1
|
Zheng H, Pu Z, Wu H, Li C, Zhang X, Li D. Reverse iontophoresis with the development of flexible electronics: A review. Biosens Bioelectron 2023; 223:115036. [PMID: 36580817 DOI: 10.1016/j.bios.2022.115036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Skin-centric diagnosis techniques, such as epidermal physiological parameter monitoring, have developed rapidly in recent years. The analysis of interstitial fluid (ISF), a body liquid with abundant physiological information, is a promising method to obtain health status because ISF is easily assessed by implanted or percutaneous measurements. Reverse iontophoresis extracts ISF by applying an electric field onto the skin, and it is a promising method to noninvasively obtain ISF, which, in turn, enables noninvasive epidermal physiological parameter monitoring. However, the development of reverse iontophoresis was relatively slow around the 2010s due to the rigidity and low biocompatibility of the applied devices. With the rapid development of flexible electronic technology in recent years, new progress has been made in the field of reverse iontophoresis, especially in the field of blood glucose monitoring and drug monitoring. This review summarizes the recent advances and discusses the challenges and opportunities of reverse iontophoresis.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Zhao F, Su Y, Wang J, Romanova S, DiMaio DJ, Xie J, Zhao S. A Highly Efficacious Electrical Biofilm Treatment System for Combating Chronic Wound Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208069. [PMID: 36385439 PMCID: PMC9918715 DOI: 10.1002/adma.202208069] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/24/2022] [Indexed: 05/26/2023]
Abstract
Biofilm infection has a high prevalence in chronic wounds and can delay wound healing. Current treatment using debridement and antibiotic administration imposes a significant burden on patients and healthcare systems. To address their limitations, a highly efficacious electrical antibiofilm treatment system is described in this paper. This system uses high-intensity current (75 mA cm-2 ) to completely debride biofilm above the wound surface and enhance antibiotic delivery into biofilm-infected wounds simultaneously. Combining these two effects, this system uses short treatments (≤2 h) to reduce bacterial count of methicillin-resistant S. aureus (MRSA) biofilm-infected ex vivo skin wounds from 1010 to 105.2 colony-forming units (CFU) g-1 . Taking advantage of the hydrogel ionic circuit design, this system enhances the in vivo safety of high-intensity current application compared to conventional devices. The in vivo antibiofilm efficacy of the system is tested using a diabetic mouse-based wound infection model. MRSA biofilm bacterial count decreases from 109.0 to 104.6 CFU g-1 at 1 day post-treatment and to 103.3 CFU g-1 at 7 days post-treatment, both of which are below the clinical threshold for infection. Overall, this novel technology provides a quick, safe, yet highly efficacious treatment to chronic wound biofilm infections.
Collapse
Affiliation(s)
- Fan Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yajuan Su
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Junying Wang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siwei Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
3
|
Glinka M, Filatova K, Kucińska-Lipka J, Šopík T, Domincová Bergerová E, Mikulcová V, Wasik A, Sedlařík V. Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin. Molecules 2022; 27:molecules27207045. [PMID: 36296639 PMCID: PMC9609933 DOI: 10.3390/molecules27207045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Three porous matrices based on poly(lactic acid) are proposed herein for the controlled release of amikacin. The materials were fabricated by the method of spraying a surface liquid. Description is given as to the possibility of employing a modifier, such as a silica nanocarrier, for prolonging the release of amikacin, in addition to using chitosan to improve the properties of the materials, e.g., stability and sorption capacity. Depending on their actual composition, the materials exhibited varied efficacy for drug loading, as follows: 25.4 ± 2.2 μg/mg (matrices with 0.05% w/v of chitosan), 93 ± 13 μg/mg (with 0.08% w/v SiO2 amikacin modified nanoparticles), and 96 ± 34 μg/mg (matrices without functional additives). An in vitro study confirmed extended release of the drug (amikacin, over 60 days), carried out in accordance with the mathematical Kosmyer–Pepas model for all the materials tested. The matrices were also evaluated for their effectiveness in inhibiting the growth of bacteria such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Concurrent research was conducted on the transdermal absorption, morphology, elemental composition, and thermogravimetric properties of the released drug.
Collapse
Affiliation(s)
- Marta Glinka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Katerina Filatova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Tomáš Šopík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Veronika Mikulcová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Andrzej Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
- Correspondence:
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| |
Collapse
|
4
|
Pünnel LC, Lunter DJ. Film-Forming Systems for Dermal Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13070932. [PMID: 34201668 PMCID: PMC8308977 DOI: 10.3390/pharmaceutics13070932] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/29/2023] Open
Abstract
Film-forming formulations represent a novel form of sustained release dermatic products. They are applied to the skin as a liquid or semi-solid preparation. By evaporation of the volatile solvent on the skin, the polymer contained in the formulation forms a solid film. Various film-forming formulations were tested for their water and abrasion resistance and compared with conventional semi-solid formulations. Penetration and permeation studies of the formulations indicate a potential utility as transdermal therapeutic systems. They can be used as an alternative to patch systems to administer a variety of drugs in a topical way and may provide sustained release characteristics.
Collapse
|
5
|
Textile-based non-invasive lithium drug monitoring: A proof-of-concept study for wearable sensing. Biosens Bioelectron 2020; 150:111897. [DOI: 10.1016/j.bios.2019.111897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/21/2022]
|
6
|
Selected Medicines Used in Iontophoresis. Pharmaceutics 2018; 10:pharmaceutics10040204. [PMID: 30366360 PMCID: PMC6320882 DOI: 10.3390/pharmaceutics10040204] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Iontophoresis is a non-invasive method of systemic and local drug delivery using an electric field. Iontophoresis enables diffusion of the selected drug via skin, mucosa, enamel, dentin, and other tissues. The amount of delivered therapeutic molecules is about 10⁻2000 times greater than conventional forms of delivery. Among other fields, this method is used in dentistry, ophthalmology, otorhinolaryngology, and dermatology. According to related literature, the most important drugs studied or administered by iontophoresis are: Local anesthetics, opioids, steroids, non-steroidal anti-inflammatory drugs, antibacterial drugs, antifungal drugs, antiviral drugs, anticancer drugs, fluorides, and vitamins. The present review covers current available data regarding the selected medicines used in iontophoresis. Furthermore, indications and conditions of iontophoresis application are reviewed.
Collapse
|
7
|
Giri TK, Chakrabarty S, Ghosh B. Transdermal reverse iontophoresis: A novel technique for therapeutic drug monitoring. J Control Release 2016; 246:30-38. [PMID: 27956143 DOI: 10.1016/j.jconrel.2016.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/07/2016] [Indexed: 11/27/2022]
Abstract
Application of transdermal reverse iontophoresis for diagnostic purpose is a relatively new concept but its short span of research is full of ups and downs. In early nineties, when the idea was floated, it received a dubious welcome by the scientific community. Yet to the disbelief of many, 2001 saw the launching of GlucoWatch® G2 Biographer, the first device that could measure the blood sugar level noninvasively. Unfortunately, the device failed to match the expectation and was withdrawn in 2007. However, the concept stayed on. Research on reverse iontophoresis has diversified in many fields. Numerous in vitro and in vivo experiments confirmed the prospect of reverse iontophoresis as a noninvasive tool in therapeutic drug monitoring and clinical chemistry. This review provides an overview about the recent developments in reverse iontophoresis in the field of therapeutic drug monitoring.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Subhasis Chakrabarty
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Bijaya Ghosh
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India.
| |
Collapse
|
8
|
Mannem V, Nanjarapalle C, Stagni G. Iontophoresis of amoxicillin and cefuroxime: rapid therapeutic concentrations in skin. Drug Dev Ind Pharm 2013; 40:325-9. [PMID: 23350692 DOI: 10.3109/03639045.2012.760579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Amoxicillin (AMX) and cefuroxime (CFX) are antibiotics used often to treat skin bacterial infections. Typically, high oral doses are required to achieve minimum inhibitory concentration (MIC) at the site of infection that may affect only a very small area of skin. OBJECTIVES To lower side effects and increase therapeutic effectiveness, the percutaneous absorption and retention of AMX and CFX administered by iontophoresis was investigated in a rabbit model by measuring dermis concentrations via microdialysis. METHODS Iontophoresis was performed using a stainless steel electrode and a non-woven polypropylene pad. The cartridge pad was soaked with a solution of AMX in glycerin or of CFX in glycerin/water (60:40). Constant current density of 0, 100, 200 or 300 µA/cm(2) was applied for 60 min. RESULTS For AMX, therapeutically effective skin concentrations were detected immediately after the application of electrical current for any of the current density tested and remained above it for at least 2 h from the end of iontophoresis. For CFX, skin concentrations rose above MIC only at the higher current densities and fell below the MIC by the end of the experiment. CONCLUSION Iontophoresis is a promising method to obtain a fast and sustained concentration of AMX and CFX in skin.
Collapse
Affiliation(s)
- Vamshi Mannem
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University , Brooklyn, NY , USA
| | | | | |
Collapse
|
9
|
Marra F, Nicoli S, Padula C, Santi P. Amikacin reverse iontophoresis: optimization of in vitro extraction. Int J Pharm 2012; 440:216-20. [PMID: 22824514 DOI: 10.1016/j.ijpharm.2012.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/15/2012] [Accepted: 07/13/2012] [Indexed: 11/25/2022]
Abstract
The aim of this work was to optimize amikacin reverse iontophoretic extraction across the skin in vitro, for non-invasive drug monitoring. Reverse iontophoresis experiments were performed using vertical diffusion cells. The lower chamber, simulating body fluids, contained amikacin bisulphate and acetaminophen, as marker for electroosmosis, while the upper chamber was filled with the appropriate extraction solution. The effect of concentration of amikacin in the dermal bathing solution and the effect of extraction solution composition and pH were studied. The results show that the extraction of amikacin was independent of pH and always in the anode-to-cathode direction, in agreement with the positive charge of the drug. The presence of amikacin in the bathing solution did not modify acetaminophen extraction at pH 4.0, while the extraction was reduced at pH 8.0. In conclusion, amikacin can be extracted across the skin in vitro by reverse iontophoresis. Owing to the charge of the molecule, extraction takes place at the cathode. Using acetaminophen as neutral marker, it was shown that amikacin can interact with the skin and alter its permselectivity at pH 8.0.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento Farmaceutico, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | |
Collapse
|
10
|
Csiszer AB, Towle HA, Daly CM. Successful treatment of necrotizing fasciitis in the hind limb of a great dane. J Am Anim Hosp Assoc 2010; 46:433-8. [PMID: 21041337 DOI: 10.5326/0460433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A 5-month-old, intact female Great Dane was presented for an acute onset of rapidly progressive lameness, severe pain, and diffuse swelling of the right hind limb. Ultrasound evaluation revealed echogenic fluid pockets extending along fascial planes of the right hind limb, from the proximal femur to the hock. Necrotic soft tissues were debrided, and closed-suction drains were placed. No foreign material was identified at surgery. Fluid culture identified a beta-hemolytic Streptococcus sp., and affected fascial histopathology was consistent with necrotizing fasciitis. Postoperatively, the puppy was managed with intravenous broad-spectrum antibiotics, local infusions of amikacin, and daily physical rehabilitation. Oral pentoxifylline was administered to treat bronchopneumonia and streptococcal toxic shock syndrome that developed secondary to necrotizing fasciitis. To our knowledge, this is the first report of a successfully managed case of beta-hemolytic, streptococcal, necrotizing fasciitis successfully managed after a single surgical debridement in combination with systemic broad-spectrum antibiotics, local amikacin infusion, active closed-suction drainage, daily cytology, massage, and passive range-of-motion exercises to maintain limb function.
Collapse
Affiliation(s)
- Amie B Csiszer
- Oregon Veterinary Referral Associates, 444 B Street, Springfield, Oregon 97477, USA
| | | | | |
Collapse
|
11
|
Delgado-Charro M. Recent advances on transdermal iontophoretic drug delivery and non-invasive sampling. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50015-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|