1
|
Liang C, Fan Z, Zhang Z, Wang P, Deng H, Tao J. Electrospinning technology: a promising approach for tendon-bone interface tissue engineering. RSC Adv 2024; 14:26077-26090. [PMID: 39161449 PMCID: PMC11332360 DOI: 10.1039/d4ra04043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
The regeneration of tendon-bone interface tissue has become a topic of great interest in recent years. However, the complex nature of this interface has posed challenges in finding suitable solutions. Tissue engineering, with its potential to improve clinical outcomes and play a crucial role in musculoskeletal function, has been increasingly explored for tendon-bone interface regeneration. This review focuses on the research advancements of electrospinning technology in interface tissue engineering. By utilizing electrospinning, researchers have been able to fabricate scaffolds with tailored properties to promote the regeneration and integration of tendon and bone tissues. The review discusses the unique structure and function of the tendon-bone interface, the mechanisms involved in its healing, and the limitations currently faced in achieving successful regeneration. Additionally, it highlights the potential of electrospinning technology in scaffold fabrication and its role in facilitating the development of functional and integrated tendon-bone interface tissues. Overall, this review provides valuable insights into the application of electrospinning technology for tendon-bone interface tissue engineering, emphasizing its significance in addressing the challenges associated with regeneration in this complex interface.
Collapse
Affiliation(s)
- Chengzhi Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Zaiwei Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Zirui Zhang
- Department of Rehabilitation Medicine, The 960th Hospital of the Chinese People's Liberation Army Jinan 250000 China
| | - Pinkai Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Hui Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Jun Tao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| |
Collapse
|
2
|
Mahajan A, Zaidi ZS, Shukla A, Saxena R, Katti DS. Functionally graded hydrogels with opposing biochemical cues for osteochondral tissue engineering. Biofabrication 2024; 16:035020. [PMID: 38697073 DOI: 10.1088/1758-5090/ad467e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Osteochondral tissue (OC) repair remains a significant challenge in the field of musculoskeletal tissue engineering. OC tissue displays a gradient structure characterized by variations in both cell types and extracellular matrix components, from cartilage to the subchondral bone. These functional gradients observed in the native tissue have been replicated to engineer OC tissuein vitro. While diverse fabrication methods have been employed to create these microenvironments, emulating the natural gradients and effective regeneration of the tissue continues to present a significant challenge. In this study, we present the design and development of CMC-silk interpenetrating (IPN) hydrogel with opposing dual biochemical gradients similar to native tissue with the aim to regenerate the complete OC unit. The gradients of biochemical cues were generated using an in-house-built extrusion system. Firstly, we fabricated a hydrogel that exhibits a smooth transition of sulfated carboxymethyl cellulose (sCMC) and TGF-β1 (SCT gradient hydrogel) from the upper to the lower region of the IPN hydrogel to regenerate the cartilage layer. Secondly, a hydrogel with a hydroxyapatite (HAp) gradient (HAp gradient hydrogel) from the lower to the upper region was fabricated to facilitate the regeneration of the subchondral bone layer. Subsequently, we developed a dual biochemical gradient hydrogel with a smooth transition of sCMC + TGF-β1 and HAp gradients in opposing directions, along with a blend of both biochemical cues in the middle. The results showed that the dual biochemical gradient hydrogels with biochemical cues corresponding to the three zones (i.e. cartilage, interface and bone) of the OC tissue led to differentiation of bone-marrow-derived mesenchymal stem cells to zone-specific lineages, thereby demonstrating their efficacy in directing the fate of progenitor cells. In summary, our study provided a simple and innovative method for incorporating gradients of biochemical cues into hydrogels. The gradients of biochemical cues spatially guided the differentiation of stem cells and facilitated tissue growth, which would eventually lead to the regeneration of the entire OC tissue with a smooth transition from cartilage (soft) to bone (hard) tissues. This promising approach is translatable and has the potential to generate numerous biochemical and biophysical gradients for regeneration of other interface tissues, such as tendon-to-muscle and ligament-to-bone.
Collapse
Affiliation(s)
- Aman Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Zahra Sifat Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Amit Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Rakshita Saxena
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
3
|
Klar RM, Cox J, Raja N, Lohfeld S. The 3D-McMap Guidelines: Three-Dimensional Multicomposite Microsphere Adaptive Printing. Biomimetics (Basel) 2024; 9:94. [PMID: 38392141 PMCID: PMC10886723 DOI: 10.3390/biomimetics9020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Microspheres, synthesized from diverse natural or synthetic polymers, are readily utilized in biomedical tissue engineering to improve the healing of various tissues. Their ability to encapsulate growth factors, therapeutics, and natural biomolecules, which can aid tissue regeneration, makes microspheres invaluable for future clinical therapies. While microsphere-supplemented scaffolds have been investigated, a pure microsphere scaffold with an optimized architecture has been challenging to create via 3D printing methods due to issues that prevent consistent deposition of microsphere-based materials and their ability to maintain the shape of the 3D-printed structure. Utilizing the extrusion printing process, we established a methodology that not only allows the creation of large microsphere scaffolds but also multicomposite matrices into which cells, growth factors, and therapeutics encapsulated in microspheres can be directly deposited during the printing process. Our 3D-McMap method provides some critical guidelines for issues with scaffold shape fidelity during and after printing. Carefully timed breaks, minuscule drying steps, and adjustments to extrusion parameters generated an evenly layered large microsphere scaffold that retained its internal architecture. Such scaffolds are superior to other microsphere-containing scaffolds, as they can release biomolecules in a highly controlled spatiotemporal manner. This capability permits us to study cell responses to the delivered signals to develop scaffolds that precisely modulate new tissue formation.
Collapse
Affiliation(s)
- Roland M Klar
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - James Cox
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Naren Raja
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Stefan Lohfeld
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
4
|
Zhao T, Li X, Li H, Deng H, Li J, Yang Z, He S, Jiang S, Sui X, Guo Q, Liu S. Advancing drug delivery to articular cartilage: From single to multiple strategies. Acta Pharm Sin B 2023; 13:4127-4148. [PMID: 37799383 PMCID: PMC10547919 DOI: 10.1016/j.apsb.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022] Open
Abstract
Articular cartilage (AC) injuries often lead to cartilage degeneration and may ultimately result in osteoarthritis (OA) due to the limited self-repair ability. To date, numerous intra-articular delivery systems carrying various therapeutic agents have been developed to improve therapeutic localization and retention, optimize controlled drug release profiles and target different pathological processes. Due to the complex and multifactorial characteristics of cartilage injury pathology and heterogeneity of the cartilage structure deposited within a dense matrix, delivery systems loaded with a single therapeutic agent are hindered from reaching multiple targets in a spatiotemporal matched manner and thus fail to mimic the natural processes of biosynthesis, compromising the goal of full cartilage regeneration. Emerging evidence highlights the importance of sequential delivery strategies targeting multiple pathological processes. In this review, we first summarize the current status and progress achieved in single-drug delivery strategies for the treatment of AC diseases. Subsequently, we focus mainly on advances in multiple drug delivery applications, including sequential release formulations targeting various pathological processes, synergistic targeting of the same pathological process, the spatial distribution in multiple tissues, and heterogeneous regeneration. We hope that this review will inspire the rational design of intra-articular drug delivery systems (DDSs) in the future.
Collapse
Affiliation(s)
- Tianyuan Zhao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Haoyuan Deng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianwei Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Songlin He
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuangpeng Jiang
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
6
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
7
|
Chen L, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Liang W, Zhao J. Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective. Front Bioeng Biotechnol 2023; 11:1206806. [PMID: 37675405 PMCID: PMC10478008 DOI: 10.3389/fbioe.2023.1206806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
8
|
Wei J, Xia X, Xiao S, Jin S, Zou Q, Zuo Y, Li Y, Li J. Sequential Dual-Biofactor Release from the Scaffold of Mesoporous HA Microspheres and PLGA Matrix for Boosting Endogenous Bone Regeneration. Adv Healthc Mater 2023; 12:e2300624. [PMID: 36938866 DOI: 10.1002/adhm.202300624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 03/21/2023]
Abstract
The combined design of scaffold structure and multi-biological factors is a prominent strategy to promote bone regeneration. Herein, a composite scaffold of mesoporous hydroxyapatite (HA) microspheres loaded with the bone morphogenetic protein-2 (BMP-2) and a poly(DL-lactic-co-glycolic acid) (PLGA) matrix is constructed by 3D printing. Furthermore, the chemokine stromal cell-derived factor-1α (SDF-1α) is adsorbed on a scaffold surface to achieve the sequential release of the dual-biofactors. The results indicate that the rapid release of SDF-1α chemokine on the scaffold surface effectively recruits bone marrow-derived mesenchymal stem cells (BMSCs) to the target defect area, whereas the long-term sustained release of BMP-2 from the HA microspheres in the degradable PLGA matrix successfully triggers the osteogenic differentiation in the recruited BMSCs, significantly promoting bone regeneration and reconstruction. In addition, these structures/biofactors specially combining scaffold exhibit significantly better biological performance than that of other combined scaffolds, including the bare HA/PLGA scaffold, the scaffold loaded with SDF-1α or BMP-2 biofactor alone, and the scaffold with surface SDF-1α and BMP-2 dual-biofactors. The utilization of mesoporous HA, the assembly method, and sequential release of the two biofactors in the 3D printed composite scaffold present a new method for future design of high-performance bone repairing scaffolds.
Collapse
Affiliation(s)
- Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Shue Jin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
9
|
Huang X, An Y, Yuan S, Chen C, Shan H, Zhang M. Silk fibroin carriers with sustained release capacity for treating neurological diseases. Front Pharmacol 2023; 14:1117542. [PMID: 37214477 PMCID: PMC10196044 DOI: 10.3389/fphar.2023.1117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Neurological diseases such as traumatic brain injury, cerebral ischemia, Parkinson's, and Alzheimer's disease usually occur in the central and peripheral nervous system and result in nervous dysfunction, such as cognitive impairment and motor dysfunction. Long-term clinical intervention is necessary for neurological diseases where neural stem cell transplantation has made substantial progress. However, many risks remain for cell therapy, such as puncture bleeding, postoperative infection, low transplantation success rate, and tumor formation. Sustained drug delivery, which aims to maintain the desired steady-state drug concentrations in plasma or local injection sites, is considered as a feasible option to help overcome side effects and improve the therapeutic efficiency of drugs on neurological diseases. Natural polymers such as silk fibroin have excellent biocompatibility, which can be prepared for various end-use material formats, such as microsphere, gel, coating/film, scaffold/conduit, microneedle, and enables the dynamic release of loaded drugs to achieve a desired therapeutic response. Sustained-release drug delivery systems are based on the mechanism of diffusion and degradation by altering the structures of silk fibroin and drugs, factors, and cells, which can induce nerve recovery and restore the function of the nervous system in a slow and persistent manner. Based on these desirable properties of silk fibroin as a carrier with sustained-release capacity, this paper discusses the role of various forms of silk fibroin-based drug delivery materials in treating neurological diseases in recent years.
Collapse
Affiliation(s)
- Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shengye Yuan
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chen Chen
- Department of Orthopedics, Dongtai People’s Hospital, Dongtai, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Berten-Schunk L, Roger Y, Bunjes H, Hoffmann A. Release of TGF-β 3 from Surface-Modified PCL Fiber Mats Triggers a Dose-Dependent Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Pharmaceutics 2023; 15:pharmaceutics15041303. [PMID: 37111788 PMCID: PMC10146193 DOI: 10.3390/pharmaceutics15041303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The design of implants for tissue transitions remains a major scientific challenge. This is due to gradients in characteristics that need to be restored. The rotator cuff in the shoulder, with its direct osteo-tendinous junction (enthesis), is a prime example of such a transition. Our approach towards an optimized implant for entheses is based on electrospun fiber mats of poly(ε-caprolactone) (PCL) as biodegradable scaffold material, loaded with biologically active factors. Chitosan/tripolyphosphate (CS/TPP) nanoparticles were used to load transforming growth factor-β3 (TGF-β3) with increasing loading concentrations for the regeneration of the cartilage zone within direct entheses. Release experiments were performed, and the concentration of TGF-β3 in the release medium was determined by ELISA. Chondrogenic differentiation of human mesenchymal stromal cells (MSCs) was analyzed in the presence of released TGF-β3. The amount of released TGF-β3 increased with the use of higher loading concentrations. This correlated with larger cell pellets and an increase in chondrogenic marker genes (SOX9, COL2A1, COMP). These data were further supported by an increase in the glycosaminoglycan (GAG)-to-DNA ratio of the cell pellets. The results demonstrate an increase in the total release of TGF-β3 by loading higher concentrations to the implant, which led to the desired biological effect.
Collapse
Affiliation(s)
- Leonie Berten-Schunk
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), 38106 Braunschweig, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| |
Collapse
|
11
|
Loukelis K, Machla F, Bakopoulou A, Chatzinikolaidou M. Kappa-Carrageenan/Chitosan/Gelatin Scaffolds Provide a Biomimetic Microenvironment for Dentin-Pulp Regeneration. Int J Mol Sci 2023; 24:ijms24076465. [PMID: 37047438 PMCID: PMC10094618 DOI: 10.3390/ijms24076465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This study aims to investigate the impact of kappa-carrageenan on dental pulp stem cells (DPSCs) behavior in terms of biocompatibility and odontogenic differentiation potential when it is utilized as a component for the production of 3D sponge-like scaffolds. For this purpose, we prepared three types of scaffolds by freeze-drying (i) kappa-carrageenan/chitosan/gelatin enriched with KCl (KCG-KCl) as a physical crosslinker for the sulfate groups of kappa-carrageenan, (ii) kappa-carrageenan/chitosan/gelatin (KCG) and (iii) chitosan/gelatin (CG) scaffolds as a control. The mechanical analysis illustrated a significantly higher elastic modulus of the cell-laden scaffolds compared to the cell-free ones after 14 and 28 days with values ranging from 25 to 40 kPa, showing an increase of 27-36%, with the KCG-KCl scaffolds indicating the highest and CG the lowest values. Cell viability data showed a significant increase from days 3 to 7 and up to day 14 for all scaffold compositions. Significantly increasing alkaline phosphatase (ALP) activity has been observed over time in all three scaffold compositions, while the KCG-KCl scaffolds indicated significantly higher calcium production after 21 and 28 days compared to the CG control. The gene expression analysis of the odontogenic markers DSPP, ALP and RunX2 revealed a two-fold higher upregulation of DSPP in KCG-KCl scaffolds at day 14 compared to the other two compositions. A significant increase of the RunX2 expression between days 7 and 14 was observed for all scaffolds, with a significantly higher increase of at least twelve-fold for the kappa-carrageenan containing scaffolds, which exhibited an earlier ALP gene expression compared to the CG. Our results demonstrate that the integration of kappa-carrageenan in scaffolds significantly enhanced the odontogenic potential of DPSCs and supports dentin-pulp regeneration.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
| | - Foteini Machla
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Foundation for Research and Technology Hellas-Institute of Electronic Structure and Laser (FORTH-IESL), 70013 Heraklion, Greece
| |
Collapse
|
12
|
Jalandhra GK, Molley TG, Hung TT, Roohani I, Kilian KA. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions. Acta Biomater 2023; 156:75-87. [PMID: 36055612 DOI: 10.1016/j.actbio.2022.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Osteochondral tissue has a complex hierarchical structure spanning subchondral bone to articular cartilage. Biomaterials approaches to mimic and repair these interfaces have had limited success, largely due to challenges in fabricating composite hard-soft interfaces with living cells. Biofabrication approaches have emerged as attractive methods to form osteochondral analogues through additive assembly of hard and soft components. We have developed a unique printing platform that is able to integrate soft and hard materials concurrently through freeform printing of mineralized constructs within tunable microgel suspensions containing living cells. A library of microgels based on gelatin were prepared, where the stiffness of the microgels and a liquid "filler" phase can be tuned for bioprinting while simultaneously directing differentiation. Tuning microgel stiffness and filler content differentially directs chondrogenesis and osteogenesis within the same construct, demonstrating how this technique can be used to fabricate osteochondral interfaces in a single step. Printing of a rapidly setting calcium phosphate cement, so called "bone-ink" within a cell laden suspension bath further guides differentiation, where the cells adjacent to the nucleated hydroxyapatite phase undergo osteogenesis with cells in the surrounding medium undergoing chondrogenesis. In this way, bone analogues with hierarchical structure can be formed within cell-laden gradient soft matrices to yield multiphasic osteochondral constructs. This technique provides a versatile one-pot biofabrication approach without harsh post-processing which will aid efforts in bone disease modelling and tissue engineering. STATEMENT OF SIGNIFICANCE: This paper demonstrates the first example of a biofabrication approach to rapidly form osteochondral constructs in a single step under physiological conditions. Key to this advance is a tunable suspension of extracellular matrix microgels that are packed together with stem cells, providing a unique and modular scaffolding for guiding the simultaneous formation of bone and cartilage tissue. The physical properties of the suspension allow direct writing of a ceramic "bone-ink", resulting in an ordered structure of microscale hydrogels, living cells, and bone mimics in a single step. This platform reveals a simple approach to making complex skeletal tissue for disease modelling, with the possibility of repairing and replacing bone-cartilage interfaces in the clinic using a patient's own cells.
Collapse
Affiliation(s)
- Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW 2052
| | - Iman Roohani
- School of Chemistry, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; School of Chemistry, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052.
| |
Collapse
|
13
|
Dehghan-Baniani D, Mehrjou B, Chu PK, Lee WYW, Wu H. Recent Advances in "Functional Engineering of Articular Cartilage Zones by Polymeric Biomaterials Mediated with Physical, Mechanical, and Biological/Chemical Cues". Adv Healthc Mater 2022; 12:e2202581. [PMID: 36571465 DOI: 10.1002/adhm.202202581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Articular cartilage (AC) plays an unquestionable role in joint movements but unfortunately the healing capacity is restricted due to its avascular and acellular nature. While cartilage tissue engineering has been lifesaving, it is very challenging to remodel the complex cartilage composition and architecture with gradient physio-mechanical properties vital to proper tissue functions. To address these issues, a better understanding of the intrinsic AC properties and how cells respond to stimuli from the external microenvironment must be better understood. This is essential in order to take one step closer to producing functional cartilaginous constructs for clinical use. Recently, biopolymers have aroused much attention due to their versatility, processability, and flexibility because the properties can be tailored to match the requirements of AC. This review highlights polymeric scaffolds developed in the past decade for reconstruction of zonal AC layers including the superficial zone, middle zone, and deep zone by means of exogenous stimuli such as physical, mechanical, and biological/chemical signals. The mimicked properties are reviewed in terms of the biochemical composition and organization, cell fate (morphology, orientation, and differentiation), as well as mechanical properties and finally, the challenges and potential ways to tackle them are discussed.
Collapse
Affiliation(s)
- Dorsa Dehghan-Baniani
- Department of Chemical and Biological Engineering Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China.,Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong SAR, China
| | - Hongkai Wu
- Department of Chemical and Biological Engineering Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
14
|
Croft AS, Spessot E, Bhattacharjee P, Yang Y, Motta A, Wöltje M, Gantenbein B. Biomedical applications of silk and its role for intervertebral disc repair. JOR Spine 2022; 5:e1225. [PMID: 36601376 PMCID: PMC9799090 DOI: 10.1002/jsp2.1225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 12/30/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low back pain. To date, the present therapies mainly focus on treating the symptoms caused by IDD rather than addressing the problem itself. For this reason, researchers have searched for a suitable biomaterial to repair and/or regenerate the IVD. A promising candidate to fill this gap is silk, which has already been used as a biomaterial for many years. Therefore, this review aims first to elaborate on the different origins from which silk is harvested, the individual composition, and the characteristics of each silk type. Another goal is to enlighten why silk is so suitable as a biomaterial, discuss its functionalization, and how it could be used for tissue engineering purposes. The second part of this review aims to provide an overview of preclinical studies using silk-based biomaterials to repair the inner region of the IVD, the nucleus pulposus (NP), and the IVD's outer area, the annulus fibrosus (AF). Since the NP and the AF differ fundamentally in their structure, different therapeutic approaches are required. Consequently, silk-containing hydrogels have been used mainly to repair the NP, and silk-based scaffolds have been used for the AF. Although most preclinical studies have shown promising results in IVD-related repair and regeneration, their clinical transition is yet to come.
Collapse
Affiliation(s)
- Andreas S. Croft
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
| | - Promita Bhattacharjee
- Department of Chemical SciencesSSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of LimerickLimerickIreland
| | - Yuejiao Yang
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material TechnologyDresdenGermany
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
15
|
Wang W, Ye R, Xie W, Zhang Y, An S, Li Y, Zhou Y. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment. Front Bioeng Biotechnol 2022; 10:911281. [PMID: 36131726 PMCID: PMC9483725 DOI: 10.3389/fbioe.2022.911281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Sandwiched between articular cartilage and subchondral bone, the calcified cartilage layer (CCL) takes on both biomechanical and biochemical functions in joint development and ordinary activities. The formation of CCL is not only unique in articular cartilage but can also be found in the chondro-osseous junction adjacent to the growth plate during adolescence. The formation of CCL is an active process under both cellular regulation and intercellular communication. Abnormal alterations of CCL can be indications of degenerative diseases including osteoarthritis. Owing to the limited self-repair capability of articular cartilage and core status of CCL in microenvironment maintenance, tissue engineering reconstruction of CCL in damaged cartilage can be of great significance. This review focuses on possible tissue engineering reconstruction methods targeting CCL for further OA treatment.
Collapse
Affiliation(s)
- Weiyang Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixi Ye
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueyao Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Senbo An
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yang Zhou
- Department of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| |
Collapse
|
16
|
Chu G, Zhang W, Han F, Li K, Liu C, Wei Q, Wang H, Liu Y, Han F, Li B. The role of microenvironment in stem cell-based regeneration of intervertebral disc. Front Bioeng Biotechnol 2022; 10:968862. [PMID: 36017350 PMCID: PMC9395990 DOI: 10.3389/fbioe.2022.968862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Regenerative medicine for intervertebral disc (IVD) disease, by utilizing chondrocytes, IVD cells, and stem cells, has progressed to clinical trials in the treatment of back pain, and has been studied in various animal models of disc degeneration in the past decade. Stem cells exist in their natural microenvironment, which provides vital dynamic physical and chemical signals for their survival, proliferation and function. Long-term survival, function and fate of mesenchymal stem cells (MSCs) depend on the microenvironment in which they are transplanted. However, the transplanted MSCs and the endogenous disc cells were influenced by the complicated microenvironment in the degenerating disc with the changes of biochemical and biophysical components. It is important to understand how the MSCs and endogenous disc cells survive and thrive in the harsh microenvironment of the degenerative disc. Furthermore, materials containing stem cells and their natural microenvironment have good clinical effects. However, the implantation of tissue engineering IVD (TE-IVD) cannot provide a complete and dynamic microenvironment for MSCs. IVD graft substitutes may need further improvement to provide the best engineered MSC microenvironment. Additionally, the IVD progenitor cells inside the stem cell niches have been regarded as popular graft cells for IVD regeneration. However, it is still unclear whether actual IVD progenitor cells exist in degenerative spinal conditions. Therefore, the purpose of this review is fourfold: to discuss the presence of endogenous stem cells; to review and summarize the effects of the microenvironment in biological characteristics of MSC, especially those from IVD; to explore the feasibility and prospects of IVD graft substitutes and to elaborate state of the art in the use of MSC transplantation for IVD degeneration in vivo as well as their clinical application.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kexin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chengyuan Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qiang Wei
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Huan Wang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yijie Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Rahman G, Frazier TP, Gimble JM, Mohiuddin OA. The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2022; 10:893992. [PMID: 35845419 PMCID: PMC9280640 DOI: 10.3389/fbioe.2022.893992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.
Collapse
Affiliation(s)
- Gohar Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Omair A. Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
18
|
Venkatesan J, Murugan SS, Ad P, Dgv Y, Seong GH. Alginate-based Composites Microspheres: Preparations and Applications for Bone Tissue Engineering. Curr Pharm Des 2022; 28:1067-1081. [PMID: 35593346 DOI: 10.2174/1381612828666220518142911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based biomaterials have been extensively studied for bone tissue engineering. Scaffolds, microspheres, and hydrogels can be developed using alginate, which is biocompatible, biodegradable, and able to deliver growth factors and drugs. Alginate microspheres can be produced using crosslinking, microfluidic, three-dimensional printing, extrusion, and emulsion methods. The sizes of the alginate microspheres range from 10 µm to 4 mm. This review describes the chemical characterization and mechanical assessment of alginate-based microspheres. Combinations of alginate with hydroxyapatite, chitosan, collagen, polylactic acid, polycaprolactone, and bioglass were discussed for bone tissue repair and regeneration. In addition, alginate combinations with bone morphogenetic proteins, vascular endothelial growth factor, transforming growth factor beta-3, other growth factors, cells, proteins, drugs, and osteoinductive drugs were analyzed for tissue engineering applications. Furthermore, the biocompatibility of developed alginate microspheres was discussed for different cell lines. Finally, alginate microsphere-based composites with stem cell interaction for bone tissue regeneration were presented. In the present review, we have assessed the preclinical research on in vivo models of alginate-based microspheres for bone tissue repair and regeneration. Overall, alginate-based microspheres are potential candidates for graft substitutes and the treatment of various bone-related diseases.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea.,Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Sesha Subramanian Murugan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Pandurang Ad
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Yashaswini Dgv
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
19
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
20
|
Three-dimensional gradient porous polymeric composites for osteochondral regeneration. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02989-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Nabizadeh Z, Nasrollahzadeh M, Daemi H, Baghaban Eslaminejad M, Shabani AA, Dadashpour M, Mirmohammadkhani M, Nasrabadi D. Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:363-389. [PMID: 35529803 PMCID: PMC9039523 DOI: 10.3762/bjnano.13.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/24/2022] [Indexed: 05/12/2023]
Abstract
Osteoarthritis, which typically arises from aging, traumatic injury, or obesity, is the most common form of arthritis, which usually leads to malfunction of the joints and requires medical interventions due to the poor self-healing capacity of articular cartilage. However, currently used medical treatment modalities have reported, at least in part, disappointing and frustrating results for patients with osteoarthritis. Recent progress in the design and fabrication of tissue-engineered microscale/nanoscale platforms, which arises from the convergence of stem cell research and nanotechnology methods, has shown promising results in the administration of new and efficient options for treating osteochondral lesions. This paper presents an overview of the recent advances in osteochondral tissue engineering resulting from the application of micro- and nanotechnology approaches in the structure of biomaterials, including biological and microscale/nanoscale topographical cues, microspheres, nanoparticles, nanofibers, and nanotubes.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Mirmohammadkhani
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Nasrabadi
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
22
|
Barthold JE, McCreery K, Martinez J, Bellerjeau C, Ding Y, Bryant SJ, Whiting G, Neu CP. Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Biofabrication 2022; 14. [PMID: 35203071 DOI: 10.1088/1758-5090/ac584c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/24/2022] [Indexed: 11/11/2022]
Abstract
Articular cartilage is a layered tissue with a complex, heterogenous structure and lubricated surface which is challenging to reproduce using traditional tissue engineering methods. 3D printing techniques have enabled engineering of complex scaffolds for cartilage regeneration, but constructs fail to replicate the unique zonal layers, and limited cytocompatible crosslinkers exist. To address the need for mechanically robust, layered scaffolds, we developed an extracellular matrix particle-based biomaterial ink (pECM biomaterial ink) which can be extruded, polymerizes via disulfide bonding, and restores surface lubrication. Our cartilage pECM biomaterial ink utilizes functionalized hyaluronan, a naturally occurring glycosaminoglycan, crosslinked directly to decellularized tissue particles (ø 40-100 µm). We experimentally determined that hyaluronan functionalized with thiol groups (t-HA) forms disulfide bonds with the ECM particles to form a 3D network. We show that two inks can be co-printed to create a layered cartilage scaffold with bulk compressive and surface (friction coefficient, adhesion, and roughness) mechanics approaching values measured on native cartilage. We demonstrate that our printing process enables the addition of macropores throughout the construct, increasing the viability of introduced cells by 10%. The delivery of these 3D printed scaffolds to a defect is straightforward, customizable to any shape, and adheres to surrounding tissue.
Collapse
Affiliation(s)
- Jeanne E Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Kaitlin McCreery
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Jaylene Martinez
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Charlotte Bellerjeau
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Yifu Ding
- Department of Mechanical Engineering Campmode, University of Colorado at Boulder, Campus Box 427, 1111 Engineering Drive, Boulder, Colorado, 80309, UNITED STATES
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Ave, USA, Boulder, Colorado, 80309, UNITED STATES
| | - Gregory Whiting
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado, 80309-0401, UNITED STATES
| |
Collapse
|
23
|
Sandhurst ES, Jaswandkar SV, Kundu K, Katti DR, Katti KS, Sun H, Engebretson D, Francis KR. Nanoarchitectonics of a Microsphere-Based Scaffold for Modeling Neurodevelopment and Neurological Disease. ACS APPLIED BIO MATERIALS 2022; 5:528-544. [PMID: 35045249 PMCID: PMC8865216 DOI: 10.1021/acsabm.1c01012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three-dimensional cellular constructs derived from pluripotent stem cells allow the ex vivo study of neurodevelopment and neurological disease within a spatially organized model. However, the robustness and utility of three-dimensional models is impacted by tissue self-organization, size limitations, nutrient supply, and heterogeneity. In this work, we have utilized the principles of nanoarchitectonics to create a multifunctional polymer/bioceramic composite microsphere system for stem cell culture and differentiation in a chemically defined microenvironment. Microspheres could be customized to produce three-dimensional structures of defined size (ranging from >100 to <350 μm) with lower mechanical properties compared with a thin film. Furthermore, the microspheres softened in solution, approaching more tissue-like mechanical properties over time. With neural stem cells (NSCs) derived from human induced pluripotent stem cells, microsphere-cultured NSCs were able to utilize multiple substrates to promote cell adhesion and proliferation. Prolonged culture of NSC-bound microspheres under differentiating conditions allowed the formation of both neural and glial cell types from control and patient-derived stem cell models. Human NSCs and differentiated neurons could also be cocultured with astrocytes and human umbilical vein endothelial cells, demonstrating application for tissue-engineered modeling of development and human disease. We further demonstrated that microspheres allow the loading and sustained release of multiple recombinant proteins to support cellular maintenance and differentiation. While previous work has principally utilized self-organizing models or protein-rich hydrogels for neural culture, the three-dimensional matrix developed here through nanoarchitectonics represents a chemically defined and robust alternative for the in vitro study of neurodevelopment and nervous system disorders.
Collapse
Affiliation(s)
- Eric S. Sandhurst
- Department
of Biomedical Engineering, University of
South Dakota, Sioux
Falls, South Dakota 57107, United States,BioSystems
Networks and Translational Research Center, Brookings, South Dakota 57006, United States
| | - Sharad V. Jaswandkar
- Civil,
Construction and Environmental Engineering Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Krishna Kundu
- Civil,
Construction and Environmental Engineering Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh R. Katti
- Civil,
Construction and Environmental Engineering Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kalpana S. Katti
- Civil,
Construction and Environmental Engineering Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Hongli Sun
- Department
of Biomedical Engineering, University of
South Dakota, Sioux
Falls, South Dakota 57107, United States,BioSystems
Networks and Translational Research Center, Brookings, South Dakota 57006, United States
| | - Daniel Engebretson
- Department
of Biomedical Engineering, University of
South Dakota, Sioux
Falls, South Dakota 57107, United States
| | - Kevin R. Francis
- Department
of Biomedical Engineering, University of
South Dakota, Sioux
Falls, South Dakota 57107, United States,BioSystems
Networks and Translational Research Center, Brookings, South Dakota 57006, United States,Cellular
Therapies and Stem Cell Biology Group, Sanford
Research, Sioux Falls, South Dakota 57104, United States,Department
of Pediatrics, University of South Dakota
Sanford School of Medicine, Sioux
Falls, South Dakota 57105, United States,
| |
Collapse
|
24
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
25
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
26
|
Jiang D, Liu J, Pan Y, Zhuang L, Wang P. Surface acoustic wave (SAW) techniques in tissue engineering. Cell Tissue Res 2021; 386:215-226. [PMID: 34390407 DOI: 10.1007/s00441-020-03397-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
Recently, the introduction of surface acoustic wave (SAW) technique for microfluidics has drawn a lot of attention. The pattern and mutual communication in cell layers, tissues, and organs play a critical role in tissue homeostasis and regeneration and may contribute to disease occurrence and progression. Tissue engineering aims to repair and regenerate damaged organs, depending on biomimetic scaffolds and advanced fabrication technology. However, traditional bioengineering synthesis approaches are time-consuming, heterogeneous, and unmanageable. It is hard to pattern cells in scaffolds effectively with no impact on cell viability and function. Here, we summarize a biocompatible, easily available, label-free, and non-invasive tool, surface acoustic wave (SAW) technique, which is getting a lot of attention in tissue engineering. SAW technique can realize accurate sorting, manipulation, and cells' pattern and rapid formation of spheroids. By integrating several SAW devices onto lab-on-a-chip platforms, tissue engineering lab-on-a-chip system was proposed. To the best of our knowledge, this is the first report to summarize the application of this novel technique in the field of tissue engineering.
Collapse
Affiliation(s)
- Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingwen Liu
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuxiang Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China. .,State Key Laboratory for Sensor Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
27
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
28
|
Salerno A, Netti PA. Review on Computer-Aided Design and Manufacturing of Drug Delivery Scaffolds for Cell Guidance and Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:682133. [PMID: 34249885 PMCID: PMC8264554 DOI: 10.3389/fbioe.2021.682133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
In the last decade, additive manufacturing (AM) processes have updated the fields of biomaterials science and drug delivery as they promise to realize bioengineered multifunctional devices and implantable tissue engineering (TE) scaffolds virtually designed by using computer-aided design (CAD) models. However, the current technological gap between virtual scaffold design and practical AM processes makes it still challenging to realize scaffolds capable of encoding all structural and cell regulatory functions of the native extracellular matrix (ECM) of health and diseased tissues. Indeed, engineering porous scaffolds capable of sequestering and presenting even a complex array of biochemical and biophysical signals in a time- and space-regulated manner, require advanced automated platforms suitable of processing simultaneously biomaterials, cells, and biomolecules at nanometric-size scale. The aim of this work was to review the recent scientific literature about AM fabrication of drug delivery scaffolds for TE. This review focused on bioactive molecule loading into three-dimensional (3D) porous scaffolds, and their release effects on cell fate and tissue growth. We reviewed CAD-based strategies, such as bioprinting, to achieve passive and stimuli-responsive drug delivery scaffolds for TE and cancer precision medicine. Finally, we describe the authors' perspective regarding the next generation of CAD techniques and the advantages of AM, microfluidic, and soft lithography integration for enhancing 3D porous scaffold bioactivation toward functional bioengineered tissues and organs.
Collapse
Affiliation(s)
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Kochhar D, DeBari MK, Abbott RD. The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors. Front Bioeng Biotechnol 2021; 9:697981. [PMID: 34239865 PMCID: PMC8259510 DOI: 10.3389/fbioe.2021.697981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biophysical properties of the extracellular environment dynamically regulate cellular fates. In this review, we highlight silk, an indispensable polymeric biomaterial, owing to its unique mechanical properties, bioactive component sequestration, degradability, well-defined architectures, and biocompatibility that can regulate temporospatial biochemical and biophysical responses. We explore how the materiobiology of silks, both mulberry and non-mulberry based, affect cell behaviors including cell adhesion, cell proliferation, cell migration, and cell differentiation. Keeping in mind the novel biophysical properties of silk in film, fiber, or sponge forms, coupled with facile chemical decoration, and its ability to match functional requirements for specific tissues, we survey the influence of composition, mechanical properties, topography, and 3D geometry in unlocking the body's inherent regenerative potential.
Collapse
Affiliation(s)
- Dakshi Kochhar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Ding Z, Cheng W, Mia MS, Lu Q. Silk Biomaterials for Bone Tissue Engineering. Macromol Biosci 2021; 21:e2100153. [PMID: 34117836 DOI: 10.1002/mabi.202100153] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Silk is a natural fibrous polymer with application potential in regenerative medicine. Increasing interest remains for silk materials in bone tissue engineering due to their characteristics in biocompatibility, biodegradability and mechanical properties. Plenty of the in vitro and in vivo studies confirmed the advantages of silk in accelerating bone regeneration. Silk is processed into scaffolds, hydrogels, and films to facilitate different bone regenerative applications. Bioactive factors such as growth factors and drugs, and stem cells are introduced to silk-based matrices to create friendly and osteogenic microenvironments, directing cell behaviors and bone regeneration. The recent progress in silk-based bone biomaterials is discussed and focused on different fabrication and functionalization methods related to osteogenesis. The challenges and potential targets of silk bone materials are highlighted to evaluate the future development of silk-based bone materials.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Md Shipan Mia
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
31
|
Pearce HA, Kim YS, Watson E, Bahrami K, Smoak MM, Jiang EY, Elder M, Shannon T, Mikos AG. Development of a modular, biocompatible thiolated gelatin microparticle platform for drug delivery and tissue engineering applications. Regen Biomater 2021; 8:rbab012. [PMID: 34211728 PMCID: PMC8240604 DOI: 10.1093/rb/rbab012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
The field of biomaterials has advanced significantly in the past decade. With the growing need for high-throughput manufacturing and screening, the need for modular materials that enable streamlined fabrication and analysis of tissue engineering and drug delivery schema has emerged. Microparticles are a powerful platform that have demonstrated promise in enabling these technologies without the need to modify a bulk scaffold. This building block paradigm of using microparticles within larger scaffolds to control cell ratios, growth factors and drug release holds promise. Gelatin microparticles (GMPs) are a well-established platform for cell, drug and growth factor delivery. One of the challenges in using GMPs though is the limited ability to modify the gelatin post-fabrication. In the present work, we hypothesized that by thiolating gelatin before microparticle formation, a versatile platform would be created that preserves the cytocompatibility of gelatin, while enabling post-fabrication modification. The thiols were not found to significantly impact the physicochemical properties of the microparticles. Moreover, the thiolated GMPs were demonstrated to be a biocompatible and robust platform for mesenchymal stem cell attachment. Additionally, the thiolated particles were able to be covalently modified with a maleimide-bearing fluorescent dye and a peptide, demonstrating their promise as a modular platform for tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Hannah A Pearce
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Emma Watson
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Kiana Bahrami
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Mollie M Smoak
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Michael Elder
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Tate Shannon
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| |
Collapse
|
32
|
Seims KB, Hunt NK, Chow LW. Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjug Chem 2021; 32:861-878. [PMID: 33856777 DOI: 10.1021/acs.bioconjchem.1c00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growth factors play a critical role in tissue repair and regeneration. However, their clinical success is limited by their low stability, short half-life, and rapid diffusion from the delivery site. Supraphysiological growth factor concentrations are often required to demonstrate efficacy but can lead to adverse reactions, such as inflammatory complications and increased cancer risk. These issues have motivated the development of delivery systems that enable sustained release and controlled presentation of growth factors. This review specifically focuses on bioconjugation strategies to enhance growth factor activity for bone, cartilage, and osteochondral applications. We describe approaches to localize growth factors using noncovalent and covalent methods, bind growth factors via peptides, and mimic growth factor function with mimetic peptide sequences. We also discuss emerging and future directions to control spatiotemporal growth factor delivery to improve functional tissue repair and regeneration.
Collapse
Affiliation(s)
- Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Natasha K Hunt
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
33
|
Patel M, Jha A, Patel R. Potential application of PLGA microsphere for tissue engineering. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02562-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Irmak G, Gümüşderelioğlu M. Patients- and tissue-specific bio-inks with photoactivated PRP and methacrylated gelatin for the fabrication of osteochondral constructs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112092. [PMID: 33965102 DOI: 10.1016/j.msec.2021.112092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
In osteochondral tissue engineering, while the biochemical and mechanical properties of hydrogels guide stem cell proliferation and differentiation, physical and chemical stimulators also affect the differentiation of stem cells. Herein, we presented a patient and tissue-specific strategy for the development of biomimetic osteochondral constructs with gradient compositions. Osteochondral constructs were fabricated by gradually printing of bio-inks consisting of therapeutic platelet-rich plasma (PRP), adipose tissue-derived mesenchymal stem cells (AdMSCs), and extracellular matrix (ECM) mimetic hydrogel, microwave-assisted methacrylated gelatin (Gel-MA). Periodic application of light in the near infrared region (600-1200 nm wavelength) was used to induce platelet activation and also AdMSCs' differentiation. Gel-MA has the same structure as type I collagen and PRP has cartilage tissue-specific bioactive components, so they provide the appropriate environment for the differentiation of AdMSCs to osteochondral tissue. Histology, immunocytochemistry, and biochemical analyses indicated enhanced glycosaminoglycan (GAG) and calcium content, mineralization, and ECM production. Furthermore, RT-PCR results indicated the expressions of bone- and cartilage-specific genes. In conclusion, the periodically photoactivated hydrogels with relatively low degradation rate and high mechanical strength, and tissue-specific biomimetic structure promoted in-vitro osteochondral tissue formation including hyaline and hypertrophic cartilage and bone phases.
Collapse
Affiliation(s)
- Gülseren Irmak
- Hacettepe University, Bioengineering Department, 06800 Beytepe, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, 06800 Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Hacettepe University, Bioengineering Department, 06800 Beytepe, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
35
|
Cai X, Daniels O, Cucchiarini M, Madry H. Ectopic models recapitulating morphological and functional features of articular cartilage. Ann Anat 2021; 237:151721. [PMID: 33753232 DOI: 10.1016/j.aanat.2021.151721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Articular cartilage is an extremely specialized connective tissue which covers all diarthrodial joints. Implantation of chondrogenic cells without or with additional biomaterial scaffolds in ectopic locationsin vivo generates substitutes of cartilage with structural and functional characteristics that are used in fundamental investigations while also serving as a basis for translational studies. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant ectopic models, among which subcutaneous, intramuscular, and kidney capsule transplantation and elaborates on implanted cells and biomaterial scaffolds and on their use to recapitulate morphological and functional features of articular cartilage. Although the absence of a physiological joint environment and biomechanical stimuli is the major limiting factor, ectopic models are an established component for articular cartilage research aiming to generate a bridge between in vitro data and the clinically more relevant translational orthotopic in vivo models when their limitations are considered.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Oliver Daniels
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
36
|
Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int J Mol Sci 2021; 22:E903. [PMID: 33477502 PMCID: PMC7831065 DOI: 10.3390/ijms22020903] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Shortcomings related to the treatment of bone diseases and consequent tissue regeneration such as transplants have been addressed to some extent by tissue engineering and regenerative medicine. Tissue engineering has promoted structures that can simulate the extracellular matrix and are capable of guiding natural bone repair using signaling molecules to promote osteoinduction and angiogenesis essential in the formation of new bone tissues. Although recent studies on developing novel growth factor delivery systems for bone repair have attracted great attention, taking into account the complexity of the extracellular matrix, scaffolding and growth factors should not be explored independently. Consequently, systems that combine both concepts have great potential to promote the effectiveness of bone regeneration methods. In this review, recent developments in bone regeneration that simultaneously consider scaffolding and growth factors are covered in detail. The main emphasis in this overview is on delivery strategies that employ polymer-based scaffolds for spatiotemporal-controlled delivery of both single and multiple growth factors in bone-regeneration approaches. From clinical applications to creating alternative structural materials, bone tissue engineering has been advancing constantly, and it is relevant to regularly update related topics.
Collapse
Affiliation(s)
- Érica Resende Oliveira
- Food Engineering Department, School of Agronomy, Universidade Federal de Goiás, Campus Samambaia, Goiânia CEP 74690-900, Goiás, Brazil;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland;
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Jithendra Ratnayake
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand;
| | - Dandara Lima Brasil
- Food Science Department, Universidade Federal de Lavras, Lavras CEP 37200-900, Minas Gerais, Brazil;
| | - Amin Shavandi
- BioMatter Unit—École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50—CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
37
|
Lee D, Wufuer M, Kim I, Choi TH, Kim BJ, Jung HG, Jeon B, Lee G, Jeon OH, Chang H, Yoon DS. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci Rep 2021; 11:746. [PMID: 33436904 PMCID: PMC7804460 DOI: 10.1038/s41598-020-80608-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical use of bioactive molecules in bone regeneration has been known to have side effects, which result from uncontrolled and supraphysiological doses. In this study, we demonstrated the synergistic effect of two bioactive molecules, bone morphogenic protein-2 (BMP-2) and alendronate (ALN), by releasing them in a sequential manner. Collagen-hydroxyapatite composite scaffolds functionalized using BMP-2 are loaded with biodegradable microspheres where ALN is encapsulated. The results indicate an initial release of BMP-2 for a few days, followed by the sequential release of ALN after two weeks. The composite scaffolds significantly increase osteogenic activity owing to the synergistic effect of BMP-2 and ALN. Enhanced bone regeneration was identified at eight weeks post-implantation in the rat 8-mm critical-sized defect. Our findings suggest that the sequential delivery of BMP-2 and ALN from the scaffolds results in a synergistic effect on bone regeneration, which is unprecedented. Therefore, such a system exhibits potential for the application of cell-free tissue engineering.
Collapse
Affiliation(s)
- Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Maierdanjiang Wufuer
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Insu Kim
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Hyun Choi
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Byung Jun Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Byoungjun Jeon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 03080, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea. .,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
38
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. J Funct Morphol Kinesiol 2021; 6:E6. [PMID: 33466400 PMCID: PMC7838775 DOI: 10.3390/jfmk6010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| | - Alicia J. El Haj
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
- Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| |
Collapse
|
39
|
Production of Uniform Microspheres Using a Simple Microfluidic Device with Silica Capillary. Macromol Res 2021. [DOI: 10.1007/s13233-021-9012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Wang M, Luo Y, Yu Y, Chen F. Bioengineering Approaches to Accelerate Clinical Translation of Stem Cell Therapies Treating Osteochondral Diseases. Stem Cells Int 2020; 2020:8874742. [PMID: 33424981 PMCID: PMC7775142 DOI: 10.1155/2020/8874742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
The osteochondral tissue is an interface between articular cartilage and bone. The diverse composition, mechanical properties, and cell phenotype in these two tissues pose a big challenge for the reconstruction of the defected interface. Due to the availability and inherent regenerative therapeutic properties, stem cells provide tremendous promise to repair osteochondral defect. This review is aimed at highlighting recent progress in utilizing bioengineering approaches to improve stem cell therapies for osteochondral diseases, which include microgel encapsulation, adhesive bioinks, and bioprinting to control the administration and distribution. We will also explore utilizing synthetic biology tools to control the differentiation fate and deliver therapeutic biomolecules to modulate the immune response. Finally, future directions and opportunities in the development of more potent and predictable stem cell therapies for osteochondral repair are discussed.
Collapse
Affiliation(s)
- Meng Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yixuan Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yin Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
41
|
Dorcemus DL, Kim HS, Nukavarapu SP. Gradient scaffold with spatial growth factor profile for osteochondral interface engineering. Biomed Mater 2020; 16. [PMID: 33291092 DOI: 10.1088/1748-605x/abd1ba] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Osteochondral (OC) matrix design poses a significant engineering challenge due to the complexity involved with bone-cartilage interfaces. To better facilitate the regeneration of OC tissue, we developed and evaluated a biodegradable matrix with uniquely arranged bone and cartilage supporting phases: a poly(lactic-co-glycolic) acid (PLGA) template structure with a porosity gradient along its longitudinal axis uniquely integrated with hyaluronic acid hydrogel. Micro-CT scanning and imaging confirmed the formation of an inverse gradient matrix. Hydroxyapatite was added to the PLGA template which was then plasma-treated to increase hydrophilicity and growth factor affinity. An osteogenic growth factor (bone morphogenetic protein 2; BMP-2) was loaded onto the template scaffold via adsorption, while a chondrogenic growth factor (transforming growth factor beta 1; TGF-β1) was incorporated into the hydrogel phase. Confocal microscopy of the growth factor loaded matrix confirmed the spatial distribution of the two growth factors, with chondrogenic factor confined to the cartilaginous portion and osteogenic factor present throughout the scaffold. We observed spatial differentiation of human mesenchymal stem cells (hMSCs) into cartilage and bone cells in the scaffolds in vitro: cartilaginous regions were marked by increased glycosaminoglycan production, and osteogenesis was seen throughout the graft by alizarin red staining. In a dose-dependent study of BMP-2, hMSC pellet cultures with TGF-β1 and BMP-2 showed synergistic effects on chondrogenesis. These results indicate that development of an inverse gradient matrix can spatially distribute two different growth factors to facilitate chondrogenesis and osteogenesis along different portions of a scaffold, which are key steps needed for formation of an osteochondral interface.
Collapse
Affiliation(s)
- Deborah Leonie Dorcemus
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| | - Hyun Sung Kim
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| | - Syam Prasad Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| |
Collapse
|
42
|
Dai W, Sun M, Leng X, Hu X, Ao Y. Recent Progress in 3D Printing of Elastic and High-Strength Hydrogels for the Treatment of Osteochondral and Cartilage Diseases. Front Bioeng Biotechnol 2020; 8:604814. [PMID: 33330436 PMCID: PMC7729093 DOI: 10.3389/fbioe.2020.604814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Despite considerable progress for the regenerative medicine, repair of full-thickness articular cartilage defects and osteochondral interface remains challenging. This low efficiency is largely due to the difficulties in recapitulating the stratified zonal architecture of articular cartilage and engineering complex gradients for bone-soft tissue interface. This has led to increased interest in three-dimensional (3D) printing technologies in the field of musculoskeletal tissue engineering. Printable and biocompatible hydrogels are attractive materials for 3D printing applications because they not only own high tunability and complexity, but also offer favorable biomimetic environments for live cells, such as porous structure, high water content, and bioactive molecule incorporation. However, conventional hydrogels are usually mechanically weak and brittle, which cannot reach the mechanical requirements for repair of articular cartilage defects and osteochondral interface. Therefore, the development of elastic and high-strength hydrogels for 3D printing in the repairment of cartilage defects and osteochondral interface is crucial. In this review, we summarized the recent progress in elastic and high-strength hydrogels for 3D printing and categorized them into six groups, namely ion bonds interactions, nanocomposites integrated in hydrogels, supramolecular guest-host interactions, hydrogen bonds interactions, dynamic covalent bonds interactions, and hydrophobic interactions. These 3D printed elastic and high-strength hydrogels may provide new insights for the treatment of osteochondral and cartilage diseases.
Collapse
Affiliation(s)
- Wenli Dai
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Muyang Sun
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xi Leng
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqing Hu
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
43
|
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, Guinea GV, Perez-Rigueiro J, Gonzalez-Nieto D, Panetsos F. Biomimetic Approaches for Separated Regeneration of Sensory and Motor Fibers in Amputee People: Necessary Conditions for Functional Integration of Sensory-Motor Prostheses With the Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:584823. [PMID: 33224936 PMCID: PMC7670549 DOI: 10.3389/fbioe.2020.584823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.
Collapse
Affiliation(s)
- Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Irune Orueta-Zenarruzabeitia
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gustavo Víctor Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - José Perez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
44
|
Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review. Int J Biol Macromol 2020; 163:2145-2161. [DOI: 10.1016/j.ijbiomac.2020.09.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
|
45
|
Tran HD, Park KD, Ching YC, Huynh C, Nguyen DH. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Roessler PP, Efe T, Wirtz DC, Schildberg FA. Cartilage Regeneration with Cell-free Type 1 Collagen Matrix - Past, Present and Future (Part 1 - Clinical Aspects). ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2020; 159:607-616. [PMID: 32746491 DOI: 10.1055/a-1200-2765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cartilage regeneration with cell-free matrices has developed from matrix-associated autologous cartilage cell transplantation (MACT) over ten years ago. Adjustments to the legal framework and higher hurdles for cell therapy have led to the procedures being established as an independent alternative to MACT. These procedures, which can be classified as matrix-induced autologous cartilage regeneration (MACR), all rely on the chemotactic stimulus of a cross-linked matrix, which mostly consists of collagens. Given the example of a commercially available type I collagen hydrogel, the state of clinical experience with MACR shall be summarized and an outlook on the development of the method shall be provided. It has been demonstrated in the clinical case series summarized here over the past few years that the use of the matrix is not only safe but also yields good clinical-functional and MR-tomographic results for both small (~ 10 mm) and large (> 10 mm) focal cartilage lesions. Depending on the size of the defect, MACR with a collagen type I matrix plays an important role as an alternative treatment method, in direct competition with both: microfracture and MACT.
Collapse
Affiliation(s)
- Philip Peter Roessler
- OPM - Orthopädische Praxisklinik Mayen.,Medical Faculty, Orthopaedics and Trauma Surgery, Rheinische Friedrich-Wilhelms-Universität Bonn
| | - Turgay Efe
- Orthopaedicum Lich.,Medical Faculty, Orthopaedics and Trauma Surgery, Philipps-Universität Marburg
| | | | | |
Collapse
|
47
|
Friese N, Gierschner MB, Schadzek P, Roger Y, Hoffmann A. Regeneration of Damaged Tendon-Bone Junctions (Entheses)-TAK1 as a Potential Node Factor. Int J Mol Sci 2020; 21:E5177. [PMID: 32707785 PMCID: PMC7432881 DOI: 10.3390/ijms21155177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.
Collapse
Affiliation(s)
- Nina Friese
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Mattis Benno Gierschner
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Yvonne Roger
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
48
|
Cong S, Sun Y, Lin J, Liu S, Chen J. A Synthetic Graft With Multilayered Co-Electrospinning Nanoscaffolds for Bridging Massive Rotator Cuff Tear in a Rat Model. Am J Sports Med 2020; 48:1826-1836. [PMID: 32453629 DOI: 10.1177/0363546520917684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Graft bridging is used in massive rotator cuff tear (MRCT); however, the integration of graft-tendon and graft-bone is still a challenge. HYPOTHESIS A co-electrospinning nanoscaffold of polycaprolactone (PCL) with an "enthesis-mimicking" (EM) structure could bridge MRCT, facilitate tendon regeneration, and improve graft-bone healing. STUDY DESIGN Controlled laboratory study. METHODS First, we analyzed the cytocompatibility of the electrospinning nanoscaffolds, including aligned PCL (aPCL), nonaligned PCL (nPCL), aPCL-collagen I, nPCL-collagen II, and nPCL-nanohydroxyapatite (nHA). Second, for the EM condition, nPCL-collagen II and nPCL-nHA were electrospun layer by layer at one end of the aPCL-collagen I; for the control condition, the nPCL was electrospun on the aPCL. In 40 mature male rats, resection of both the supraspinatus and infraspinatus tendons was performed to create MRCT, and the animals were divided randomly into EM and control groups. In both groups, one end of the layered structure was fixed on the footprint of the rotator cuff, whereas the other end of the layered structure was sutured with the tendon stump. The animals were euthanized for harvesting of tissues for histologic and biomechanical analysis at 4 weeks or 8 weeks postoperatively. RESULTS All scaffolds showed good cytocompatibility in vitro. The graft-tendon tissue in the EM group had more regularly arranged cells, denser tissue, a significantly higher tendon maturing score, and more birefringence compared with the control group at 8 weeks after operation. Newly formed fibrocartilage could be observed at the graft-bone interface in both groups by 8 weeks, but the EM group had a higher graft-bone healing score and significantly more newly formed fibrocartilage than the control group. An enthesis-like structure with transitional layers was observed in the EM group at 8 weeks. Biomechanically, the values for maximum failure load and stiffness of the tendon-graft-bone complex were significantly higher in the EM group than in the control group at 8 weeks. CONCLUSION The co-electrospinning nanoscaffold of aPCL-collagen I could be used as a bridging graft to improve early graft-tendon healing for MRCT in a rat model and enhance early enthesis reconstruction in combination with a multilayered structure of nPCL-collagen II and nPCL-nHA. CLINICAL RELEVANCE We constructed a graft to bridge MRCT, enhance graft-tendon healing and graft-bone healing, and reconstruct the enthesis structure.
Collapse
Affiliation(s)
- Shuang Cong
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| |
Collapse
|
49
|
Zhang W, Ling C, Zhang A, Liu H, Jiang Y, Li X, Sheng R, Yao Q, Chen J. An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioact Mater 2020; 5:832-843. [PMID: 32637747 PMCID: PMC7321772 DOI: 10.1016/j.bioactmat.2020.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Endogenous repair of osteochondral defect is usually limited by the insufficient number of cells in the early stage and incomplete cell differentiation in the later stage. The development of drug delivery systems for sequential release of pro-migratory and pro-chondrogenic molecules to induce endogenous bone marrow-derived mesenchymal stem cells (BMSCs) recruitment and chondrogenic differentiation is highly desirable for in situ osteochondral regeneration. In this study, a novel, all-silk-derived sequential delivery system was fabricated by incorporating the tunable drug-loaded silk fibroin (SF) nanospheres into a SF porous matrix. The loading efficiency and release kinetics of biomolecules depended on the initial SF/polyvinyl alcohol (PVA) concentrations (0.2%, 1% and 5%) of the nanospheres, as well as the hydrophobicity of the loaded molecules, resulting in controllable and programmed delivery profiles. Our findings indicated that the 5% nanosphere-incorporated matrix showed a rapid release of E7 peptide during the first 120 h, whereas the 0.2% nanosphere-incorporated matrix provided a slow and sustained release of Kartogenin (KGN) longer than 30 days. During in vitro culture of BMSCs, this functional SF matrix incorporated with E7/KGN nanospheres showed good biocompatibility, as well as enhanced BMSCs migration and chondrogenic differentiation through the release of E7 and KGN. Furthermore, when implanted into rabbit osteochondral defect, the SF nanosphere matrix with sequential E7/KGN release promoted the regeneration of both cartilage and subchondral bone. This work not only provided a novel all-silk-derived drug delivery system for sequential release of molecules, but also a functional tissue-engineered scaffold for osteochondral regeneration. An all-silk-derived sequential biomolecule delivery system is developed. The release profiles of both hydrophilic and hydrophobic molecules from the SF nanosphere matrix can be easily tuned. This SF nanosphere matrix induces BMSCs recruitment and chondrogenic differentiation by programmed release of E7 and KGN. The SF nanosphere matrix with sequential E7/KGN release improves the regeneration of cartilage and subchondral bone in vivo..
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Aini Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Yujie Jiang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xiaolong Li
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| |
Collapse
|
50
|
Patil S, Dhyani V, Kaur T, Singh N. Spatiotemporal Control over Cell Proliferation and Differentiation for Tissue Engineering and Regenerative Medicine Applications Using Silk Fibroin Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:3476-3493. [DOI: 10.1021/acsabm.0c00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Smita Patil
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vartika Dhyani
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|