1
|
Albérola G, Bellard E, Kolosnjaj-Tabi J, Guard J, Golzio M, Rols MP. Fibroblasts transfection by electroporation in 3D reconstructed human dermal tissue. Bioelectrochemistry 2024; 157:108670. [PMID: 38364517 DOI: 10.1016/j.bioelechem.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The understanding of the mechanisms involved in DNA electrotransfer in human skin remains modest and limits the clinical development of various biomedical applications, such as DNA vaccination. To elucidate some mechanisms of DNA transfer in the skin following electroporation, we created a model of the dermis using a tissue engineering approach. This model allowed us to study the electrotransfection of fibroblasts in a three-dimensional environment that included multiple layers of fibroblasts as well as the self-secreted collagen matrix. With the aim of improving transfection yield, we applied electrical pulses with electric field lines perpendicular to the reconstructed model tissue. Our results indicate that the fibroblasts of the reconstructed skin tissue can be efficiently permeabilized by applied millisecond electrical pulses. However, despite efficient permeabilization, the transfected cells remain localized only on the surface of the microtissue, to which the plasmid was deposited. Second harmonic generation microscopy revealed the extensive extracellular collagen matrix around the fibroblasts, which might have affected the mobility of the plasmid into deeper layers of the skin tissue model. Our results show that the used skin tissue model reproduces the structural barriers that might be responsible for the limited gene electrotransfer in the skin.
Collapse
Affiliation(s)
- Géraldine Albérola
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jorgan Guard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
2
|
Kougkolos G, Laudebat L, Dinculescu S, Simon J, Golzio M, Valdez-Nava Z, Flahaut E. Skin electroporation for transdermal drug delivery: Electrical measurements, numerical model and molecule delivery. J Control Release 2024; 367:235-247. [PMID: 38244842 DOI: 10.1016/j.jconrel.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Skin electroporation for drug delivery involves the application of Pulsed Electric Fields (PEFs) on the skin to disrupt its barrier function in a temporary and non-invasive manner, increasing the uptake of drugs. It represents a potential alternative to delivery methods that are invasive (e.g. injections) or limited. We have developed a drug delivery system comprising nanocomposite hydrogels which act as a reservoir for the drug and an electrode for applying electric pulses on the skin. In this study, we employed a multi-scale approach to investigate the drug delivery system on a mouse skin model, through electrical measurements, numerical modeling and fluorescence microscopy. The Electrical properties indicated a highly non-linear skin conductivity behavior and were used to fine-tune the simulations and study skin recovery after electroporation. Simulation of electric field distribution in the skin showed amplitudes in the range of reversible tissue electroporation (400-1200 V/cm), for 300 V PEF. Fluorescence microscopy revealed increased uptake of fluorescent molecules compared to the non-pulsed control. We reported two reversible electroporation domains for our configuration: (1) at 100 V PEF the first local transport regions appear in the extracellular lipids of the stratum corneum, demonstrated by a rapid increase in the skin's conductivity and an increased uptake of lucifer yellow, a small hydrophilic fluorophore and (2) at 300 V PEF, the first permeabilization of nucleated cells occurred, evidenced by the increased fluorescence of propidium iodide, a membrane-impermeable, DNA intercalating agent.
Collapse
Affiliation(s)
- Georgios Kougkolos
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France; LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France
| | - Lionel Laudebat
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France; INU Champollion, Université de Toulouse, Albi 81012, France
| | - Sorin Dinculescu
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France
| | - Juliette Simon
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France; IPBS, Université de Toulouse, CNRS UMR, UPS, Toulouse CEDEX 4 31077, France
| | - Muriel Golzio
- IPBS, Université de Toulouse, CNRS UMR, UPS, Toulouse CEDEX 4 31077, France.
| | - Zarel Valdez-Nava
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France.
| |
Collapse
|
3
|
Rembiałkowska N, Novickij V, Radzevičiūtė-Valčiukė E, Mickevičiūtė E, Gajewska-Naryniecka A, Kulbacka J. Susceptibility of various human cancer cell lines to nanosecond and microsecond range electrochemotherapy: Feasibility of multi-drug cocktails. Int J Pharm 2023; 646:123485. [PMID: 37802257 DOI: 10.1016/j.ijpharm.2023.123485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Electrochemotherapy (ECT) involves combining anticancer drugs with electroporation, which is induced by pulsed electric fields (PEFs), while the effects vary in effectiveness based on the specific parameters of the electrical pulses and susceptibility of the cells to a specific drug. In this work, we utilized conventional microsecond electroporation protocols (0.8 - 1.5 kV/cm × 100 μs × 8, 1 Hz) and the new modality of nanosecond pulses (4 and 8 kV/cm × 500 ns × 100, 1 kHz and 1 MHz), which are compressed into a high frequency burst. Sensitive and resistant lung, breast and ovarian human cancer cell lines were used in the study. In order to overcome drug-resistance, we have investigated the feasibility to use anticancer drug cocktails i.e., bleomycin and cisplatin combinations with metformin, vinorelbine and Dp44mT. The different susceptibility of various human cancer cells lines to electric pulses was determined, the efficacy of ECT was characterized and the type of cell death depending on the combinations of drugs was investigated. The results indicate that synergistic effects of PEFs with drug cocktails may be used to overcome drug-resistance in cancer, while the application of nsPEF provides more flexibility in parametric protocols and modulation of cancer cell death.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Medical University, Borowska 211 A, 50-556, Wroclaw, Poland.
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| | | | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Medical University, Borowska 211 A, 50-556, Wroclaw, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| |
Collapse
|
4
|
Dermol-Černe J, Pirc E, Miklavčič D. Mechanistic view of skin electroporation - models and dosimetry for successful applications: an expert review. Expert Opin Drug Deliv 2020; 17:689-704. [PMID: 32192364 DOI: 10.1080/17425247.2020.1745772] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Skin electroporation is a promising treatment for transdermal drug delivery, gene electrotransfer, skin rejuvenation, electrochemotherapy, and wound disinfection. Although a considerable amount of in vitro and in vivo studies exists, the translation to clinics is not as fast as one would hope. We hypothesize the reason lies in the inadequate dosimetry, i.e. electrode configurations, pulse parameters, and pulse generators used. We suggest adequate dosimetry can be determined by mathematical modeling which would allow comparison of protocols and facilitate translation into clinics.Areas covered: We introduce the mechanisms and applications of skin electroporation, present existing mathematical models and compare the influence of different model parameters. We review electrodes and pulse generators, prototypes, as well as commercially available models.Expert opinion: The reasons for slow translation of skin electroporation treatments into clinics lie in uncontrolled and inadequate dosimetry, poor reporting rendering comparisons between studies difficult, and significant differences in animal and human skin morphology often dismissed in reports. Mathematical models enable comparison of studies, however, when the parameters of the pulses and electrode configuration are not adequately reported, as is often the case, comparisons are difficult, if not impossible. For each skin electroporation treatment, systematic studies determining optimal parameters should be performed and treatment parameters standardized.
Collapse
Affiliation(s)
- Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Forjanic T, Markelc B, Marcan M, Bellard E, Couillaud F, Golzio M, Miklavci D. Electroporation-Induced Stress Response and Its Effect on Gene Electrotransfer Efficacy: In Vivo Imaging and Numerical Modeling. IEEE Trans Biomed Eng 2019; 66:2671-2683. [DOI: 10.1109/tbme.2019.2894659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Electrotransfer of CpG free plasmids enhances gene expression in skin. Bioelectrochemistry 2019; 130:107343. [PMID: 31401517 DOI: 10.1016/j.bioelechem.2019.107343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
Skin is a very suitable target for gene therapy and DNA vaccination due to its accessibility, its surface and its ability to produce transgenes. Gene electrotransfer (GET) to the skin is under development for clinical applications for DNA vaccine or local treatment such as wound healing. Local treatments are effective if the expression of the plasmid affects only the local environment (skin) by inducing an efficient concentration over a prolonged period. In this study, we evaluate the control of expression in the skin of a plasmid coding a fluorescent protein by its CpG (cytosine-phosphate-guanine motif) content. Two fluorescent reporter genes are evaluated: tdTomato and GFP. The expression is followed on the long term by in vivo fluorescence imaging. Our results show that GET mediated expression in the skin can be controlled by the CpG content of the plasmid. Long term expression (>120 days) can be obtained at high level with CpG-free constructs associated with a proper design of the electrodes where the field distribution mediating the gene electrotransfer is present deep in the skin.
Collapse
|
7
|
Galant L, Delverdier M, Lucas MN, Raymond-Letron I, Teissie J, Tamzali Y. Calcium electroporation: The bioelectrochemical treatment of spontaneous equine skin tumors results in a local necrosis. Bioelectrochemistry 2019; 129:251-258. [PMID: 31229863 DOI: 10.1016/j.bioelechem.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
Electrochemotherapy (ECT) is an anticancer bioelectrochemical therapy where electrical field pulses (electropermeabilization) increase intracellular concentration of antitumor drugs. The procedure is very effective against skin tumors. The restrictive regulations concerning anticancer drugs in veterinary medicine limit use of ECT. Electroporation with calcium (Electroporation Calcium Therapy)(ECaT) was proved to be effective in vivo on induced tumors in laboratory animals. This study evaluated the effects of ECaT in equine sarcoids (spontaneous skin tumors) on an animal cohort. Pulse parameters for ECaT were choosen for using skin contact electrodes. ECaT was applied under general anesthesia. The tumors were removed at different days after the treatment and analyzed by histology. The study assessed the volume fraction of necrosis that was >50% for 9 of 13 sarcoids. Sixteen sarcoids in 10 horses were treated with ECaT. Macroscopic changes (a crust) were observed in 14/16 tumors. The main microscopic changes were necrosis, ulceration,hemorrhages, calcifications and thrombosis. The adverse effect was an inflammatory local reaction. Surrounding tissues were not affected. This targeted effect can be explained by its control by the field distribution in the tissue and on the interstitial diffusion of the injected Ca2+.
Collapse
Affiliation(s)
- Laurine Galant
- Equine Clinic, National Veterinary School of Toulouse, France
| | - Maxence Delverdier
- Department of Histopathology, National Veterinary School of Toulouse, France
| | - Marie-Noëlle Lucas
- Department of Histopathology, National Veterinary School of Toulouse, France
| | - Isabelle Raymond-Letron
- Department of Histopathology, National Veterinary School of Toulouse, France; Platform of Experimental and Compared Histopathology, STROMALab, UMR UPS/CNRS 5223, EFS, Inserm U1031, Toulouse, France
| | - Justin Teissie
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Youssef Tamzali
- Equine Clinic, National Veterinary School of Toulouse, France
| |
Collapse
|
8
|
Pasquet L, Chabot S, Bellard E, Rols MP, Teissie J, Golzio M. Noninvasive Gene Electrotransfer in Skin. Hum Gene Ther Methods 2019; 30:17-22. [DOI: 10.1089/hgtb.2018.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Lise Pasquet
- Institut de Pharmacologie et de Biologie Structurale, Universite de Toulouse, CNRS, Toulouse, France
| | - Sophie Chabot
- Institut de Pharmacologie et de Biologie Structurale, Universite de Toulouse, CNRS, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, Universite de Toulouse, CNRS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Universite de Toulouse, CNRS, Toulouse, France
| | - Justin Teissie
- Institut de Pharmacologie et de Biologie Structurale, Universite de Toulouse, CNRS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Universite de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
9
|
Pasquet L, Chabot S, Bellard E, Markelc B, Rols MP, Reynes JP, Tiraby G, Couillaud F, Teissie J, Golzio M. Safe and efficient novel approach for non-invasive gene electrotransfer to skin. Sci Rep 2018; 8:16833. [PMID: 30443028 PMCID: PMC6237991 DOI: 10.1038/s41598-018-34968-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Gene transfer into cells or tissue by application of electric pulses (i.e. gene electrotransfer (GET)) is a non-viral gene delivery method that is becoming increasingly attractive for clinical applications. In order to make GET progress to wide clinical usage its efficacy needs to be improved and the safety of the method has to be confirmed. Therefore, the aim of our study was to increase GET efficacy in skin, by optimizing electric pulse parameters and the design of electrodes. We evaluated the safety of our novel approach by assaying the thermal stress effect of GET conditions and the biodistribution of a cytokine expressing plasmid. Transfection efficacy of different pulse parameters was determined using two reporter genes encoding for the green fluorescent protein (GFP) and the tdTomato fluorescent protein, respectively. GET was performed using non-invasive contact electrodes immediately after intradermal injection of plasmid DNA into mouse skin. Fluorescence imaging of transfected skin showed that a sophistication in the pulse parameters could be selected to get greater transfection efficacy in comparison to the standard ones. Delivery of electric pulses only mildly induced expression of the heat shock protein Hsp70 in a luminescent reporting transgenic mouse model, demonstrating that there were no drastic stress effects. The plasmid was not detected in other organs and was found only at the site of treatment for a limited period of time. In conclusion, we set up a novel approach for GET combining new electric field parameters with high voltage short pulses and medium voltage long pulses using contact electrodes, to obtain a high expression of both fluorescent reporter and therapeutic genes while showing full safety in living animals.
Collapse
Affiliation(s)
- Lise Pasquet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Sophie Chabot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Bostjan Markelc
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Jean-Paul Reynes
- Invivogen Cayla SAS, 5 rue Jean Rodier, Zone industrielle de Montaudran, 31400, Toulouse, France
| | - Gérard Tiraby
- Invivogen Cayla SAS, 5 rue Jean Rodier, Zone industrielle de Montaudran, 31400, Toulouse, France
| | - Franck Couillaud
- Laboratoire d'Imagerie Moléculaire et Thérapies innovantes en Oncologie (IMOTION) EA 7435, Université de Bordeaux, Bordeaux, France
| | - Justin Teissie
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France.
| |
Collapse
|
10
|
Huang D, Zhao D, Wang X, Li C, Yang T, Du L, Wei Z, Cheng Q, Cao H, Liang Z, Huang Y, Li Z. Efficient delivery of nucleic acid molecules into skin by combined use of microneedle roller and flexible interdigitated electroporation array. Am J Cancer Res 2018; 8:2361-2376. [PMID: 29721085 PMCID: PMC5928895 DOI: 10.7150/thno.23438] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Rationale: Delivery of nucleic acid molecules into skin remains a main obstacle for various types of gene therapy or vaccine applications. Here we propose a novel electroporation approach via combined use of a microneedle roller and a flexible interdigitated electroporation array (FIEA) for efficient delivery of DNA and siRNA into mouse skin. Methods: Using micromachining technology, closely spaced gold electrodes were made on a pliable parylene substrate to form a patch-like electroporation array, which enabled close surface contact between the skin and electrodes. Pre-penetration of the skin with a microneedle roller resulted in the formation of microchannels in the skin, which played a role as liquid electrodes in the skin and provided a uniform and deep electric field in the tissue when pulse stimulation was applied by FIEA. Results: Using this proposed method, gene (RFP) expression and siRNA transfection were successfully achieved in normal mice skin. Anti-SCD1 siRNA electroporated via this method mediated significant gene silencing in the skin. Moreover, electroporation assisted by the microneedle roller showed significant advantages over treatment with FIEA alone. This allowed nucleic acid transportation at low voltage, with ideal safety outcomes. Principal conclusions: Hence, the proposed electroporation approach in this study constitutes a novel way for delivering siRNA and DNA, and even other nucleic acid molecules, to mouse skin in vivo, potentially supporting clinical application in the treatment of skin diseases or intradermal/subcutaneous vaccination.
Collapse
|
11
|
Guillet J, Flahaut E, Golzio M. A Hydrogel/Carbon‐Nanotube Needle‐Free Device for Electrostimulated Skin Drug Delivery. Chemphyschem 2017; 18:2715-2723. [DOI: 10.1002/cphc.201700517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jean‐François Guillet
- CIRIMATUniversité de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT 118 route de Narbonne 31062 Toulouse cedex 9 France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UPS, CNRS, UMR 5089; BP 82164 205 route de Narbonne 31077 Toulouse cedex 4 France
| | - Emmanuel Flahaut
- CIRIMATUniversité de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT 118 route de Narbonne 31062 Toulouse cedex 9 France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UPS, CNRS, UMR 5089; BP 82164 205 route de Narbonne 31077 Toulouse cedex 4 France
| |
Collapse
|
12
|
Abstract
This work investigates the effects of electroporation parameters on the transdermal delivery of insulin. Electroporation (EP) is known to induce temporal pores in the membrane, which are expected to enhance the diffusion of insulin through rabbits' skin. For such purpose, 5 different formulations of insulin and enhancers are applied to rabbit groups (5 rabbits each) with induced hyperglycemia in the presence of electroporative pulses. The blood sugar level (BSL) is followed up to 5-hour duration starting from the administration of the hyperglycemia-inducing factor. The effect of different electroporation parameters on BSL of rabbits is examined and compared with control groups. Results show that the increase in the number of pulses (from 15 up to 60 successive pulses) at an insulin concentration of 50 IU/mL, the increase in insulin concentration (from 50 to 70 IU/mL), and the decrease in applied field strength (from 200 to 100 V/cm) result in a significant decrease in BSL compared with control. Among all of the investigated formulations, the best performance is recorded for the insulin solution + EP (without enhancers) in almost all of the studied experimental conditions.
Collapse
|
13
|
Niakan S, Heidari B, Akbari G, Nikousefat Z. Comparison of Different Electroporation Parameters on Transfection Efficiency of Sheep Testicular Cells. CELL JOURNAL 2016; 18:425-37. [PMID: 27602325 PMCID: PMC5011331 DOI: 10.22074/cellj.2016.4571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Electroporation can be a highly efficient method for introducing the foreign genetic materials into the targeted cells for transient and/or permanent genetic modification. Considering the application of this technique as a very efficient method for drug, oligonucleotide, antibody and plasmid delivery for clinical applications and production of transgenic animals, the present study aimed to optimize the transfection efficiency of sheep testicular cells including spermatogonial stem cells (SSCs) via electroporation. MATERIALS AND METHODS This study is an experimental research conducted in Biotechnology Research Center (Avicenna Research Institute, Tehran, Iran) from September 2013 to March 2014. Following isolation and propagation of one-month lamb testicular cells (SSCs and somatic testicular cells including; Sertoli, Leydig, and myoid cells), the effect of different electroporation parameters including total voltages (280, 320, and 350 V), burst durations (10, 8, and 5 milliseconds), burst modes (single or double) and addition of dimethyl sulfoxide (DMSO) were evaluated on transfection efficiency, viability rate and mean fluorescent intensity (MFI) of sheep testicular cells. RESULTS The most transfection efficiency was obtained in 320 V/8 milliseconds/single burst group in transduction medium with and without DMSO. There was a significantly inverse correlation between transfection efficiency with application of both following parameters: addition of DMSO and double burst. After transfection, the highest and lowest viability rates of testicular cells were demonstrated in 320 V/8 milliseconds with transduction medium without DMSO and 350 V/5 milliseconds in medium containing DMSO. Ad- dition of DMSO to transduction medium in all groups significantly decreased the viability rate. The comparison of gene expression indicated that Sertoli and SSCs had the most fluorescence intensity in 320 V/double burst/DMSO positive. However, myoid and Leydig cells showed the maximum expression in 320 V/single burst and/or 350 V/double burst/ DMSO positive. CONCLUSION We optimized the electroporation method for transfection of sheep testicular cells and recommended the application of 320 V/8 milliseconds/single pulse/DMSO negative for transduction of plasmid vector into these cells. Among testicular cells, the most external gene expression was demonstrated in SSC population.
Collapse
Affiliation(s)
- Sarah Niakan
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Banafsheh Heidari
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghasem Akbari
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Nikousefat
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
14
|
Cell Electrosensitization Exists Only in Certain Electroporation Buffers. PLoS One 2016; 11:e0159434. [PMID: 27454174 PMCID: PMC4959715 DOI: 10.1371/journal.pone.0159434] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting the first-order model to the experimental results, we determined the uptake due to each train (i.e. the first and the second) and the corresponding resealing constant. Cell sensitization was observed in the growth medium but not in other tested buffers. The effect of pulse repetition frequency, cell size change, cytoskeleton disruption and calcium influx do not adequately explain cell sensitization. Based on our results, we can conclude that cell sensitization is a sum of several processes and is buffer dependent. Further research is needed to determine its generality and to identify underlying mechanisms.
Collapse
|
15
|
Golzio M, Teissié J. Imaging of Electrotransferred siRNA. Methods Mol Biol 2016; 1372:89-97. [PMID: 26530917 DOI: 10.1007/978-1-4939-3148-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SiRNA delivery to the cytoplasm can be obtained through the application of calibrated electric field pulses to a mixture of cells and oligonucleotides. To investigate the uptake pathway, time lapse confocal fluorescence microscopy provides a direct visualization of the transfer. SiRNA is electrophoretically drifted directly to the cytoplasm during the pulse. No post pulse transfer is observed. The uploaded siRNA then freely diffuse in the cytoplasm with no access to the nuclei.
Collapse
Affiliation(s)
- Muriel Golzio
- IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS, BP 64182, 205 route de Narbonne, 31077, Toulouse, France.,IPBS (Institut de Pharmacologie et de Biologie Structurale), Université de Toulouse, UPS (Université Paul Sabatier), BP 64182, 31077, Toulouse, France
| | - Justin Teissié
- IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS, BP 64182, 205 route de Narbonne, 31077, Toulouse, France. .,IPBS (Institut de Pharmacologie et de Biologie Structurale), Université de Toulouse, UPS (Université Paul Sabatier), BP 64182, 31077, Toulouse, France.
| |
Collapse
|
16
|
Gibot L, Rols MP. Gene transfer by pulsed electric field is highly promising in cutaneous wound healing. Expert Opin Biol Ther 2015; 16:67-77. [DOI: 10.1517/14712598.2016.1098615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Adv Drug Deliv Rev 2015; 81:161-8. [PMID: 24819217 DOI: 10.1016/j.addr.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/18/2014] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
For more than a decade, the understanding of RNA interference (RNAi) has been a growing field of interest. Micro-RNAs (miRNAs) are small regulatory RNAs that play an important role in disease development and progression and therefore represent a potential new class of therapeutic targets. However, delivery of RNAi-based oligonucleotides is one of the most challenging hurdles to RNAi-based drug development. Electropermeabilization (EP) is recognized as a successful non-viral method to transfer nucleic acids into living cells both in vitro and in vivo. EP is the direct application of electric pulses to cells or tissues that transiently permeabilize plasma membranes, allowing the efficient delivery of exogenous molecules. The present review focused on the mechanism of RNAi-based oligonucleotides electrotransfer, from cellular uptake to intracellular distribution. Biophysical theories on oligonucleotide electrotransfer will be also presented. The advantages and few drawbacks of EP-mediated delivery will also be discussed.
Collapse
|
18
|
Ušaj M, Kandušer M. Modified Adherence Method (MAM) for Electrofusion of Anchorage-Dependent Cells. Methods Mol Biol 2015; 1313:203-216. [PMID: 25947667 DOI: 10.1007/978-1-4939-2703-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The artificially induced cell fusion is a useful experimental tool in biology, biotechnology and medicine. The electrofusion is a physical method for cell fusion that applies high-voltage electric pulses. The use of electric pulses causes cell membrane structural changes which bring the cell membrane in the so-called fusogenic state. When such fusogenic membranes are in close contact cell fusion takes place. Physical contact between fusion partners can be achieved by various methods and one of them is modified adherence method (MAM) described in detail here on B16-F1 cell line. The method is based on the fact that living cells form contacts in confluent culture. However, instead of using confluent cell culture, in modified adherence method cells are plated in suitable concentration and allowed to form contacts for only short predetermined period of time. During that time the cells are only slightly attached to the dish surface maintaining the spherical shape. Observed high fusion yields up to 50 % obtained by MAM in situ by dual-color fluorescence microscopy are among the highest in field of electrofusion. The method can be readily adapted to other anchorage-dependent cell lines.
Collapse
Affiliation(s)
- Marko Ušaj
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
19
|
Pliquett U, Nuccitelli R. Measurement and simulation of Joule heating during treatment of B-16 melanoma tumors in mice with nanosecond pulsed electric fields. Bioelectrochemistry 2014; 100:62-8. [DOI: 10.1016/j.bioelechem.2014.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/23/2013] [Accepted: 03/03/2014] [Indexed: 11/29/2022]
|
20
|
Wei Z, Zheng S, Wang R, Bu X, Ma H, Wu Y, Zhu L, Hu Z, Liang Z, Li Z. A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery. LAB ON A CHIP 2014; 14:4093-4102. [PMID: 25182174 DOI: 10.1039/c4lc00800f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In vivo electroporation is an appealing method to deliver nucleic acid into living tissues, but the clinical application of such a method was limited due to severe tissue damage and poor coverage of the tissue surface. Here we present the validation of a novel flexible microneedle array electrode (MNAE) chip, in which the microneedle array and the flexible substrate are integrated together to simultaneously facilitate low-voltage electroporation and accomplish good coverage of the tissue surface. The efficient delivery of both DNA and siRNA was demonstrated on mice. Upon penetrating the high-resistance stratum corneum, the electroporation voltage was reduced to about 35 V, which was generally recognized safe for humans. Also, a pathological analysis of the microneedle-electroporated tissues was carried out to thoroughly assess the skin damage, which is an important consideration in pre-clinical studies of electroporation devices. This MNAE constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs with satisfactory efficiency and good adaptation to the tissue surface profile as well as minimum tissue damage, thus avoiding the disadvantages of existing electroporation methods.
Collapse
Affiliation(s)
- Zewen Wei
- National Center for Nanoscience and Technology, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Short interfering RNAs (siRNAs) represent new potential therapeutic tools owing to their capacity to induce strong, sequence-specific, gene silencing in cells. Electropulsation is one of the physical methods successfully used to transfer siRNA into living cells in vitro and in vivo. Although this approach is proved to be effective for silencing gene expression by RNA interference, very little is known about the basic processes supporting siRNA transfer. In this study, we investigated, by direct visualization at the single-cell level, the electro-delivery of Alexa Fluor 546-labeled siRNA into murine melanoma cells stably expressing the enhanced green fluorescent protein (EGFP) as a target gene. The electrotransfer of siRNA was quantified by time-lapse fluorescence microscopy and was correlated with the silencing of EGFP expression. A direct transfer into the cell cytoplasm of the negatively charged siRNA was observed across the plasma membrane exclusively on the side facing the cathode. The oligonucleotide then freely diffused across the cytosol. Therefore, we show that the electric field pulse acts on both the permeabilization of the cell plasma membrane and on the electrophoretic drag of the negatively charged siRNA molecules from the bulk phase into the cytoplasm. The mechanism involved was clearly specific for the physicochemical properties of the electrotransferred molecule and was different from that observed with the electro-transfer of small molecules or plasmid DNA.
Collapse
|
22
|
Kandušer M, Ušaj M. Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines. Expert Opin Drug Deliv 2014; 11:1885-98. [DOI: 10.1517/17425247.2014.938632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Evidence for electro-induced membrane defects assessed by lateral mobility measurement of a GPi anchored protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:277-86. [PMID: 24781652 DOI: 10.1007/s00249-014-0961-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/25/2014] [Accepted: 04/05/2014] [Indexed: 01/05/2023]
Abstract
Electrotransfer is a method by which molecules can be introduced into living cells via plasma membrane electropermeabilization. Here, we show that electropermeabilization affects the lateral mobility of Rae-1, a GPi anchored protein. Our results suggest that 10-20 % of the membrane surface is occupied by defects or pores and that these structures propagate rapidly (<1 min) over the cell surface. Electrotransfer of plasmid DNA (pDNA) also affects the lateral mobility of Rae-1. Furthermore, we clearly show that, once inserted into the plasma membrane, pDNA is completely immobile and excludes Rae-1; this indicates that the pDNA molecules are tightly packed together to form aggregates occupying at least the outer leaflet of the plasma membrane.
Collapse
|
24
|
Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination. Bioelectrochemistry 2014; 100:52-61. [PMID: 24731594 DOI: 10.1016/j.bioelechem.2014.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 03/13/2014] [Accepted: 03/24/2014] [Indexed: 01/25/2023]
Abstract
High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation.
Collapse
|
25
|
Escoffre JM, Bellard E, Faurie C, Sébaï SC, Golzio M, Teissié J, Rols MP. Membrane disorder and phospholipid scrambling in electropermeabilized and viable cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1701-9. [PMID: 24583083 DOI: 10.1016/j.bbamem.2014.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 11/25/2022]
Abstract
Membrane electropermeabilization relies on the transient permeabilization of the plasma membrane of cells submitted to electric pulses. This method is widely used in cell biology and medicine due to its efficiency to transfer molecules while limiting loss of cell viability. However, very little is known about the consequences of membrane electropermeabilization at the molecular and cellular levels. Progress in the knowledge of the involved mechanisms is a biophysical challenge. As a transient loss of membrane cohesion is associated with membrane permeabilization, our main objective was to detect and visualize at the single-cell level the incidence of phospholipid scrambling and changes in membrane order. We performed studies using fluorescence microscopy with C6-NBD-PC and FM1-43 to monitor phospholipid scrambling and membrane order of mammalian cells. Millisecond permeabilizing pulses induced membrane disorganization by increasing the translocation of phosphatidylcholines according to an ATP-independent process. The pulses induced the formation of long-lived permeant structures that were present during membrane resealing, but were not associated with phosphatidylcholine internalization. These pulses resulted in a rapid phospholipid flip/flop within less than 1s and were exclusively restricted to the regions of the permeabilized membrane. Under such electrical conditions, phosphatidylserine externalization was not detected. Moreover, this electrically-mediated membrane disorganization was not correlated with loss of cell viability. Our results could support the existence of direct interactions between the movement of membrane zwitterionic phospholipids and the electric field.
Collapse
Affiliation(s)
- Jean-Michel Escoffre
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France
| | - Elisabeth Bellard
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France
| | - Cécile Faurie
- Matwin-Institut Bergonié, 229 cours de l'Argonne, 33076 Bordeaux cedex, France
| | - Sarra C Sébaï
- Eviagenics, Immeuble Villejuif Biopark, 1 Mail du Professeur Georges Mathé, 94800 Villejuif, France
| | - Muriel Golzio
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France
| | - Justin Teissié
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France.
| | - Marie-Pierre Rols
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077, Toulouse, France.
| |
Collapse
|
26
|
siRNA delivery via electropulsation: a review of the basic processes. Methods Mol Biol 2014; 1121:81-98. [PMID: 24510814 DOI: 10.1007/978-1-4614-9632-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Due to their capacity for inducing strong and sequence specific gene silencing in cells, small interfering RNAs (siRNAs) are now recognized not only as powerful experimental tools for basic research in Molecular biology but with promising potentials in therapeutic development. Delivery is a bottleneck in many studies. There is a common opinion that full potential of siRNA as therapeutic agent will not be attained until better methodologies for its targeted intracellular delivery to cells and tissues are developed. Electropulsation (EP) is one of the physical methods successfully used to transfer siRNA into living cells in vitro and in vivo. This review will describe how siRNA electrotransfer obeys characterized biophysical processes (cell-size-dependent electropermeabilization, electrophoretic drag) with a strong control of a low loss of viability. Protocols can be easily adjusted by a proper setting of the electrical parameters and pulsing buffers. EP can be easily directly applied on animals. Preclinical studies showed that electropermeabilization brings a direct cytoplasmic distribution of siRNA and an efficient silencing of the targeted protein expression. EP appears as a promising tool for clinical applications of gene silencing. A panel of successful trials will be given.
Collapse
|
27
|
Blagus T, Markelc B, Cemazar M, Kosjek T, Preat V, Miklavcic D, Sersa G. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J Control Release 2013; 172:862-71. [PMID: 24113487 DOI: 10.1016/j.jconrel.2013.09.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 01/14/2023]
Abstract
Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the varying electric pulse amplitude, the amount of topical and transdermal drug delivery to the skin can be controlled. Furthermore, the newly developed monitoring system provides a tool for rapid real-time determination of both, transdermal and topical delivery, when the delivered molecule is fluorescent.
Collapse
Affiliation(s)
- Tanja Blagus
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
28
|
Boudreau J, Viloria-Petit A, Bunce NJ. Electrochemical activation of chemotherapeutic prodrugs that mimic P450-catalyzed oxidation: proof-of-concept for a focal approach to chemical cancer treatment. CAN J CHEM 2013. [DOI: 10.1139/cjc-2013-0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electrochemical oxidation of substrates cyclophosphamide and acetaminophen at Ti/RuO2 or (preferably) graphite anodes parallels P450-catalyzed oxidation in that both mechanisms involve transfer of an oxygen atom to the substrate. The aim of this work was to use this parallel to provide proof-of-concept for a localized approach to tumor chemotherapy using electrochemical oxidation to activate chemotherapeutic prodrugs ex situ. Cyclophosphamide and acetaminophen were electroactivated in batch and flow electrolytic cells and the products were tested against EMT6 mouse mammary adenocarcinoma cells. Cell viability was determined using a tetrazolium dye assay that monitored NADPH concentrations; microscopic examination showed consistent morphological differences between viable and nonviable cells. No cytotoxicity was observed in nonelectrolyzed control samples. The electrolyzed prodrugs demonstrated cytotoxicity up to the IC99 level at 5 mmol L−1 initial prodrug concentrations but not at 1 mmol L−1. The long-term objective of the work is to develop an ex situ electrochemical system for activating prodrugs to cause lethal toxicity to the cells of solid tumors, many of which lack sufficient P450s to bioactivate the toxicant themselves.
Collapse
Affiliation(s)
- Jordache Boudreau
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Alicia Viloria-Petit
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nigel J. Bunce
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
29
|
Srimathveeravalli G, Wimmer T, Monette S, Gutta NB, Ezell PC, Maybody M, Weiser MR, Solomon SB. Evaluation of an endorectal electrode for performing focused irreversible electroporation ablations in the Swine rectum. J Vasc Interv Radiol 2013; 24:1249-56. [PMID: 23796856 DOI: 10.1016/j.jvir.2013.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To study the feasibility of a novel endorectal electrode for the creation of focal ablations of the rectal wall with the use of irreversible electroporation (IRE). MATERIALS AND METHODS A monopolar electrode with a grounding pad (10 ablations in five pigs) and a bipolar electrode (two ablations in one pig) were evaluated in healthy swine rectum. A two-dimensional model of the electrode in the rectum was created and used to solve the Laplace equation to determine field strength. Simulation was used to identify treatment settings for superficial ablation (mucosal layers) or transmural ablation of rectal wall. Animals were euthanized within 4 hours after treatment. RESULTS Treatment was successfully completed without treatment-related complications. Eleven of 12 lesions were successfully located and extracted for pathologic analysis. All lesions were characterized by necrotic cell death with mild inflammation and hyperemia, with a sharp demarcation between ablated and adjacent normal tissue. Depth of lesions corresponded with numeric simulation. Histologic analysis and measurements indicated that lesion creation with the superficial treatment setting resulted in ablation of mucosal and submucosal layers with superficial or no injury to the muscularis propria (9.97 mm ± 0.31 length, 3.3 mm ± 2.92 depth), and that lesion creation with the transmural treatment setting resulted in full-thickness ablation (12.43 mm ± 3.85 length, 4.97 mm ± 2.89 depth) of the rectal wall. CONCLUSIONS An endorectal electrode can be used to deliver IRE and create limited focal ablations in the rectal wall. Treatment parameters can be determined through numeric modeling to control the depth of penetration of ablation.
Collapse
Affiliation(s)
- Govindarajan Srimathveeravalli
- Radiochemistry and Imaging Science Service and Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chabot S, Pelofy S, Teissié J, Golzio M. Delivery of RNAi-Based Oligonucleotides by Electropermeabilization. Pharmaceuticals (Basel) 2013; 6:510-21. [PMID: 24276121 PMCID: PMC3816695 DOI: 10.3390/ph6040510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 11/16/2022] Open
Abstract
For more than a decade, understanding of RNA interference (RNAi) has been a growing field of interest. The potent gene silencing ability that small oligonucleotides have offers new perspectives for cancer therapeutics. One of the present limits is that many biological barriers exist for their efficient delivery into target cells or tissues. Electropermeabilization (EP) is one of the physical methods successfully used to transfer small oligonucleotides into cells or tissues. EP consists in the direct application of calibrated electric pulses to cells or tissues that transiently permeabilize the plasma membranes, allowing efficient in vitro and in vivo cytoplasmic delivery of exogenous molecules. The present review reports on the type of therapeutic RNAi-based oligonucleotides that can be electrotransferred, the mechanism(s) of their electrotransfer and the technical settings for pre-clinical purposes.
Collapse
Affiliation(s)
- Sophie Chabot
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS) BP 64182, 205 route de Narbonne, Toulouse F-31077, France; E-Mails: (S.C.); (S.P.); (J.T.)
- Université Paul Sabatier de Toulouse, IPBS, Toulouse F-31077, France
| | - Sandrine Pelofy
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS) BP 64182, 205 route de Narbonne, Toulouse F-31077, France; E-Mails: (S.C.); (S.P.); (J.T.)
- Université Paul Sabatier de Toulouse, IPBS, Toulouse F-31077, France
| | - Justin Teissié
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS) BP 64182, 205 route de Narbonne, Toulouse F-31077, France; E-Mails: (S.C.); (S.P.); (J.T.)
- Université Paul Sabatier de Toulouse, IPBS, Toulouse F-31077, France
| | - Muriel Golzio
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS) BP 64182, 205 route de Narbonne, Toulouse F-31077, France; E-Mails: (S.C.); (S.P.); (J.T.)
- Université Paul Sabatier de Toulouse, IPBS, Toulouse F-31077, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-561-175-811; Fax: +33-561-175-994
| |
Collapse
|
31
|
Wu YH, Arnaud-Cormos D, Casciola M, Sanders JM, Leveque P, Vernier PT. Moveable Wire Electrode Microchamber for Nanosecond Pulsed Electric-Field Delivery. IEEE Trans Biomed Eng 2013. [DOI: 10.1109/tbme.2012.2228650] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Markelc B, Bellard E, Sersa G, Pelofy S, Teissie J, Coer A, Golzio M, Cemazar M. In vivo molecular imaging and histological analysis of changes induced by electric pulses used for plasmid DNA electrotransfer to the skin: a study in a dorsal window chamber in mice. J Membr Biol 2012; 245:545-54. [PMID: 22644389 PMCID: PMC3464392 DOI: 10.1007/s00232-012-9435-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 04/30/2012] [Indexed: 12/21/2022]
Abstract
Electropermeabilization/electroporation (EP) is a physical method that by application of electric pulses to cells increases cell membrane permeability and enables the introduction of molecules into the cells. One of the uses of EP in vivo is plasmid DNA electrotransfer to the skin for DNA vaccination. EP of tissues induces reduction of blood flow and, in combination with plasmid DNA, induction of an immune response. One of the EP protocols for plasmid DNA electrotransfer to the skin is a combination of high-voltage (HV) and low-voltage (LV) pulses. However, the effects of this pulse combination on skin-vessel blood flow are not known. Therefore, using intravital microscopy in a dorsal window chamber in mice and fluorescently labeled dextrans, the effects of one HV and eight LV pulses on skin vasculature were investigated. In addition, a detailed histological analysis was performed. Image analysis of fluorescence intensity changes demonstrated that EP induces a transient constriction and increased permeability of blood vessels as well as a “vascular lock.” Histological analysis revealed rounding up of endothelial cells and stacking up of erythrocytes at 1 h after EP. In addition, extravasation of erythrocytes and leukocyte infiltration accompanied by edema were determined up to 24 h after EP. In conclusion, our results show that blood flow modifying effects of EP in skin contribute to the infiltration of immune cells in the exposed area. When combined with plasmid DNA for vaccination, this could enable the initial and prolonged contact of immune cells with encoded therapeutic proteins.
Collapse
Affiliation(s)
- Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mauroy C, Portet T, Winterhalder M, Bellard E, Blache MC, Teissié J, Zumbusch A, Rols MP. Giant lipid vesicles under electric field pulses assessed by non invasive imaging. Bioelectrochemistry 2012; 87:253-9. [PMID: 22560131 DOI: 10.1016/j.bioelechem.2012.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 11/16/2022]
Abstract
We present experimental results regarding the effects of electric pulses on giant unilamellar vesicles (GUVs). We have used phase contrast and coherent anti-Stokes Raman scattering (CARS) microscopy as relevant optical approaches to gain insight into membrane changes under electropermeabilization. No addition of exogenous molecules (lipid analogue, fluorescent dye) was needed. Therefore, experiments were performed on pure lipid systems avoiding possible artefacts linked to their use. Structural membrane changes were assessed by loss of contrast inside the GUVs due to sucrose and glucose mixing. Our observations, performed at the single vesicle level, indicate these changes are under the control of the number of pulses and field intensity. Larger number of pulses enhances membrane alterations. A threshold value of the field intensity must be applied to allow exchange of molecules between GUVs and the external medium. This threshold depends on the size of the vesicles, the larger GUVs being affected at lower electric field strengths than the smaller ones. Our experimental data are well described by a simple model in which molecule entry is driven by direct exchange. The CARS microscopic study of the effect of pulse duration confirms that pulses, in the ms time range, induce loss of lipids and membrane deformations facing the electrodes.
Collapse
Affiliation(s)
- Chloé Mauroy
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pucihar G, Krmelj J, Reberšek M, Napotnik TB, Miklavčič D. Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 2011; 58:3279-88. [PMID: 21900067 DOI: 10.1109/tbme.2011.2167232] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electroporation-based applications require the use of specific pulse parameters for a successful outcome. When recommended values of pulse parameters cannot be set, similar outcomes can be obtained by using equivalent pulse parameters. We determined the relations between the amplitude and duration/number of pulses resulting in the same fraction of electroporated cells. Pulse duration was varied from 150 ns to 100 ms, and the number of pulses from 1 to 128. Fura 2-AM was used to determine electroporation of cells to Ca(2+). With longer pulses or higher number of pulses, lower amplitudes are needed for the same fraction of electroporated cells. The expression derived from the model of electroporation could describe the measured data on the whole interval of pulse durations. In a narrower range (0.1-100 ms), less complex, logarithmic or power functions could be used instead. The relation between amplitude and number of pulses could best be described with a power function or an exponential function. We show that relatively simple two-parameter power or logarithmic functions are useful when equivalent pulse parameters for electroporation are sought. Such mathematical relations between pulse parameters can be important in planning of electroporation-based treatments, such as electrochemotherapy and nonthermal irreversible electroporation.
Collapse
Affiliation(s)
- Gorazd Pucihar
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
35
|
TAMZALI Y, BORDE L, ROLS MP, GOLZIO M, LYAZRHI F, TEISSIE J. Successful treatment of equine sarcoids with cisplatin electrochemotherapy: A retrospective study of 48 cases. Equine Vet J 2011; 44:214-20. [DOI: 10.1111/j.2042-3306.2011.00425.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci U S A 2011; 108:10443-7. [PMID: 21670256 DOI: 10.1073/pnas.1103519108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RNA interference-mediated gene silencing approach is promising for therapies based on the targeted inhibition of disease-relevant genes. Electropermeabilization is one of the nonviral methods successfully used to transfer siRNA into living cells in vitro and in vivo. Although this approach is effective in the field of gene silencing by RNA interference, very little is known about the basic processes supporting siRNA transfer. In this study, we investigated, by direct visualization at the single-cell level, the delivery of Alexa Fluor 546-labeled siRNA into murine melanoma cells stably expressing the enhanced green fluorescent protein (EGFP) as a target gene. The electrotransfer of siRNA was quantified by time lapse fluorescence microscopy and was correlated with the silencing of egfp expression. A direct transfer into the cell cytoplasm of the negatively charged siRNA was observed across the plasma membrane exclusively on the side facing the cathode. When added after electropulsation, the siRNA was inefficient for gene silencing because it did not penetrate the cells. Therefore, we report that an electric field acts on both the permeabilization of the cell plasma membrane and on the electrophoretic drag of the negatively charged siRNA molecules from the bulk phase into the cytoplasm. The transfer kinetics of siRNA are compatible with the creation of nanopores, which are described with the technique of synthetic nanopores. The mechanism involved was clearly specific for the physico-chemical properties of the electrotransferred molecule and was different from that observed with small molecules or plasmid DNA.
Collapse
|
37
|
Rosazza C, Phez E, Escoffre JM, Cézanne L, Zumbusch A, Rols MP. Cholesterol implications in plasmid DNA electrotransfer: Evidence for the involvement of endocytotic pathways. Int J Pharm 2011; 423:134-43. [PMID: 21601622 DOI: 10.1016/j.ijpharm.2011.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
The delivery of therapeutic molecules such as plasmid DNA in cells and tissues by means of electric fields holds great promise for anticancer treatment. To allow for their therapeutic action, the molecules have first to traverse the cell membrane. The mechanisms by which the electrotransferred pDNA interacts with and crosses the plasma membrane are not yet fully explained. The aim of this study is to unravel the role of cholesterol during gene electrotransfer in cells. We performed cholesterol depletion experiments and measured its effects on various steps of the electroporation process. The first two steps consisting of electropermeabilization of the plasma membrane and of pDNA interaction with it were not affected by cholesterol depletion. In contrast, gene expression decreased. Colocalization studies with endocytotic markers showed that pDNA is endocytosed with concomitant clathrin- and caveolin/raft-mediated endocytosis. Cholesterol might be involved in the pDNA translocation through the plasma membrane. This is the first direct experimental evidence of the occurrence of endocytosis in gene electrotransfer.
Collapse
Affiliation(s)
- Christelle Rosazza
- Department of Structural Biology and Biophysics, CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
38
|
Golzio M, Mazeres S, Teissie J. Electrodes for in vivo localised subcutaneous electropulsation and associated drug and nucleic acid delivery. Expert Opin Drug Deliv 2010; 6:1323-31. [PMID: 19860535 DOI: 10.1517/17425240903294043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Drug and nucleic acids can be delivered in vivo by an injection of the product followed by the application of a train of electric pulses. OBJECTIVE The success of the method is linked to the proper distribution of the electric field in the target tissue. This is under the control of the design of the electrodes. METHODS The field distribution can be obtained by computer simulation mainly by using numerical methods and simplifying hypothesis. The conclusions are validated by comparing the computed current and its experimental values on phantoms. A good agreement is obtained. RESULTS/CONCLUSION Targeting the delivery to the skin can be obtained by using an array of very short needle electrodes, by pinching the skin between two parallel plate electrodes, or by using contact wire electrodes.
Collapse
Affiliation(s)
- M Golzio
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse, France
| | | | | |
Collapse
|
39
|
Gene electrotransfer: from biophysical mechanisms to in vivo applications : Part 2 - In vivo developments and present clinical applications. Biophys Rev 2009; 1:185. [PMID: 28510026 DOI: 10.1007/s12551-009-0019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022] Open
Abstract
Gene electrotransfer can be obtained not just on single cells in diluted suspension. For more than 10 years, this is a quasi routine strategy in tissue on the living animal and a few clinical trials have now been approved. New problems have been brought by the close contacts of cells in tissue both on the local field distribution and on the access of DNA to target cells. They need to be solved to provide a further improvement in the efficacy and safety of protein expression. There is a competition between gene transfer and cell destruction. Nevertheless, present results are indicative that electrotransfer is a promising approach for gene therapy. High level and long-lived expression of proteins can be obtained in muscles. This is used for a successful method of electrovaccination.
Collapse
|
40
|
Abstract
Placement of a cell into an external electric field causes a local charge redistribution inside and outside of the cell in the vicinity of the cell membrane, resulting in a voltage across the membrane. This voltage, termed the induced membrane voltage (also induced transmembrane voltage, or induced transmembrane potential difference) and denoted by DeltaPhi, exists only as long as the external field is present. If the resting voltage is present on the membrane, the induced voltage superimposes (adds) onto it. By using one of the potentiometric fluorescent dyes, such as di-8-ANEPPS, it is possible to observe the variations of DeltaPhi on the cell membrane and to measure its value noninvasively. di-8-ANEPPS becomes strongly fluorescent when bound to the lipid bilayer of the cell membrane, with the change of the fluorescence intensity proportional to the change of DeltaPhi. This video shows the protocol for measuring DeltaPhi using di-8-ANEPPS and also demonstrates the influence of cell shape on the amplitude and spatial distribution of DeltaPhi.
Collapse
Affiliation(s)
- Gorazd Pucihar
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana.
| | | | | |
Collapse
|