompartment (HIMC) vinyl organosilica microspheres with hydrophobicity by the one-step formation of W/O/W emulsions acting as a template. The emulsion system consists of acidified deionized water, a stabilizer, and vinyltriethoxysilane (VTEO) in which VTEO can be used to produce an organosilica skeleton of the resultant microsphere by a sol-gel process. The study demonstrated that the marvelous stability of W/O/W emulsions aids the formation of multicompartment organosilica microspheres with highly interconnected macro-mesopores by emulsion droplets rather than single-compartment (SC) microspheres. Meanwhile, the internal porous structure and surface morphology of as-prepared organosilica microspheres could be largely tuned by a simple variation of the pH value, the volume fraction of the water phase, and the stabilizer concentration in the initiating multiemulsions. Benefiting from such a well-orchestrated structure and the existence of numerous vinyl groups on the surface, HIMC organosilica microspheres exhibit very high hydrophobicity (with a water contact angle larger than 160°), which allows them to stabilize liquid marbles with excellent stability and high mechanical robustness. Because of its strong catalyst, Ag nanoparticles within HIMC organosilica microspheres enable Ag/HIMC-vinyl organosilica microsphere-based liquid marbles to be an efficient catalytic microreactor, realizing the complete degradation of MB to leuco methylene blue by NaBH4 in 10 min. The result of this work could provide some guidance for the easy, low-cost, benign preparation of HIMC microspheres having the potential to be excellent supporter of metal nanoparticles or other functionalized compounds for applications in sensing, optoelectronics, and catalysis.
Collapse
Affiliation(s)
- Guanqun Du
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Junxia Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Yuanyuan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Hongxia Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Jieli Lü
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| |
Collapse
|
14
|
Zhao LY, Zhang WM. Recent progress in drug delivery of pluronic P123: pharmaceutical perspectives. J Drug Target 2017; 25:471-484. [PMID: 28135859 DOI: 10.1080/1061186x.2017.1289538] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review focuses on recent investigations that used Pluronic P123 (P123) as pharmaceutical ingredients in vesicle, micelle, mixed micelle, in situ gel, tablet and emulsion. The main results from these studies show that P123 can significantly increase the stability of incorporated hydrophobic drugs with enhanced in vitro cytotoxicity and cellular uptake of anticancer drugs. Moreover, modified forms of P123 with RGD, folate or other targeted marker have shown its therapeutic potentials in various types of tumors and cancers. Furthermore, modified forms of P123 alone and/or mixed with other copolymers have less toxic effects and more tumor-specific delivery of anticancer drugs. They are promising materials as a nanoplatform for the drug delivery. Finally, the future perspectives of the field are briefly discussed.
Collapse
Affiliation(s)
- Li-Yan Zhao
- a Department of Pharmacy , Hebei North University , Zhangjiakou , PR China
| | - Wan-Ming Zhang
- a Department of Pharmacy , Hebei North University , Zhangjiakou , PR China
| |
Collapse
|
15
|
Chowdhury MA. The Silica-based Formulations for Drug Delivery, Bone Treatment, and Bone Regeneration. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201500026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Kim H, Hu Y, Jeong D, Jun BH, Cho E, Jung S. Synthesis, Characterization, and Retinol Stabilization of Fatty Amide-β-cyclodextrin Conjugates. Molecules 2016; 21:molecules21070963. [PMID: 27455224 PMCID: PMC6273423 DOI: 10.3390/molecules21070963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 11/24/2022] Open
Abstract
Amphiphilic cyclodextrin (CD) has been the object of growing scientific attention because of its two recognition sites, the cavity and the apolar heart, formed by self-assembly. In the present study, mono[6-deoxy-6-(octadecanamido)]-β-CD and mono[6-deoxy-6-(octadecenamido)]-β-CD were successfully synthesized by reacting mono-6-amino-6-deoxy-β-CD with N-hydroxysuccinimide esters of corresponding fatty acids in DMF. The structures were analyzed using nuclear magnetic resonance spectroscopy and mass spectrometry. The amphiphilic β-CDs were able to form self-assembled nano-vesicles in water, and the supramolecular architectures were characterized using fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. Using the cavity-type nano-vesicles, all-trans-retinol was efficiently encapsulated; it was then stabilized against the photo-degradation. Therefore, the present fatty amide-β-CD conjugate will be a potential molecule for carrier systems in cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Hwanhee Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Yiluo Hu
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Daham Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Eunae Cho
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Applications (UBITA), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Applications (UBITA), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
17
|
Pisetpackdeekul P, Supmuang P, Pan-In P, Banlunara W, Limcharoen B, Kokpol C, Wanichwecharungruang S. Proretinal nanoparticles: stability, release, efficacy, and irritation. Int J Nanomedicine 2016; 11:3277-86. [PMID: 27499622 PMCID: PMC4959592 DOI: 10.2147/ijn.s111748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite many potent biological activities, retinoids such as retinoic acid (RA) and retinal possess dose-related broad side effects. In this study, we show that this problem, which has been unsolvable for a long time, can be tackled through a controlled release strategy in which retinal is continuously delivered to the skin via sustained release from proretinal nanoparticles. The water dispersible proretinal nanoparticles are stable when kept in water at neutral pH and at room temperature for 8 months under light-proof conditions, and show sustained release of retinal into human synthetic sebum at a pH of 5. In the daily topical application tests performed for 4 weeks on rats' skin, the nanoparticles showed superior ability to increase epidermal thickness compared to RA and retinal, with no skin irritation observed for the proretinal particles, but severe skin irritation observed for RA and free retinal. When tested under occlusion conditions in human volunteers, insignificant skin irritation was observed for the proretinal nanoparticles. The 12-week, double-blind, split-face study on human volunteers indicates better antiaging efficacy of the particles as compared to the free RA.
Collapse
Affiliation(s)
| | | | | | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University
| | | | - Chayada Kokpol
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science; Nanotec-Chulalongkorn University Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Effect of layer-by-layer coatings and localization of antioxidant on oxidative stability of a model encapsulated bioactive compound in oil-in-water emulsions. Colloids Surf B Biointerfaces 2015; 135:472-480. [DOI: 10.1016/j.colsurfb.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/31/2015] [Accepted: 08/02/2015] [Indexed: 11/18/2022]
|
19
|
Andreani T, Silva AM, Souto EB. Silica-based matrices: State of the art and new perspectives for therapeutic drug delivery. Biotechnol Appl Biochem 2015; 62:754-64. [PMID: 25471460 DOI: 10.1002/bab.1322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/21/2014] [Indexed: 01/18/2023]
Abstract
Colloidal carriers based on silica (Si) matrices are an innovative approach within the context of therapeutic drug delivery systems. These carriers are emerging as a great promise for diagnosis and treatment of a wide range of injuries, particularly in cancer and infectious diseases. In addition, bioencapsulation for biosensing and cell therapy in silica sol-gel allows the survival of enzymes and cells for a long period of time. Owing to their porosity, large surface area, and high capability of functionalization, silica nanoparticles (SiNP) have been considered as an attractive option for several bioanalysis applications, such as selective bioseparation, imaging, and drug and gene delivery. However, although great advances are achieved in the biomedical fields, some toxicity effects can be associated with the use of SiNP. This article aims to present a comprehensive review of recent technological advances for silica matrices in biomedical applications, as well as the potential impact of silica-based materials on human health and environment.
Collapse
Affiliation(s)
- Tatiana Andreani
- Department of Biology and Environment, University of Tras-os Montes e Alto Douro, Vila Real, Portugal.,Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Tras-os Montes e Alto Douro, Vila Real, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra (FFUC), Coimbra, Portugal
| | - Amélia M Silva
- Department of Biology and Environment, University of Tras-os Montes e Alto Douro, Vila Real, Portugal.,Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Tras-os Montes e Alto Douro, Vila Real, Portugal
| | - Eliana B Souto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra (FFUC), Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Coimbra, Portugal
| |
Collapse
|
20
|
Pan Y, Tikekar RV, Wang MS, Avena-Bustillos RJ, Nitin N. Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Li H, Yang D, Gao Y, Li H, Xu J. Dual responsive macroemulsion stabilized by Y-shaped amphiphilic AB2 miktoarm star copolymers. RSC Adv 2015. [DOI: 10.1039/c5ra16399d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Y-shaped amphiphilic PS–(PDMAEMA)2 miktoarm star copolymers stabilized o/w macroemulsion showed pH-induced demulsification and thermo-induced phase inversion.
Collapse
Affiliation(s)
- Heng Li
- College of Chemistry
- Xiangtan University
- Xiangtan
- China
| | | | - Yong Gao
- College of Chemistry
- Xiangtan University
- Xiangtan
- China
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province
| | - Huaming Li
- College of Chemistry
- Xiangtan University
- Xiangtan
- China
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province
| | - Jianxiong Xu
- College of Chemistry
- Xiangtan University
- Xiangtan
- China
- Hunan Key Laboratory of Green Packaging & Application of Biological Nanotechnology
| |
Collapse
|
22
|
Deshmukh RK, Naik JB. Optimization of sustained release aceclofenac microspheres using response surface methodology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 48:197-204. [PMID: 25579914 DOI: 10.1016/j.msec.2014.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 10/13/2014] [Accepted: 12/04/2014] [Indexed: 01/28/2023]
Abstract
Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects.
Collapse
Affiliation(s)
- Rameshwar K Deshmukh
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, 425 001 Maharashtra, India
| | - Jitendra B Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, 425 001 Maharashtra, India.
| |
Collapse
|
23
|
Lv G, Wang F, Cai W, Li H, Zhang X. Influences of addition of hydrophilic surfactants on the W/O emulsions stabilized by lipophilic surfactants. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
The applicability of ordered mesoporous SBA-15 and its hydrophobic glutaraldehyde-bridge derivative to improve ibuprofen-loading in releasing system. Colloids Surf B Biointerfaces 2014; 119:82-9. [DOI: 10.1016/j.colsurfb.2014.03.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/23/2022]
|
25
|
Sousa FL, Santos M, Rocha SM, Trindade T. Encapsulation of essential oils in SiO2microcapsules and release behaviour of volatile compounds. J Microencapsul 2014; 31:627-35. [DOI: 10.3109/02652048.2014.911376] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Lacatusu I, Nita R, Badea N, Bojin D, Meghea A. Role of silsesquioxane compounds used as 'building blocks' in sol–gel nanoencapsulation of retinyl palmitate. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/143307509x440677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- I. Lacatusu
- Faculty of Applied Chemistry and Materials Science University 'Politehnica' of Bucharest, Polizu Street, no. 1, 011061, Bucharest, Romania;,
| | - R. Nita
- Faculty of Applied Chemistry and Materials Science University 'Politehnica' of Bucharest, Polizu Street, no. 1, 011061, Bucharest, Romania
| | - N. Badea
- Faculty of Applied Chemistry and Materials Science University 'Politehnica' of Bucharest, Polizu Street, no. 1, 011061, Bucharest, Romania
| | - D. Bojin
- Faculty of Materials Science and Engineering University 'Politehnica' of Bucharest, Splaiul Independentei Street, no. 313, Bucharest, Romania
| | - A. Meghea
- Faculty of Applied Chemistry and Materials Science University 'Politehnica' of Bucharest, Polizu Street, no. 1, 011061, Bucharest, Romania
| |
Collapse
|
27
|
Zadymova NM, Poteshnova MV, Kulichikhin VG. Properties of oil1/water/oil2 double emulsions containing lipophilic acrylic polymer. COLLOID JOURNAL 2012. [DOI: 10.1134/s1061933x12050146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Huang SJ, Sun SL, Chiu CC, Wang LF. Retinol-encapsulated water-soluble succinated chitosan nanoparticles for antioxidant applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:315-29. [PMID: 23565650 DOI: 10.1080/09205063.2012.690278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of this study was to stabilize all-trans-retinol (RE) by complexification with chitosan derivatives through H-bonding. Succinated chitosan (CHI-succ) with three different degrees (5, 10, 20 mol%) of succinylation were synthesized to form complexes with RE. Various weight ratios (w/w) of CHI-succ/RE complexes were prepared and characterized to produce stable complexes in nanometer size. The CHI-succ(0.20)/RE complex with approximate 250 nm in diameter was obtained using a CHI-succ(0.20) concentration of 0.005% (w/v) in double deionized water with various contents of RE. From fine-tuning the degree of succinylation and the weight ratio of the CHI-succ and RE, the formation of supramolecular complexes simultaneously improved water solubility and stability of RE. The cell viability of CHI-succ polymers and their RE complexes in 3T3 cells were all>85% relative to the control. The antioxidant ability of the CHI-succ(0.20)/RE complexes was significantly greater than that of pure RE using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay (p<0.01).
Collapse
Affiliation(s)
- Shih-Jer Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | | | | | | |
Collapse
|
29
|
Sousa FL, Horta S, Santos M, Rocha SM, Trindade T. Release behavior of trans,trans-farnesol entrapped in amorphous silica capsules. RESULTS IN PHARMA SCIENCES 2012; 2:52-6. [PMID: 25755994 DOI: 10.1016/j.rinphs.2012.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 11/15/2022]
Abstract
Farnesol, a compound widely found in several agro-food by-products, is an important bioactive agent that can be exploited in cosmetics and pharmaceutics but the direct bioapplication of this compound is limited by its volatility. Here the entrapment of farnesol in silica capsules was investigated to control the release of this bioactive compound in the vapor phase and in ethanol solutions. The preparation of silica capsules with oil cores was obtained by employing a sol-gel method using O/W/O multiple emulsions. Two distinct chemical vehicles for farnesol have been investigated, retinol and oleic acid, that afterwards have been emulsified as internal oil phases. The volatile release of farnesol from the as-prepared SiO2 capsules was investigated by headspace solid phase microextraction (HS-SPME) followed by gas chromatographic analysis (GC), and the release to ethanol was carried out by direct injection of the ethanolic fraction into the GC system. It is demonstrated that these capsules are efficient for the long controlled release of farnesol and that the respective profiles depend on the chemical parameters employed in the synthesis of the capsules.
Collapse
Affiliation(s)
- Filipa L Sousa
- CICECO, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sara Horta
- CICECO, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal ; QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Magda Santos
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sĺlvia M Rocha
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- CICECO, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Olejnik A, Goscianska J, Nowak I. Active compounds release from semisolid dosage forms. J Pharm Sci 2012; 101:4032-45. [PMID: 22886492 DOI: 10.1002/jps.23289] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/09/2022]
Abstract
The aim of this paper is to review all the aspects of the in vitro release testing (IVRT) from semisolid dosage forms. Although none of the official dissolution methods has been specified for use with semisolid dosage forms, their utility for assessing release rates of drugs from semisolid dosage forms has become a topic of considerable interest. One can expect to overcome such complexity in the future, when the official "Topical and Transdermal Drug Products-Product Performance Tests" will be published in an issue of the Pharmacopeial Forum. Many factors such as type of the dissolution medium, membrane, temperature, and speed have an influence on the mechanism and kinetics of the release testing from gels, creams, and ointments; therefore, those parameters have been widely discussed.
Collapse
Affiliation(s)
- Anna Olejnik
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, ul. Umultowska 89b, 61-714 Poznań, Poland.
| | | | | |
Collapse
|
31
|
Cho HK, Cho JH, Choi SW, Cheong IW. Topical delivery of retinol emulsions co-stabilised by PEO-PCL-PEO triblock copolymers: effect of PCL block length. J Microencapsul 2012; 29:739-46. [PMID: 22583129 DOI: 10.3109/02652048.2012.686528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This article describes enhanced skin permeation and UV/thermal stability of retinol emulsions by the co-stabilisation of Tween20 and biodegradable poly(ethylene oxide)-block-poly(ε-caprolactone)-block-poly(ethylene oxide) (PEO-PCL-PEO) triblock copolymers having different lengths of hydrophobic PCL block. A triblock copolymer with a longer PCL block has a lower hydrophile-lipophile balance (HLB) value. Commercial Retinol 50C® (BASF Co., Ludwigshafen, Germany) was used as the source of retinol. Ultrasonication of the Retinol 50C® emulsion with the triblock copolymers led to an increase in retinol solubilisation and a decrease in average particle size of the resulting retinol emulsion. These characteristics improved skin permeation of retinol through the stratum corneum of artificial skin and subsequent proliferation of viable epidermis cell. Employment of the triblock copolymer with a longer PCL block increased both UV and thermal stabilization of the retinol. These results suggest that HLB and PCL block length are important factors to enhance the topical delivery of retinol into the skin.
Collapse
Affiliation(s)
- Heui Kyoung Cho
- Department of Applied Chemistry, Kyungpook National University, Buk-gu, Daegu, South Korea
| | | | | | | |
Collapse
|
32
|
Simovic S, Barnes TJ, Tan A, Prestidge CA. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids. NANOSCALE 2012; 4:1220-1230. [PMID: 22159191 DOI: 10.1039/c1nr11273b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.
Collapse
Affiliation(s)
- Spomenka Simovic
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | | | | | | |
Collapse
|
33
|
Porta GD, Campardelli R, Falco N, Reverchon E. PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: Continuous versus batch operation layouts. J Pharm Sci 2011; 100:4357-67. [DOI: 10.1002/jps.22647] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/11/2011] [Indexed: 11/11/2022]
|
34
|
Liang SS, Chen SL, Chen SH. Diverse macroporous spheres synthesized by multiple emulsion polymerization for protein analyses. Chem Commun (Camb) 2011; 47:8385-7. [DOI: 10.1039/c1cc12167g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
McClements DJ. Emulsion Design to Improve the Delivery of Functional Lipophilic Components. Annu Rev Food Sci Technol 2010; 1:241-69. [DOI: 10.1146/annurev.food.080708.100722] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Abstract
Silicon and its oxides are widely used in biomaterials research, tissue engineering and drug delivery. These materials are highly biocompatible, easily surface functionalized, degrade into nontoxic silicic acid and can be processed into various forms such as micro- and nano-particles, monoliths, membranes and micromachined structures. The large surface area of porous forms of silicon and silica (up to 1200 m2/g) permits high drug loadings. The degradation kinetics of silicon- and silica-based materials can be tailored by coating or grafting with polymers. Incorporation of polymers also improves control over drug-release kinetics. The use of stimuli-responsive polymers has enabled environmental stimuli-triggered drug release. Simultaneously, silicon microfabrication techniques have facilitated the development of sophisticated implantable drug-delivery microdevices. This paper reviews the synthesis, novel properties and biomedical applications of silicon–polymer hybrid materials with particular emphasis on drug delivery. The biocompatible and bioresorptive properties of mesoporous silica and porous silicon make these materials attractive candidates for use in biomedical applications. The combination of polymers with silicon-based materials has generated a large range of novel hybrid materials tailored to applications in localized and systemic drug delivery.
Collapse
|
37
|
Retinol fluorescence: a simple method to differentiate different bilayer morphologies. Colloid Polym Sci 2009. [DOI: 10.1007/s00396-009-2051-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Study on food-grade vitamin E microemulsions based on nonionic emulsifiers. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Loveday S, Singh H. Recent advances in technologies for vitamin A protection in foods. Trends Food Sci Technol 2008. [DOI: 10.1016/j.tifs.2008.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
McClements DJ, Decker EA, Weiss J. Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 2008; 72:R109-24. [PMID: 17995616 DOI: 10.1111/j.1750-3841.2007.00507.x] [Citation(s) in RCA: 592] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a pressing need for edible delivery systems to encapsulate, protect, and release bioactive lipids within the food, medical, and pharmaceutical industries. The fact that these delivery systems must be edible puts constraints on the type of ingredients and processing operations that can be used to create them. Emulsion technology is particularly suited for the design and fabrication of delivery systems for encapsulating bioactive lipids. This review provides a brief overview of the major bioactive lipids that need to be delivered within the food industry (for example, omega-3 fatty acids, carotenoids, and phytosterols), highlighting the main challenges to their current incorporation into foods. We then provide an overview of a number of emulsion-based technologies that could be used as edible delivery systems by the food and other industries, including conventional emulsions, multiple emulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. Each of these delivery systems could be produced from food-grade (GRAS) ingredients (for example, lipids, proteins, polysaccharides, surfactants, and minerals) using simple processing operations (for example, mixing, homogenizing, and thermal processing). For each type of delivery system, we describe its structure, preparation, advantages, limitations, and potential applications. This knowledge can be used to facilitate the selection of the most appropriate emulsion-based delivery system for specific applications.
Collapse
Affiliation(s)
- D J McClements
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
41
|
Park JH, Lee YH, Oh SG. Preparation of Thermosensitive PNIPAm-Grafted Mesoporous Silica Particles. MACROMOL CHEM PHYS 2007. [DOI: 10.1002/macp.200700247] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Khiterer M, Shea KJ. Spherical, monodisperse, functional bridged polysilsesquioxane nanoparticles. NANO LETTERS 2007; 7:2684-7. [PMID: 17655368 DOI: 10.1021/nl071087q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A method for the synthesis of functional hybrid nanoparticles of uniform size is reported. 1,1'-bis[3-(trimethoxysilyl)propyl]-4,4'-bipyridinium iodide and N,N'-bis[(3-trimethoxysilyl)propyl]ethylenediamine bridged polysilsesquioxane spherical, monodisperse nanoparticles are prepared utilizing inverse water-in-oil polymerization methods where nanoparticle size can be influenced by adjusting the interfacial tension and monomer concentration. The former are electrochemically active and can be utilized in display devices. Both are polycationic and can be used as carriers for polyanions such as DNA and construction of layer-by-layer architectures.
Collapse
Affiliation(s)
- Mariya Khiterer
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | | |
Collapse
|
43
|
Campbell RA, Ash PA, Bain CD. Dynamics of adsorption of an oppositely charged polymer-surfactant mixture at the air-water interface: poly(dimethyldiallylammonium chloride) and sodium dodecyl sulfate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:3242-53. [PMID: 17300210 DOI: 10.1021/la0632171] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dynamic adsorption behavior of mixtures of the cationic polymer poly(dimethyldiallylammonium chloride) [poly(dmdaac)] and the anionic surfactant sodium dodecyl sulfate (SDS) has been studied at the expanding liquid surface of an overflowing cylinder. A combination of ellipsometry and external reflection Fourier transform infrared spectroscopy was used to measure the adsorbed amounts of poly(dmdaac) and SDS as a function of the bulk surfactant concentration for various polymer concentrations in the range 0-0.2 g dm-3. Laser Doppler velocimetry was used to determine the surface age, which was approximately 1 s for solutions where the polymer adsorbed. The interfacial behavior is rationalized in terms of competition between surface activity and mass transport to the expanding surface. At low surfactant concentrations, adsorption of both poly(dmdaac) and SDS is enhanced as a result of the formation in solution of polymer-surfactant complexes that are more surface active than either component alone. The rate of adsorption of these complexes is diffusion-controlled, and their interfacial composition remains constant at three dmdaac units per SDS molecule over a 5-fold change in the surfactant concentration. For the higher polymer concentrations studied, the complexes saturate the air-water interface: the adsorbed amount is independent of the polymer concentration and remains constant also over a factor of 5 in the surfactant concentration. Once the number of bound surfactant molecules per dmdaac monomer exceeds 0.3, the complexes begin to form large aggregates, which are not surface active due to their slower mass transport. The adsorbed amount decreases rapidly on approach to the equivalence point (one SDS molecule per dmdaac monomer), and when it is reached, only a very small amount of material remains at the interface. At still higher surfactant concentrations, the free SDS adsorbs but there is no adsorbed poly(dmdaac). The dynamic adsorption data are compared with equilibrium measurements of the same system by Staples et al. (Langmuir 2002, 18, 5147), which show very different surface compositions and no significant change in surface coverage at the equivalence point.
Collapse
Affiliation(s)
- Richard A Campbell
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | | |
Collapse
|
44
|
Oh C, Lee JH, Lee YG, Lee YH, Kim JW, Kang HH, Oh SG. New approach to the immobilization of glucose oxidase on non-porous silica microspheres functionalized by (3-aminopropyl)trimethoxysilane (APTMS). Colloids Surf B Biointerfaces 2006; 53:225-32. [PMID: 17049822 DOI: 10.1016/j.colsurfb.2006.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 08/17/2006] [Accepted: 09/05/2006] [Indexed: 11/26/2022]
Abstract
The immobilization and encapsulation of glucose oxidase (GOD) onto the mesoporous and the non-porous silica spheres prepared by co-condensation of tetraethylorthosilicate (TEOS) and (3-aminopropyl)trimethoxysilane (APTMS) in the water-in-oil (W/O) emulsion system were studied. The terminal amine group was used as the important functionality for GOD immobilization on the silica substrate. When only TEOS is used as a silica source, the disordered mesoporous silica microspheres are obtained. As the molar ratio of APTMS to TEOS (R(AT)) increases, the surface area and pore volume of the silica particles measured by nitrogen adsorption and desorption method and SEM decrease rapidly. Particularly, the largest change of the surface morphology is observed between R(AT)=0.20 and R(AT)=0.25. The amount and the adsorption time of immobilized enzyme were measured by UV spectroscopy. About 20wt% of GOD was immobilized into the silica substrates above R(AT)=0.60 and was completely adsorbed into the substrate of R(AT)=0.80 with lapse of 4h after addition. In the measurement of the thermal stability, GOD dissolved in buffer solution loses nearly all of its activity after 30 min at 65 degrees C. In contrast, GOD immobilized on the surface-modified silica particles still retains about 90% of its activity after the same treatment. At this temperature, the immobilized glucose oxidase retained half of its initial activity after 4h. It is shown that the suitable usage of functionalizing agent like APTMS as well as the control of surface morphology is very important on the immobilization of enzyme.
Collapse
Affiliation(s)
- Chul Oh
- Department of Chemical Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|