1
|
Li ZZ, Zhou K, Wu Q, Liu B, Bu LL. Lymph node metastasis in cancer: Clearing the clouds to see the dawn. Crit Rev Oncol Hematol 2024; 204:104536. [PMID: 39426554 DOI: 10.1016/j.critrevonc.2024.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Lymph node metastasis (LNM) is often regarded as an indicator of poor prognosis in various cancers. Despite over three centuries of exploration since its discovery, the molecular mechanisms underlying LNM remain inconclusive. This review summarizes the molecular mechanisms of LNM, using the "PUMP+" principle for clarification. Pathological examination remains the gold standard for LNM diagnosis, yet there is a need to explore early diagnostic strategies that can effectively improve patient outcomes. With the advent of immunotherapy, discussions on the fate of lymph nodes (LN) have emerged, emphasizing the importance of preserving LN integrity prior to immunotherapy. This, in turn, poses higher demands for diagnostic accuracy and precision treatment of LNM. This review comprehensively discusses the molecular mechanisms, diagnostic methods, and treatment strategies for cancer lymph node metastasis, along with current bottlenecks and future directions in this field.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
2
|
Deng B, Wang Y, Bu X, Li J, Lu J, Lin LL, Wang Y, Chen Y, Ye J. Sentinel lymph node identification using NIR-II ultrabright Raman nanotags on preclinical models. Biomaterials 2024; 308:122538. [PMID: 38564889 DOI: 10.1016/j.biomaterials.2024.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) nanotags have garnered much attention as promising bioimaging contrast agent with ultrahigh sensitivity, but their clinical translation faces challenges including biological and laser safety. As breast sentinel lymph node (SLN) imaging agents, SERS nanotags used by local injection and only accumulation in SLNs, which were removed during surgery, greatly reduce biological safety concerns. But their clinical translation lacks pilot demonstration on large animals close to humans. The laser safety requires irradiance below the maximum permissible exposure threshold, which is currently not achievable in most SERS applications. Here we report the invention of the core-shell SERS nanotags with ultrahigh brightness (1 pM limit of detection) at the second near-infrared (NIR-II) window for SLN identification on pre-clinical animal models including rabbits and non-human primate. We for the first time realize the intraoperative SERS-guided SLN navigation under a clinically safe laser (1.73 J/cm2) and identify multiple axillary SLNs on a non-human primate. No evidence of biosafety issues was observed in systematic examinations of these nanotags. Our study unveils the potential of NIR-II SERS nanotags as appropriate SLN tracers, making significant advances toward the accurate positioning of lesions using the SERS-based tracer technique.
Collapse
Affiliation(s)
- Binge Deng
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xiangdong Bu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jingsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Linley Li Lin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Yao Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
3
|
Yan Y, Liu Y, Li T, Liang Q, Thakur A, Zhang K, Liu W, Xu Z, Xu Y. Functional roles of magnetic nanoparticles for the identification of metastatic lymph nodes in cancer patients. J Nanobiotechnology 2023; 21:337. [PMID: 37735449 PMCID: PMC10512638 DOI: 10.1186/s12951-023-02100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Staging lymph nodes (LN) is crucial in diagnosing and treating cancer metastasis. Biotechnologies for the specific localization of metastatic lymph nodes (MLNs) have attracted significant attention to efficiently define tumor metastases. Bioimaging modalities, particularly magnetic nanoparticles (MNPs) such as iron oxide nanoparticles, have emerged as promising tools in cancer bioimaging, with great potential for use in the preoperative and intraoperative tracking of MLNs. As radiation-free magnetic resonance imaging (MRI) probes, MNPs can serve as alternative MRI contrast agents, offering improved accuracy and biological safety for nodal staging in cancer patients. Although MNPs' application is still in its initial stages, exploring their underlying mechanisms can enhance the sensitivity and multifunctionality of lymph node mapping. This review focuses on the feasibility and current application status of MNPs for imaging metastatic nodules in preclinical and clinical development. Furthermore, exploring novel and promising MNP-based strategies with controllable characteristics could lead to a more precise treatment of metastatic cancer patients.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, China.
| |
Collapse
|
4
|
Synthesis of a Dual-Color Fluorescent Dendrimer for Diagnosis of Cancer Metastasis in Lymph Nodes. Polymers (Basel) 2022; 14:polym14204314. [PMID: 36297891 PMCID: PMC9607438 DOI: 10.3390/polym14204314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
Detection of cancer metastasis spread in lymph nodes is important in cancer diagnosis. In this study, a fluorescence imaging probe was designed for the detection of both lymph node and tumor cells using always-ON and activatable fluorescence probes with different colors. Rhodamine B (Rho), a matrix metalloproteinase-2 (MMP-2)-responsive green fluorescence probe, and a tumor-homing peptide were conjugated to a carboxy-terminal dendrimer that readily accumulates in lymph nodes. The activatable green fluorescence signal increased in the presence of MMP-2, which is secreted by tumor cells. Both the always-ON Rho signal and the activatable green fluorescence signal were observed from tumor cells, but only the weak always-ON Rho signal was from immune cells. Thus, this type of dendrimer may be useful for non-invasive imaging to diagnose cancer metastasis in lymph nodes.
Collapse
|
5
|
Kurochkin MA, German SV, Abalymov A, Vorontsov DА, Gorin DA, Novoselova MV. Sentinel lymph node detection by combining nonradioactive techniques with contrast agents: State of the art and prospects. JOURNAL OF BIOPHOTONICS 2022; 15:e202100149. [PMID: 34514735 DOI: 10.1002/jbio.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy ("gold standard") involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as "gold standard" analogs to diagnose SLNs. Nonradioactive preoperative and intraoperative methods of SLN detection are analyzed. Promising photonic tools for SLNs detection are reviewed, including NIR-I/NIR-II fluorescence imaging, photoswitching dyes for SLN detection, in vivo photoacoustic detection, imaging and biopsy of SLNs. Also are discussed methods of SLN detection by magnetic resonance imaging, ultrasonic imaging systems including as combined with photoacoustic imaging, and methods based on the magnetometer-aided detection of superparamagnetic nanoparticles. The advantages and disadvantages of nonradioactive SLN-detection methods are shown. The review concludes with prospects for the use of conservative diagnostic methods in combination with photonic tools.
Collapse
Affiliation(s)
| | - Sergey V German
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry А Vorontsov
- State Budgetary Institution of Health Care of Nizhny Novgorod "Nizhny Novgorod Regional Clinical Oncological Dispensary", Nizhny Novgorod, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
6
|
Deng B, Wang Y, Wu Y, Yin W, Lu J, Ye J. Raman Nanotags-Guided Intraoperative Sentinel Lymph Nodes Precise Location with Minimal Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102405. [PMID: 34741446 PMCID: PMC8805599 DOI: 10.1002/advs.202102405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The accurate positioning of sentinel lymph node (SLN) by tracers during surgery is an important prerequisite for SLN biopsy. A major problem of traditional tracers in SLN biopsy is the short surgery window due to the fast diffusion of tracers through the lymphatics, resulting in a misjudgment between SLN and second echelon lymph node (2nd LN). Here, a nontoxic Raman nanoparticle tracer, termed gap-enhanced Raman tags (GERTs), for the accurate intraoperative positioning of SLNs with a sufficient surgical time window is designed. In white New Zealand rabbit models, GERTs enable precise identification of SLNs within 10 min, as well as provide the surgeon with a more than 4 h time window to differentiate SLN and 2nd LN. In addition, the ultrahigh sensitivity of GERTs (detection limit is 0.5 × 10-12 m) allows detection of labeled SLNs before surgery, thereby providing preoperative positioning information for minimally invasive surgery. Comprehensive biosafety evaluations carried out in the context of the Food and Drug Administration and International Standard Organization demonstrate no significant toxicity of GERTs, which supports a promising clinical translation opportunity of GERTs for precise SLN identification in breast cancer.
Collapse
Affiliation(s)
- Binge Deng
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Yaohui Wang
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Yifan Wu
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Wenjin Yin
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jinsong Lu
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
- Shanghai Key Laboratory of Gynecologic OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
7
|
Nagai K, Sato T, Kojima C. Design of a dendrimer with a matrix metalloproteinase-responsive fluorescence probe and a tumor-homing peptide for metastatic tumor cell imaging in the lymph node. Bioorg Med Chem Lett 2021; 33:127726. [PMID: 33316406 DOI: 10.1016/j.bmcl.2020.127726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/01/2023]
Abstract
Fluorescence imaging is a noninvasive technique for cancer diagnosis. Dendrimers are regularly branched macromolecules with highly controllable size and structure that are a potent multifunctional nanoparticle. Anionic-terminal polyamidoamine (PAMAM) dendrimers were previously found to be accumulated in the lymph node, which is one of the main routes of tumor metastasis. In this study, we designed and synthesized a dendrimeric imaging probe for lymph node-resident tumor cell imaging. A matrix metalloproteinase-2 (MMP-2)-responsive fluorescence peptide probe and a tumor-homing peptide were conjugated to the carboxy-terminal dendrimer. The dendrimeric imaging probe treatment showed fluorescence signals inside some tumor cells (e.g., human fibrosarcoma HT-1080 and breast cancer 4T1 cells), depending on the MMP activity, but not in macrophage-like RAW264 cells.
Collapse
Affiliation(s)
- Kento Nagai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Tatsumi Sato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
8
|
Mannan-Based Nanodiagnostic Agents for Targeting Sentinel Lymph Nodes and Tumors. Molecules 2020; 26:molecules26010146. [PMID: 33396204 PMCID: PMC7795445 DOI: 10.3390/molecules26010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Early detection of metastasis is crucial for successful cancer treatment. Sentinel lymph node (SLN) biopsies are used to detect possible pathways of metastasis spread. We present a unique non-invasive diagnostic alternative to biopsy along with an intraoperative imaging tool for surgery proven on an in vivo animal tumor model. Our approach is based on mannan-based copolymers synergistically targeting: (1) SLNs and macrophage-infiltrated solid tumor areas via the high-affinity DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) receptors and (2) tumors via the enhanced permeability and retention (EPR) effect. The polymer conjugates were modified with the imaging probes for visualization with magnetic resonance (MR) and fluorescence imaging, respectively, and with poly(2-methyl-2-oxazoline) (POX) to lower unwanted accumulation in internal organs and to slow down the biodegradation rate. We demonstrated that these polymer conjugates were successfully accumulated in tumors, SLNs and other lymph nodes. Modification with POX resulted in lower accumulation not only in internal organs, but also in lymph nodes and tumors. Importantly, we have shown that mannan-based polymer carriers are non-toxic and, when applied to an in vivo murine cancer model, and offer promising potential as the versatile imaging agents.
Collapse
|
9
|
Nishimoto Y, Nagashima S, Nakajima K, Ohira T, Sato T, Izawa T, Yamate J, Higashikawa K, Kuge Y, Ogawa M, Kojima C. Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int J Pharm 2020; 576:119021. [PMID: 31917298 DOI: 10.1016/j.ijpharm.2020.119021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/30/2019] [Accepted: 01/03/2020] [Indexed: 01/10/2023]
Abstract
The development of drug delivery vehicles to cancer and/or immune cells in lymph nodes is important for cancer diagnosis, therapy, and immunotherapy. We previously reported that anionic carboxyl-terminal dendrimers were accumulated in lymph nodes. In this study, three anionic dendrimers with carboxyl-, sulfonyl-, and phosphate-terminal groups were prepared to examine the lymph node targeting and the association with immune cells in the lymph nodes. These anionic dendrimers were accumulated in the lymph node by intradermal injection. Although the carboxyl- and sulfonyl-terminal dendrimers were diffused from the injection site, the phosphate-terminal dendrimers were mostly retained. The phosphate-terminal dendrimer was recognized by the macrophages, dendritic cells, and B cells in the lymph node, whereas the carboxyl- and sulfonyl-terminal dendrimers were not. Our results show that these anionic dendrimers were accumulated in the lymph node where the association with immune cells could be controlled by the terminal structure of the dendrimer. The phosphate-terminal dendrimer can be used as a nanoplatform for the delivery of some bioactive molecules to some immune cells, including B cells, in the lymph node.
Collapse
Affiliation(s)
- Yutaka Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Shu Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Takayuki Ohira
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Tatsumi Sato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58, Rinku Orai Kita, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58, Rinku Orai Kita, Izumisano, Osaka 598-8531, Japan
| | - Kei Higashikawa
- Central Institutes of Isotope Science, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Yuji Kuge
- Central Institutes of Isotope Science, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
10
|
Almasi A, Shahhosseini S, Haeri A, Daha FJ, Geramifar P, Dadashzadeh S. Radiolabeling of Preformed Niosomes with [ 99mTc]: In Vitro Stability, Biodistribution, and In Vivo Performance. AAPS PharmSciTech 2018; 19:3859-3870. [PMID: 30291544 DOI: 10.1208/s12249-018-1182-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
Nanocarriers radiolabeled with [99mTc] can be used for diagnostic imaging and radionuclide therapy, as well as tracking their pharmacokinetic and biodistribution characteristics. Due to the advantages of niosomes as an ideal drug delivery system, in this study, the radiolabeling procedure of niosomes by [99mTc]-HMPAO complexes was investigated and optimized. Glutathione (GSH)-loaded niosomes were prepared using a thin-film hydration method. To label the niosomes with [99mTc], the preformed GSH-loaded niosomes were incubated with the [99mTc]-HMPAO complex and were characterized for particle size, size distribution, zeta potential, morphology, and radiolabeling efficiency (RE). The effects of GSH concentration, incubation time, incubation temperature, and niosomal composition on RE were investigated. The biodistribution profile and in vivo SPECT/CT imaging of the niosomes and free [99mTc]-HMPAO were also studied. Based on the results, all vesicles had nano-sized structure (160-235 nm) and negative surface charge. Among the different experimental conditions that were tested, including various incubation times, incubation temperatures, and GSH concentrations, the optimum condition that resulted in a RE of 92% was 200-mM GSH and 15-min incubation at 40°C. The in vitro release study in plasma showed that about 20% of radioactivity was released after 24 h, indicating an acceptable radiolabeling stability in plasma. The biodistribution of niosomes was clearly different from the free radiolabel. Niosomes carrying radionuclide were successfully used for tracking the in vivo disposition of these carriers and SPECT/CT imaging in rats. Furthermore, biodistribution studies in tumor-bearing mice revealed higher tumor accumulation of the niosomal formulation as compared with [99mTc]-HMPAO.
Collapse
|
11
|
Madru R, Budassi M, Benveniste H, Lee H, Smith SD, Schlyer DJ, Vaska P, Knutsson L, Strand SE. Simultaneous Preclinical Positron Emission Tomography-Magnetic Resonance Imaging Study of Lymphatic Drainage of Chelator-Free 64Cu-Labeled Nanoparticles. Cancer Biother Radiopharm 2018; 33:213-220. [PMID: 30036073 DOI: 10.1089/cbr.2017.2412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) systems have been taken in use as new clinical diagnostic tools including detection and therapy planning of cancer. To reduce the amount of contrast agents injected in patients while fully benefitting both modalities, dual-modality probes are required. MATERIAL AND METHODS This study was first aimed at developing a hybrid PET-MRI probe by labeling superparamagnetic iron oxide nanoparticles (SPIONs) with 64Cu using a fast and chelator-free conjugation method, and second, to demonstrate the ability of the agent to target sentinel lymph nodes (SLNs) in vivo using simultaneous PET-MRI imaging. RESULTS High labeling efficiency of 97% produced within 10-15 min was demonstrated at room temperature. 64Cu-SPIONs were chemically stable in mouse serum for 24 h and after intradermal injection in the hind paw of C57BL/6J mice, demonstrated specific accumulation in the SLN. Simultaneous PET-MRI clearly demonstrated visualization of 64Cu-SPIONs, in dynamic and static imaging sequences up to 24 h after administration. CONCLUSION The use of a single hybrid probe and simultaneous hybrid imaging provides an efficient, complementary integration of quantitation and is expected to improve preoperative planning and intraoperative guidance of cancer treatments.
Collapse
Affiliation(s)
- Renata Madru
- 1 Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University , Lund, Sweden
| | - Michael Budassi
- 2 Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York.,3 Department of Biosciences, Brookhaven National Laboratory , Brookhaven, New York
| | - Helene Benveniste
- 4 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Hedok Lee
- 4 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - S David Smith
- 3 Department of Biosciences, Brookhaven National Laboratory , Brookhaven, New York
| | - David J Schlyer
- 3 Department of Biosciences, Brookhaven National Laboratory , Brookhaven, New York
| | - Paul Vaska
- 2 Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York
| | - Linda Knutsson
- 1 Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University , Lund, Sweden
| | - Sven-Erik Strand
- 1 Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University , Lund, Sweden .,5 Department of Clinical Sciences Lund, Oncology and Pathology, Lund University , Lund, Sweden
| |
Collapse
|
12
|
Shimizu K, Ikeuchi SY, Okajima A, Nakamura G, Muraoka E, Oku N. Involvement of Tumor Lymphatic System in Translocation of Intratumorally Injected Liposomes. Biol Pharm Bull 2018; 41:652-656. [PMID: 29607940 DOI: 10.1248/bpb.b17-00730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tumor microenvironment is one of the key factors contributing to the efficiency of drug delivery to a tumor. It has been reported that lymphangiogenesis is induced in certain tumors. Because the lymphatic system functions as a drainage one, it is possible that tumor lymphatic vessels alter not only the tumor microenvironment, but also the distribution of drug nanocarriers accumulated in the tumor tissue. Herein, we aimed to elucidate the involvement of the tumor lymphatic system in the translocation of intratumoral liposomes to regional lymph nodes by using vascular endothelial growth factor (VEGF)-C-overexpressing B16F10 tumor-bearing mice (B16/VEGF-C). When the amount of polyethylene glycol (PEG)-modified liposomes in lymph nodes (cervical, brachial, axillary, and inguinal lymph nodes) was measured after the radiolabeled liposomes had been intratumorally injected into B16/VEGF-C-bearing mice or wild-type B16-bearing mice, the accumulation of liposomes in the axillary and inguinal lymph nodes was significantly higher on the tumor-implanted side of B16/VEGF-C-bearing mice than on that of the B16-bearing ones. On the other hand, the accumulation of liposomes in these lymph nodes on the control side (no implantation) of either type of tumor-bearing mice was very low; and no difference could be observed between the 2 sides. Furthermore, the intratumoral distribution of liposomes was observed to be located near the lymphatic vessels. These results indicate that the tumor lymphatic system contributed to the extrusion of a portion of PEG-modified liposomes from the tumor tissue, suggesting that tumor lymphangiogenesis would be one of the key factors to determine the intratumoral distribution of liposomes and their subsequent fate.
Collapse
Affiliation(s)
- Kosuke Shimizu
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Ai Okajima
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Genki Nakamura
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Eiichi Muraoka
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
13
|
Scheinberg DA, Grimm J, Heller DA, Stater EP, Bradbury M, McDevitt MR. Advances in the clinical translation of nanotechnology. Curr Opin Biotechnol 2017; 46:66-73. [PMID: 28187340 DOI: 10.1016/j.copbio.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
The use of novel materials in the nano-scale size range for applications in devices, drugs and diagnostic agents comes with a number of new opportunities, and also serious challenges to human applications. The larger size of particulate-based agents, as compared to traditional drugs, allows for the significant advantages of multivalency and multi-functionality. However, the human use of nanomaterials requires a thorough understanding of the biocompatibility of the synthetic molecules and their complex pharmacology. Possible toxicities created by the unusual properties of the nanoparticles are neither well-understood, nor predictable yet. A key to the successful use of the burgeoning field of nanomaterials as diagnostic and therapeutic agents will be to appropriately match the biophysical features of the particle to the disease system to be evaluated or treated.
Collapse
Affiliation(s)
- David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evan P Stater
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michelle Bradbury
- Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael R McDevitt
- Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Li F, Zhou X, Zhou H, Jia J, Li L, Zhai S, Yan B. Reducing Both Pgp Overexpression and Drug Efflux with Anti-Cancer Gold-Paclitaxel Nanoconjugates. PLoS One 2016; 11:e0160042. [PMID: 27467397 PMCID: PMC4965149 DOI: 10.1371/journal.pone.0160042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/12/2016] [Indexed: 11/21/2022] Open
Abstract
Repeated administrations of anti-cancer drugs to patients often induce drug resistance. P-glycoprotein (Pgp) facilitates an efficient drug efflux, preventing cellular accumulation of drugs and causing multi-drug resistance (MDR). In this study, we developed a gold-paclitaxel nanoconjugate system to overcome MDR. Gold nanoparticles (GNPs) were conjugated with β-cyclodextrin enclosing paclitaxel (PTX) molecules and PEG molecules. GNP conjugates were effectively endocytosed by both drug-sensitive human lung cancer H460 cells and Pgp-overexpressed drug-resistant H460PTX cells. Compared with PTX, PGNPs did not induce the Pgp overexpression in drug-sensitive H460 cells after long-term treatment and also avoided being pumped out of cells by overexpressed Pgp molecules in H460PTX with a 17-fold lower EC50 compared to PTX. Fluorescent microscopy and flow cytometry further confirmed that fluorescent labeled PGNPs (f-PGNPs) maintained a high cellular PTX level in both H460 and H460PTX cells. These results demonstrated that nano-drug conjugates were able to avoid the development of drug resistance in sensitive cells and evade Pgp-mediated drug resistance and to maintain a high cytotoxicity in drug-resistant cancer cells. These findings exemplify a powerful nanotechnological approach to the long-lasting issue of chemotherapy-induced drug resistance.
Collapse
Affiliation(s)
- Fei Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaofei Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jianbo Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Liwen Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- * E-mail: (BY); (SZ)
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- * E-mail: (BY); (SZ)
| |
Collapse
|
15
|
Clear-cut observation of clearance of sustainable upconverting nanoparticles from lymphatic system of small living mice. Sci Rep 2016; 6:27407. [PMID: 27265267 PMCID: PMC4893699 DOI: 10.1038/srep27407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
The significance of lymphatic system has gathered great attention for immunotechnology related to cancer metastasis and immunotherapy. To develop innovative immunodiagnostics and immunotherapy in in vivo environments, it is very important to understand excretion pathways and clearance of injected cargoes. Herein, we employed Tm(3+)-doped upconverting nanoparticles (UCNPs) with versatile advantages suitable for long-term non-invasive in vivo optical imaging and tracking. Transport and retention of the UCNPs in the lymphatic system were evaluated with high-quality NIR-to-NIR upconversion luminescence (UCL) imaging. We obtained their kinetic luminescence profiles for the injection site and sentinel lymph node (SLN) and observed luminescence signals for one month; we also examined UCL images in SLN tissues, organs, and faeces at each time point. We speculate that the injected UCNPs in a footpad of a small mouse are transported rapidly from the lymphatic system to the blood system and then eventually result in an efficient excretion by the hepatobiliary route. These results will support development of novel techniques for SLN biopsy as well as immunotechnology.
Collapse
|
16
|
An indigenous single-vial kit formulation of human serum albumin nanocolloid for use in sentinel lymph node detection. Nucl Med Commun 2016; 36:848-53. [PMID: 25932533 DOI: 10.1097/mnm.0000000000000333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In-situ sentinel lymph node (SLN) detection is an important component in staging cancers of various origins. At present, technetium-99m (Tc)-labeled nanoparticle formulations like sulfur colloid and human serum albumin (HSA) nanocolloid are used in the clinic as SLN tracers. In India, HSA nanocolloid cold kits have so far been imported. This study aims to develop and evaluate an indigenous alternative to imported HSA nanocolloid cold kits for SLN detection/imaging. MATERIALS AND METHODS Production of cold kits was standardized and the product was characterized for its suitability in terms of particle size. Tc-labeling of an in-house HSA nanocolloid was optimized, and the yield and stability of the product were assessed. Animal studies were performed in Wistar rats using the footpad model. Clinical evaluation was performed in 54 patients using a combination of scintigraphic imaging and a hand-held gamma probe. RESULTS AND CONCLUSION With the optimized protocol, HSA nanocolloids with particle sizes ranging from 50 to 200 nm were obtained. Greater than 90% Tc-labeling yield was obtained in 15 min reactions, and the radiopharmaceutical was stable for up to 24 h after preparation. The animal studies showed similar SLN uptake and improved retention pattern compared with those of the imported Nanocoll radiopharmaceutical. Clinical studies showed detectable 'hot' nodes in 53 of 54 patients, demonstrating sensitivity of the product for clinical utility. In conclusion, this indigenous HSA nanocolloid cold kit is proposed as a logistically favorable alternative to imported kits for SLN detection in the Indian clinical scenario.
Collapse
|
17
|
Bradbury MS, Pauliah M, Zanzonico P, Wiesner U, Patel S. Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:535-53. [PMID: 26663853 DOI: 10.1002/wnan.1380] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
Abstract
The management of regional lymph nodes in patients with melanoma has undergone a significant paradigm shift over the past several decades, transitioning from the use of more aggressive surgical approaches, such as lymph node basin dissection, to the application of minimally invasive sentinel lymph node (SLN) biopsy methods to detect the presence of nodal micrometastases. SLN biopsy has enabled reliable, highly accurate, and low-morbidity staging of regional lymph nodes in early stage melanoma as a means of guiding treatment decisions and improving patient outcomes. The accurate identification and staging of lymph nodes is an important prognostic factor, identifying those patients for whom the expected benefits of nodal resection outweigh attendant surgical risks. However, currently used standard-of-care technologies for SLN detection are associated with significant limitations. This has fueled the development of clinically promising platforms that can serve as intraoperative visualization tools to aid accurate and specific determination of tumor-bearing lymph nodes, map cancer-promoting biological properties at the cellular/molecular levels, and delineate nodes from adjacent critical structures. Among a number of promising cancer-imaging probes that might facilitate achievement of these ends is a first-in-kind ultrasmall tumor-targeting inorganic (silica) nanoparticle, designed to overcome translational challenges. The rationale driving these considerations and the application of this platform as an intraoperative treatment tool for guiding resection of cancerous lymph nodes is discussed and presented within the context of alternative imaging technologies. WIREs Nanomed Nanobiotechnol 2016, 8:535-553. doi: 10.1002/wnan.1380 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY, USA.,Department of Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Mohan Pauliah
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Pat Zanzonico
- Department of Medical Physics, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Ulrich Wiesner
- Department of Material Science & Engineering, Cornell University, Ithaca, NY, USA
| | - Snehal Patel
- Department of Surgery, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| |
Collapse
|
18
|
Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C. Optimization of dendrimer structure for sentinel lymph node imaging: Effects of generation and terminal group. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2119-27. [DOI: 10.1016/j.nano.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/04/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
|
19
|
Truong‐Phuoc L, Marie Kueny‐Stotz, Jouhannaud J, Garofalo A, Blé F, Simon H, Tellier F, Poulet P, Chirco P, Begin‐Colin S, Pourroy G, Felder‐Flesch D. Patent Blue Derivatized Dendronized Iron Oxide Nanoparticles for Multimodal Imaging. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lai Truong‐Phuoc
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Marie Kueny‐Stotz
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Julien Jouhannaud
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Antonio Garofalo
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - François‐Xavier Blé
- Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie – iCUBE – UMR 7357 CNRS Université de Strasbourg Fédération de Médecine Translationnelle de Strasbourg Institut de Physique Biologique Faculté de Médecine, 4, rue Kirschleger 67085 Strasbourg Cedex, France
| | - Hervé Simon
- EURORAD S.A, 2, rue Ettore Bugarti 67201 Eckbolsheim, France, http://www.eurorad.com
| | - Franklin Tellier
- Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie – iCUBE – UMR 7357 CNRS Université de Strasbourg Fédération de Médecine Translationnelle de Strasbourg Institut de Physique Biologique Faculté de Médecine, 4, rue Kirschleger 67085 Strasbourg Cedex, France
| | - Patrick Poulet
- Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie – iCUBE – UMR 7357 CNRS Université de Strasbourg Fédération de Médecine Translationnelle de Strasbourg Institut de Physique Biologique Faculté de Médecine, 4, rue Kirschleger 67085 Strasbourg Cedex, France
| | - Piero Chirco
- SOFTEC srl, Via Stracciari 2 4014 Bologna, Italy
| | - Sylvie Begin‐Colin
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Geneviève Pourroy
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Delphine Felder‐Flesch
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| |
Collapse
|
20
|
Wada H, Hirohashi K, Anayama T, Nakajima T, Kato T, Chan HHL, Qiu J, Daly M, Weersink R, Jaffray DA, Irish JC, Waddell TK, Keshavjee S, Yoshino I, Yasufuku K. Minimally invasive electro-magnetic navigational bronchoscopy-integrated near-infrared-guided sentinel lymph node mapping in the porcine lung. PLoS One 2015; 10:e0126945. [PMID: 25993006 PMCID: PMC4438870 DOI: 10.1371/journal.pone.0126945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 04/09/2015] [Indexed: 02/05/2023] Open
Abstract
Background The use of near-infrared (NIR) fluorescence imaging with indocyanine green (ICG) for sentinel lymph node (SN) mapping has been investigated in lung cancer; however, this has not been fully adapted for minimally invasive surgery (MIS). The aim of our study was to develop a minimally invasive SN mapping integrating pre-operative electro-magnetic navigational bronchoscopy (ENB)-guided transbronchial ICG injection and intraoperative NIR thoracoscopic imaging. Methods A NIR thoracoscope was used to visualize ICG fluorescence. ICG solutions in a 96-well plate and ex vivo porcine lungs were examined to optimize ICG concentrations and injection volumes. Transbronchial ICG injection (n=4) was assessed in comparison to a traditional transpleural approach (n=3), where after thoracotomy an ICG solution (100μL at 100μg/mL) was injected into the porcine right upper lobe for SN identification. For further translation into clinical use, transbronchial ICG injection prior to thoracotomy followed by NIR thoracoscopic imaging was validated (n=3). ENB was used for accurate targeting in two pigs with a pseudo-tumor. Results The ICG fluorescence at 10 μg/mL was the brightest among various concentrations, unchanged by the distance between the thoracoscope and ICG solutions. Injected ICG of no more than 500μL showed a localized fluorescence area. All 7 pigs showed a bright paratracheal lymph node within 15 minutes post-injection, with persistent fluorescence for 60 minutes. The antecedent transbronchial ICG injection succeeded in SN identification in all 3 cases at the first thoracoscopic inspection within 20 minutes post-injection. The ENB system allowed accurate ICG injection surrounding the pseudo-tumors. Conclusions ENB-guided ICG injection followed by NIR thoracoscopy was technically feasible for SN mapping in the porcine lung. This promising platform may be translated into human clinical trials and is suited for MIS.
Collapse
Affiliation(s)
- Hironobu Wada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Hirohashi
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Takashi Anayama
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Takahiro Nakajima
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Kato
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Harley H. L. Chan
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Jimmy Qiu
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Daly
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert Weersink
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - David A. Jaffray
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Jonathan C. Irish
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
- Department of Otolaryngology, Head and Neck Surgery/Surgical Oncology, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K. Waddell
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Lee ES, Kim TS, Kim SK. Current status of optical imaging for evaluating lymph nodes and lymphatic system. Korean J Radiol 2015; 16:21-31. [PMID: 25598672 PMCID: PMC4296273 DOI: 10.3348/kjr.2015.16.1.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/30/2014] [Indexed: 12/26/2022] Open
Abstract
Optical imaging techniques use visual and near infrared rays. Despite their considerably poor penetration depth, they are widely used due to their safe and intuitive properties and potential for intraoperative usage. Optical imaging techniques have been actively investigated for clinical imaging of lymph nodes and lymphatic system. This article summarizes a variety of optical tracers and techniques used for lymph node and lymphatic imaging, and reviews their clinical applications. Emerging new optical imaging techniques and their potential are also described.
Collapse
Affiliation(s)
- Eun Seong Lee
- Department of Nuclear Medicine, Research Institute and Hospital, National Cancer Center, Goyang 410-769, Korea
| | - Tae Sung Kim
- Department of Nuclear Medicine, Research Institute and Hospital, National Cancer Center, Goyang 410-769, Korea
| | - Seok-Ki Kim
- Department of Nuclear Medicine, Research Institute and Hospital, National Cancer Center, Goyang 410-769, Korea
| |
Collapse
|
22
|
Sun BO, Fang Y, Li Z, Chen Z, Xiang J. Advances in the application of nanotechnology in the diagnosis and treatment of gastrointestinal tumors. Mol Clin Oncol 2014; 3:274-280. [PMID: 25798253 DOI: 10.3892/mco.2014.470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/20/2014] [Indexed: 01/26/2023] Open
Abstract
Nanotechnology has broad application prospects in the diagnosis and treatment of cancer. Integrating chemistry, engineering, biology and medicine, nanotechnology is a multidisciplinary research field. Nanoscale imaging technology significantly improves the precision and accuracy of tumor diagnosis. Nanocarriers are able to significantly improve the accuracy of dose and targeted drug delivery and reduce the toxic side effects. This review focuses on the emerging roles of these innovative technologies in gastrointestinal cancer diagnostics and therapeutics. Although several problems and barriers are hampering the development of nanodevices, the potential for nanotechnologies to function as multimodal nanotheranostic agents will likely pave the way for the fight against gastrointestinal cancer.
Collapse
Affiliation(s)
- B O Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yantian Fang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhengyang Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
23
|
Yang R, Xia S, Ye T, Yao J, Zhang R, Wang S, Wang S. Synthesis of a novel polyamidoamine dendrimer conjugating with alkali blue as a lymphatic tracer and study on the lymphatic targeting in vivo. Drug Deliv 2014; 23:2298-2308. [PMID: 25406493 DOI: 10.3109/10717544.2014.979515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, a novel lymphatic tracer polyamidoamin-alkali blue (PAMAM-AB) was synthesized in order to evaluate the intra-lymphatic targeting ability and lymphatic tropism of PAMAM-AB after subcutaneous administration. UV-Vis, FT-IR, NMR and HPLC characterization were performed to prove the successful synthesis of PAMAM-AB. The calculated AB payload of PAMAM-AB conjugate was seven per dendrimer molecule (27.16% by weight). Hydrolysis stability of PAMAM-AB in vitro was evaluated, which was stable in PBS and human plasma. Lymphatic tracing were studied to determine the blue-stained intensity of PAMAM-AB in right popliteral lymph nodes (PLNs), iliac lymph nodes (ILNs) and para-aortic lymph nodes (PALNs) after subcutaneous administration. The pharmacokinetics and biodistribution of PAMAM-AB in mice were investigated. PLNs, ILNs and PALNs could be obviously blue-stained within 10 min after PAMAM-AB administration, and displayed a more rapid lymphatic absorption, a higher AUC value in lymph nodes and a longer lymph nodes residence time compared with methylene blue solution (MB-S), MB water-in-oil microemulsion (MB-ME), MB multiple microemulsion (MB-MME). Enhanced lymphatic drainage from the injection site and uptake into lymph of PAMAM-AB indicated that PAMAM-AB possesses the double function of lymphatic tracing and lymphatic targeting, and suggested the potential for the development of lymphatic targeting vectors or as a lymphatic tracer in its own right.
Collapse
Affiliation(s)
- Rui Yang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China.,b Laboratory of Clinical Pharmacology , Academy of Traditional Chinese Medicine of Liaoning Province , Shenyang , PR China , and
| | - Suxia Xia
- b Laboratory of Clinical Pharmacology , Academy of Traditional Chinese Medicine of Liaoning Province , Shenyang , PR China , and
| | - Tiantian Ye
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Jianhua Yao
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Ruizhi Zhang
- c Department of Marketing , Henan University of Animal Husbandry and Economy , Zhengzhou , PR China
| | - Shujun Wang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Siling Wang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| |
Collapse
|
24
|
Forghani R, Yu E, Levental M, Som PM, Curtin HD. Imaging evaluation of lymphadenopathy and patterns of lymph node spread in head and neck cancer. Expert Rev Anticancer Ther 2014; 15:207-24. [PMID: 25385488 DOI: 10.1586/14737140.2015.978862] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accurate and consistent characterization of metastatic cervical adenopathy is essential for the initial staging, treatment planning and surveillance of head and neck cancer patients. While enlarged superficial nodes may be clinically palpated, imaging allows identification of deeper adenopathy as well as clinically unsuspected pathology and thus imaging has become an integral part of the evaluation of most head and neck cancers patients. This review will focus on the evaluation of cervical adenopathy, summarizing the currently used nomenclature and imaging approach for determining cervical lymph node metastases in head and neck malignancies. The imaging-based classification, which has also been adopted by the American Joint Committee on Cancer, will be presented, the morphologic characteristics used to identify metastatic nodes will be reviewed and the typical nodal spread patterns of the major mucosal cancers of the head and neck will be examined.
Collapse
Affiliation(s)
- Reza Forghani
- Department of Radiology, Jewish General Hospital and McGill University, Room C-212.1, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
25
|
Radiolabeled γ-polyglutamic acid complex as a nano-platform for sentinel lymph node imaging. J Control Release 2014; 194:310-5. [DOI: 10.1016/j.jconrel.2014.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 02/01/2023]
|
26
|
Lindemann A, Lüdtke-Buzug K, Fräderich BM, Gräfe K, Pries R, Wollenberg B. Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. Int J Nanomedicine 2014; 9:5025-40. [PMID: 25378928 PMCID: PMC4218924 DOI: 10.2147/ijn.s63873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background As a tomographic imaging technology, magnetic particle imaging (MPI) allows high spatial resolution and sensitivity, and the possibility to create real-time images by determining the spatial distribution of magnetic particles. To ensure a prospective biosafe application of UL-D (University of Luebeck-Dextran coated superparamagnetic nanoparticles), we evaluated the biocompatibility of superparamagnetic iron oxide nanoparticles (SPIONs), their impact on biological properties, and their cellular uptake using head and neck squamous cancer cells (HNSCCs). Methods SPIONs that met specific MPI requirements were synthesized as tracers. Labeling and uptake efficiency were analyzed by hematoxylin and eosin staining and magnetic particle spectrometry. Flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays, and real-time cell analyzer assays were used to investigate apoptosis, proliferation, and the cytokine response of SPION-labeled cells. The production of reactive oxygen species (ROS) was determined using a fluorescent dye. Experimental results were compared to the contrast agent Resovist®, a standard agent used in MPI. Results UL-D nanoparticles and Resovist particles were taken up in vitro by HNSCCs via unspecific phagocytosis followed by cytosolic accumulation. To evaluate toxicity, flow cytometry analysis was performed; results showed that dose- and time-dependent administration of Resovist induced apoptosis whereas cell viability of UL-D-labeled cells was not altered. We observed decreased cell proliferation in response to increased SPION concentrations. An intracellular production of ROS could not be detected, suggesting that the particles did not cause oxidative stress. Tumor necrosis factor alpha (TNF-α) and interleukins IL-6, IL-8, and IL-1β were measured to distinguish inflammatory responses. Only the primary tumor cell line labeled with >0.5 mM Resovist showed a significant increase in IL-1β secretion. Conclusion Our data suggest that UL-D SPIONs are a promising tracer material for use in innovative tumor cell analysis in MPI.
Collapse
Affiliation(s)
- Antje Lindemann
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | | | - Bianca M Fräderich
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ksenija Gräfe
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
27
|
Evertsson M, Kjellman P, Cinthio M, Fredriksson S, in't Zandt R, Persson H, Jansson T. Multimodal detection of iron oxide nanoparticles in rat lymph nodes using magnetomotive ultrasound imaging and magnetic resonance imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1276-1283. [PMID: 25073135 DOI: 10.1109/tuffc.2014.3034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Detection and removal of sentinel lymph nodes (SLN) is important in the diagnosis and treatment of cancer. The SLN is the first regional lymph node draining the primary tumor, and if the cancer has spread, it is most likely to find metastases in the SLN. In this study, we have for the first time been able to image the very same contrast agent, superparamagnetic iron oxide nanoparticles (SPIO-NPs), in rat SLNs by using both our frequency- and phase-gated magnetomotive ultrasound (MMUS) algorithm and conventional magnetic resonance imaging (MRI); MMUS post mortem, MRI in vivo. For both higher NP-concentration and smaller NPs, we found that the MMUS data showed a larger magnetomotive displacement (1.56 ± 0.43 and 1.94 ± 0.54 times larger, respectively) and that the MR-images were affected to a higher degree. The MMUS displacement also increased with lower excitation frequency (1.95 ± 0.64 times larger for 5 Hz compared with 15 Hz) and higher excitation voltage (2.95 ± 1.44 times larger for 30 V compared with 10 V). The results show that MMUS has potential to be used as bedside guidance during SLN surgery, imaging the same particles that were used in prior staging with other imaging techniques.
Collapse
|
28
|
Psimadas D, Baldi G, Ravagli C, Comes Franchini M, Locatelli E, Innocenti C, Sangregorio C, Loudos G. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores. NANOTECHNOLOGY 2014; 25:025101. [PMID: 24334365 DOI: 10.1088/0957-4484/25/2/025101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Metal oxide nanoparticles, hybridized with various polymeric chemicals, represent a novel and breakthrough application in drug delivery, hyperthermia treatment and imaging techniques. Radiolabeling of these nanoformulations can result in new and attractive dual-imaging agents as well as provide accurate in vivo information on their biodistribution profile. In this paper a comparison study has been made between two of the most promising hybrid core-shell nanosystems, bearing either magnetite (Fe3O4) or cobalt ferrite (CoFe2O4) cores, regarding their magnetic, radiolabeling, hyperthermic and biodistribution properties. While hyperthermic properties were found to be affected by the metal-core type, the radiolabeling ability and the in vivo fate of the nanoformulations seem to depend critically on the size and the shell composition.
Collapse
Affiliation(s)
- D Psimadas
- Department of Biomedical Engineering, Technological Educational Institute of Athens, Agiou Spiridonos 28, 12210, Egaleo, Greece. Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', 15310, Agia Paraskevi, Greece
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Toyota T, Fujito H, Suganami A, Ouchi T, Ooishi A, Aoki A, Onoue K, Muraki Y, Madono T, Fujinami M, Tamura Y, Hayashi H. Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives. Bioorg Med Chem 2013; 22:721-7. [PMID: 24393719 DOI: 10.1016/j.bmc.2013.12.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/07/2013] [Indexed: 12/27/2022]
Abstract
Liposomally formulated indocyanine green (LP-ICG) has drawn much attention as a highly sensitive near-infrared (NIR)-fluorescence probe for tumors or lymph nodes in vivo. We synthesized ICG derivatives tagged with alkyl chains (ICG-Cn), and we examined NIR-fluorescence imaging for lymph nodes in the lower extremities of mice by using liposomally formulated ICG-Cn (LP-ICG-Cn) as well as conventional liposomally formulated ICG (LP-ICG) and ICG. Analysis with a noninvasive preclinical NIR-fluorescence imaging system revealed that LP-ICG-Cn accumulates in only the popliteal lymph node 1h after injection into the footpad, whereas LP-ICG and ICG accumulate in the popliteal lymph node and other organs like the liver. This result indicates that LP-ICG-Cn is a useful NIR-fluorescence probe for noninvasive in vivo bioimaging, especially for the sentinel lymph node.
Collapse
Affiliation(s)
- Taro Toyota
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Hiromichi Fujito
- Department of Medical System Engineering, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoki Ouchi
- Division of Nanoscience, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Aki Ooishi
- Division of Nanoscience, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Akira Aoki
- Yamada Chemical Co. Ltd, 1-1 Kamichoshi-cho, Kamitoba, Minami-ku, Kyoto 601-8105, Japan
| | - Kazutaka Onoue
- Yamada Chemical Co. Ltd, 1-1 Kamichoshi-cho, Kamitoba, Minami-ku, Kyoto 601-8105, Japan
| | - Yutaka Muraki
- Yamada Chemical Co. Ltd, 1-1 Kamichoshi-cho, Kamitoba, Minami-ku, Kyoto 601-8105, Japan
| | - Tomoyuki Madono
- Yamada Chemical Co. Ltd, 1-1 Kamichoshi-cho, Kamitoba, Minami-ku, Kyoto 601-8105, Japan
| | - Masanori Fujinami
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Hayashi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Department of Frontier Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
30
|
Velikyan I. Prospective of ⁶⁸Ga-radiopharmaceutical development. Theranostics 2013; 4:47-80. [PMID: 24396515 PMCID: PMC3881227 DOI: 10.7150/thno.7447] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023] Open
Abstract
Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the ⁶⁸Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of ⁶⁸Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the ⁶⁸Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents.
Collapse
Affiliation(s)
- Irina Velikyan
- 1. Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden
- 2. PET-Centre, Centre for Medical Imaging, Uppsala University Hospital, SE-75185, Uppsala, Sweden
- 3. Department of Radiology, Oncology, and Radiation Science, Uppsala University, SE-75285 Uppsala, Sweden
| |
Collapse
|
31
|
Ladj R, Magouroux T, Eissa M, Dubled M, Mugnier Y, Dantec RL, Galez C, Valour JP, Fessi H, Elaissari A. Aminodextran-coated potassium niobate (KNbO3) nanocrystals for second harmonic bio-imaging. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Cousins A, Thompson SK, Wedding AB, Thierry B. Clinical relevance of novel imaging technologies for sentinel lymph node identification and staging. Biotechnol Adv 2013; 32:269-79. [PMID: 24189095 DOI: 10.1016/j.biotechadv.2013.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/12/2013] [Accepted: 10/27/2013] [Indexed: 01/07/2023]
Abstract
The sentinel lymph node (SLN) concept has become a standard of care for patients with breast cancer and melanoma, yet its clinical application to other cancer types has been somewhat limited. This is mainly due to the reduced accuracy of conventional SLN mapping techniques (using blue dye and/or radiocolloids as lymphatic tracers) in cancer types where lymphatic drainage is more complex, and SLNs are within close proximity to other nodes or the tumour site. In recent years, many novel techniques for SLN mapping have been developed including fluorescence, x-ray, and magnetic resonant detection. Whilst each technique has its own advantages/disadvantages, the role of targeted contrast agents (for enhanced retention in the SLN, or for immunostaging) is increasing, and may represent the new standard for mapping the SLN in many solid organ tumours. This review article discusses current limitations of conventional techniques, limiting factors of nanoparticulate based contrast agents, and efforts to circumvent these limitations with modern tracer architecture.
Collapse
Affiliation(s)
- Aidan Cousins
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Sarah K Thompson
- Discipline of Surgery, University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - A Bruce Wedding
- School of Engineering, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Benjamin Thierry
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
33
|
Subramanian S, Pandey U, Gugulothu D, Patravale V, Samuel G. Modification of PLGA Nanoparticles for Improved Properties as a 99mTc-Labeled Agent in Sentinel Lymph Node Detection. Cancer Biother Radiopharm 2013; 28:598-606. [PMID: 23705864 DOI: 10.1089/cbr.2013.1511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Suresh Subramanian
- Radiopharmaceutical Evaluation Section, Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, India
| | - Usha Pandey
- Radiopharmaceutical Evaluation Section, Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Grace Samuel
- Radiopharmaceutical Evaluation Section, Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, India
| |
Collapse
|
34
|
Du Y, Lai PT, Leung CH, Pong PWT. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). Int J Mol Sci 2013; 14:18682-710. [PMID: 24030719 PMCID: PMC3794803 DOI: 10.3390/ijms140918682] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 01/21/2023] Open
Abstract
Magnetic particle imaging (MPI) is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles) without interference from the anatomical background of the imaging objects (either phantoms or lab animals). Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted.
Collapse
Affiliation(s)
- Yimeng Du
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong; E-Mails: (Y.D.); (P.T.L.); (C.H.L.)
| | - Pui To Lai
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong; E-Mails: (Y.D.); (P.T.L.); (C.H.L.)
| | - Cheung Hoi Leung
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong; E-Mails: (Y.D.); (P.T.L.); (C.H.L.)
| | - Philip W. T. Pong
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong; E-Mails: (Y.D.); (P.T.L.); (C.H.L.)
| |
Collapse
|
35
|
Bradbury MS, Phillips E, Montero PH, Cheal SM, Stambuk H, Durack JC, Sofocleous CT, Meester RJC, Wiesner U, Patel S. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb) 2013; 5:74-86. [PMID: 23138852 DOI: 10.1039/c2ib20174g] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Early diagnosis and treatment of melanoma are essential to minimizing morbidity and mortality. The presence of lymph node metastases is a vital prognostic predictor, and accurate identification by imaging has important implications for disease staging, prognosis, and clinical outcome. Sentinel lymph node (SLN) mapping procedures are limited by a lack of intraoperative visualization tools that can aid accurate determination of disease spread and delineate nodes from adjacent critical neural and vascular structures. Newer methods for circumventing these issues can exploit a variety of imaging tools, including biocompatible particle-based platforms coupled with portable device technologies for use with image-guided surgical and interventional procedures. We describe herein a clinically-translated, integrin-targeting platform for use with both PET and optical imaging that meets a number of key design criteria for improving SLN tissue localization and retention, target-to-background ratios, and clearance from the site of injection and the body. The use of such agents for selectively probing critical cancer targets may elucidate important insights into cellular and molecular processes that govern metastatic disease spread. Coupled with portable, real-time optical camera systems, we show that pre-operative PET imaging findings for mapping metastatic disease in clinically-relevant larger-animal models can be readily translated into the intraoperative setting for direct visualization of the draining tumor lymphatics and fluorescent SLN/s with histologic correlation. The specificity of this platform, relative to the standard-of-care radiotracer, (18)F-FDG, for potentially discriminating metastatic disease from inflammatory processes is also discussed in the setting of surgically-based or interventionally-driven therapies.
Collapse
Affiliation(s)
- Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, 1275 York Ave., Z-2001, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li L, Mori S, Kodama M, Sakamoto M, Takahashi S, Kodama T. Enhanced sonographic imaging to diagnose lymph node metastasis: importance of blood vessel volume and density. Cancer Res 2013; 73:2082-92. [PMID: 23333937 DOI: 10.1158/0008-5472.can-12-4200] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lymph node size is an important variable in ultrasound diagnosis of lymph node metastasis. However, the size criterion often leads to oversight of tumor-positive lymph nodes within the range of "normal" size, such that more accurate diagnostic criteria for lymph node metastasis are required. In this study, we show how diagnosis of lymph node metastasis can be improved by evaluating changes in blood vessel volume and density using a novel contrast-enhanced high-frequency ultrasound (CE-HFUS) system with Sonazoid. An MRL/MpJ-lpr/lpr (MRL/lpr) mouse model of lymph node metastasis was used in which lymph nodes are similar in size to humans. Metastasis via lymphatic vessels to proper axillary lymph nodes (proper ALN) was induced by injection of tumor cells into the subiliac lymph nodes. Within 21 days of injection, significant increases in blood vessel volume and density, but no increases in the size of the proper ALNs, were observed. The increase in blood vessel density was confirmed with immunohistochemical analysis and was positively related to tumor cell proliferation as measured using bioluminescence imaging. Together, our results showed that alterations in blood vessel volume and density precede alterations in lymph node size in the early stages of lymph node metastasis. Detection of these changes by ultrasonography may offer new criteria for early diagnosis of lymph node metastasis.
Collapse
Affiliation(s)
- Li Li
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Moghimi SM, Parhamifar L, Ahmadvand D, Wibroe PP, Andresen TL, Farhangrazi ZS, Hunter AC. Particulate systems for targeting of macrophages: basic and therapeutic concepts. J Innate Immun 2012; 4:509-28. [PMID: 22722900 DOI: 10.1159/000339153] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/30/2012] [Indexed: 12/22/2022] Open
Abstract
Particulate systems in the form of liposomes, polymeric micelles, polymeric nano- and microparticles, and many others offer a rational approach for selective delivery of therapeutic agents to the macrophage from different physiological portals of entry. Particulate targeting of macrophages and intracellular drug release processes can be optimized through modifications of the drug carrier physicochemical properties, which include hydrodynamic size, shape, composition and surface characteristics. Through such modifications together with understanding of macrophage cell biology, targeting may be aimed at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed.
Collapse
Affiliation(s)
- S M Moghimi
- Nanomedicine Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kaminskas LM, Boyd BJ, Porter CJH. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine (Lond) 2012; 6:1063-84. [PMID: 21955077 DOI: 10.2217/nnm.11.67] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dendrimers show increasing promise as drug-delivery vectors and can be generated with a wide range of scaffold structures, sizes and surface functionalities. To this point, the majority of studies of dendrimer-based drug-delivery systems have detailed pharmacodynamic outcomes, or have followed the pharmacokinetics of a solubilized or conjugated drug. By contrast, detailed commentary on the in vivo fate of the dendrimer carrier is less evident, even though the pharmacokinetics of the carrier will likely dictate both pharmacodynamic and toxicokinetic outcomes. In the current article, the influence of size, structure and surface functionality on the absorption, distribution, metabolism and elimination (ADME) properties of dendrimers have been examined and the implications of these findings for delivery system design are discussed.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University. 381 Royal Parade, Parkville, VIC, 3052, Australia
| | | | | |
Collapse
|
40
|
Mérian J, Gravier J, Navarro F, Texier I. Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 2012; 17:5564-91. [PMID: 22576228 PMCID: PMC6268987 DOI: 10.3390/molecules17055564] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 11/30/2022] Open
Abstract
With the fast development, in the last ten years, of a large choice of set-ups dedicated to routine in vivo measurements in rodents, fluorescence imaging techniques are becoming essential tools in preclinical studies. Human clinical uses for diagnostic and image-guided surgery are also emerging. In comparison to low-molecular weight organic dyes, the use of fluorescent nanoprobes can improve both the signal sensitivity (better in vivo optical properties) and the fluorescence biodistribution (passive “nano” uptake in tumours for instance). A wide range of fluorescent nanoprobes have been designed and tested in preclinical studies for the last few years. They will be reviewed and discussed considering the obstacles that need to be overcome for their potential everyday use in clinics. The conjugation of fluorescence imaging with the benefits of nanotechnology should open the way to new medical applications in the near future.
Collapse
Affiliation(s)
| | | | | | - Isabelle Texier
- Author to whom correspondence should be addressed; ; Tel.: +33-438-784-670; Fax: +33-438-785-787
| |
Collapse
|
41
|
Pericleous P, Gazouli M, Lyberopoulou A, Rizos S, Nikiteas N, Efstathopoulos EP. Quantum dots hold promise for early cancer imaging and detection. Int J Cancer 2012; 131:519-28. [PMID: 22411309 DOI: 10.1002/ijc.27528] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 02/27/2012] [Indexed: 01/21/2023]
Abstract
Despite all major breakthroughs in recent years of research concerning the complex events that lead to cancer expression and metastasis, we are not yet able to effectively treat cancer that has spread to vital organs. The various clinical phases originating from cancer diagnosis through treatment and prognosis require a comprehensive understanding of these events, to utilise pre-symptomatic, minimally invasive and targeted cancer management techniques. Current imaging modalities such as ultrasound, computed tomography, magnetic resonance imaging and gamma scintigraphy facilitate the pre-operative study of tumours, but they have been rendered unable to visualise cancer in early stages, due to their intrinsic limitations. The semiconductor nanocrystal quantum dots (QDs) have excellent photo-physical properties, and the QDs-based probes have achieved encouraging developments in cellular (in vitro) and in vivo molecular imaging. However, the same unique physical and chemical properties which renowned QDs attractive may be associated with their potentially catastrophic effects on living cells and tissues. There are critical issues that need to be further examined to properly assess the risks associated with the manufacturing and use of QDs in cancer management. In this review, we aim to describe the current utilisation of QDs as well as their future prospective to decipher and confront cancer.
Collapse
|
42
|
Grallert SRM, Rangel-Yagui CDO, Pasqualoto KFM, Tavares LC. Polymeric micelles and molecular modeling applied to the development of radiopharmaceuticals. BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000100002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Micelles composed of amphiphilic copolymers linked to a radioactive element are used in nuclear medicine predominantly as a diagnostic application. A relevant advantage of polymeric micelles in aqueous solution is their resulting particle size, which can vary from 10 to 100 nm in diameter. In this review, polymeric micelles labeled with radioisotopes including technetium (99mTc) and indium (111In), and their clinical applications for several diagnostic techniques, such as single photon emission computed tomography (SPECT), gamma-scintigraphy, and nuclear magnetic resonance (NMR), were discussed. Also, micelle use primarily for the diagnosis of lymphatic ducts and sentinel lymph nodes received special attention. Notably, the employment of these diagnostic techniques can be considered a significant tool for functionally exploring body systems as well as investigating molecular pathways involved in the disease process. The use of molecular modeling methodologies and computer-aided drug design strategies can also yield valuable information for the rational design and development of novel radiopharmaceuticals.
Collapse
|
43
|
Madru R, Kjellman P, Olsson F, Wingårdh K, Ingvar C, Ståhlberg F, Olsrud J, Lätt J, Fredriksson S, Knutsson L, Strand SE. 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J Nucl Med 2012; 53:459-63. [PMID: 22323777 DOI: 10.2967/jnumed.111.092437] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The purpose of this study was to develop multimodality SPECT/MRI contrast agents for sentinel lymph node (SLN) mapping in vivo. METHODS Nanoparticles with a solid iron oxide core and a polyethylene glycol coating were labeled with (99m)Tc. The labeling efficiency was determined with instant thin-layer chromatography and magnetic separation. The stability of the radiolabeled superparamagnetic iron oxide nanoparticles (SPIONs) was verified in both sterile water and human serum at room temperature 6 and 24 h after labeling. Five Wistar rats were injected subcutaneously in the right hind paw with (99m)Tc-SPIONs (25-50 MBq, ∼0.2 mg of Fe) and sacrificed 4 h after injection. Two animals were imaged with SPECT/MRI. All 5 rats were dissected; the lymph nodes, liver, kidneys, spleen, and hind paw containing the injection site were removed and weighed; and activity in the samples was measured. The microdistribution within the lymph nodes was studied with digital autoradiography. RESULTS The efficiency of labeling of the SPIONs was 99% 6 h after labeling in both water and human serum. The labeling yield was 98% in water and 97% in human serum 24 h after labeling. The SLN could be identified in vivo with SPECT/MRI. The accumulation of (99m)Tc-SPIONs (as the percentage injected dose/g [%ID/g]) in the SLN was 100 %ID/g, whereas in the liver and spleen it was less than 2 %ID/g. Digital autoradiography images revealed a nonhomogeneous distribution of (99m)Tc-SPIONs within the lymph nodes; nanoparticles were found in the cortical, subcapsular, and medullary sinuses. CONCLUSION This study revealed the feasibility of labeling SPIONs with (99m)Tc. The accumulation of (99m)Tc-SPIONs in lymph nodes after subcutaneous injection in animals, verified by SPECT/MRI, is encouraging for applications in breast cancer and malignant melanoma.
Collapse
Affiliation(s)
- Renata Madru
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Development of nanoparticles for drug delivery has progressed by leaps and bounds over the last few decades, facilitating the possibility of an efficacious therapy for some fatal diseases. This development has stemmed from either the unsuitable physicochemical characteristics of the existing drug molecules, such as limited solubility and hence poor bioavailability, or the inadequacy of the conventional delivery systems to provide safe and efficient delivery. This chapter focuses on the precise need for the development of these novel nanoparticulate drug carriers and reasons for their popularity with the drug delivery scientists. The text also discusses the various strategies, including different formulation and targeting approaches, which have been adopted to overcome the challenges presented by the inherent properties of the drug molecules. Examples of nanoparticulate drug delivery systems which have already gained market approval have been cited in the discussion, wherever applicable.
Collapse
|
45
|
Luo G, Long J, Zhang B, Liu C, Ji S, Xu J, Yu X, Ni Q. Quantum dots in cancer therapy. Expert Opin Drug Deliv 2011; 9:47-58. [PMID: 22171712 DOI: 10.1517/17425247.2012.638624] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Quantum dots (QDs) are nanometer-size luminescent semiconductor nanocrystals. Their unique optical properties, such as high brightness, long-term stability, simultaneous detection of multiple signals and tunable emission spectra, make them appealing as potential diagnostic and therapeutic systems in the field of oncology. AREAS COVERED This paper summarizes the recent progress of promising applications of QDs in cancer therapy, from the following aspects: identifying molecular targets, sentinel lymph-node mapping, surgical oncology, drug delivery and tracking, fluorescence resonance energy transfer and photodynamic therapy, personalized and predictive medicine, and multifunctional design and development. Limitations and toxicity issues related to QDs in living organisms are also discussed. EXPERT OPINION Bioconjugated QDs can be used to identify potential molecular biomarkers for cancer diagnosis, treatment and prognosis. They may allow the surgeon to map sentinel lymph nodes and perform a complete surgical resection. Their unique optical properties make them ideal donors of fluorescence resonance energy transfer and photodynamic therapy studies. Multifunctional QDs have become effective materials for synchronous cancer diagnosis, targeting and treatment. For QDs, toxicity remains the major barrier to clinical translation.
Collapse
Affiliation(s)
- Guopei Luo
- Fudan University Shanghai, Shanghai Cancer Center, Department of Pancreas & Hepatobiliary Surgery, No. 270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Karlsen TV, McCormack E, Mujic M, Tenstad O, Wiig H. Minimally invasive quantification of lymph flow in mice and rats by imaging depot clearance of near-infrared albumin. Am J Physiol Heart Circ Physiol 2011; 302:H391-401. [PMID: 22101523 DOI: 10.1152/ajpheart.00842.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is a lack of available methods to noninvasively quantify lymphatic function in small experimental animals, a necessity for studies on lymphatic system pathophysiology. We present a new method to quantify lymph flow in mice and rats, based on optically monitoring the depot clearance of near-infrared fluorescently labeled albumin and subsequent calculation of removal rate constants (k). BSA was conjugated with Alexa680 NHS ester and remained stable in protein-rich solutions without free dye dissociation. To assess lymph flow, mice or rats were imaged every 30 or 60 min during a 3- to 6-h period following an intradermal injection of 0.5 or 1 μl Alexa680-albumin. Mice were awake between measurements, whereas rats were anesthetized throughout the experiment. The k, a parameter defined as equivalent to lymph flow, was calculated from the slopes of the resultant log-linear washout curves and averaged -0.40 ± 0.03 and -0.30 ± 0.02%/min for control C57BL/6 and C3H mice, respectively. Local administration of the vasoconstrictor endothelin-1 in mice led to a significant reduction in k, whereas overhydration in rats increased k, reflecting the coupling between capillary filtration and lymph flow. Furthermore, k was 50% of wild type in lymphedema Chy mice where dermal lymphatics are absent. We conclude that lymph flow can be determined as its rate constant k by optical imaging of depot clearance of submicroliter amounts of Alexa680-albumin. The method offers a minimally invasive, reproducible, and simple alternative to assess lymphatic function in mice and rats.
Collapse
Affiliation(s)
- Tine V Karlsen
- Department of Biomedicine, Hematology Section, University of Bergen, Jonas Lies Vei 91, Bergen, Norway.
| | | | | | | | | |
Collapse
|
47
|
Kim J, Mooney DJ. In Vivo Modulation of Dendritic Cells by Engineered Materials: Towards New Cancer Vaccines. NANO TODAY 2011; 6:466-477. [PMID: 22125572 PMCID: PMC3224090 DOI: 10.1016/j.nantod.2011.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Therapeutic cancer vaccines are emerging as novel and potent approaches to treat cancer. These vaccines enhance the body's immune response to cancerous cells, and dendritic cells (DCs), an initiator of adaptive immunity, are a key cell type targeted by these strategies. Current DC-based cancer vaccines are based on ex vivo manipulation of the cells following their isolation from the patient, followed by reintroduction to the patient, but this approach has many limitations in practical cancer treatment. However, recent progress in materials science has allowed the design and fabrication of physically and chemically functionalized materials platforms that can specifically target DCs in the body. These materials, through their in vivo modulation of DCs, have tremendous potentials as new cancer therapies. Nanoparticles, which are several orders of magnitude smaller than DCs, can efficiently deliver antigen and danger signals to these cells through passive or active targeting. Three-dimensional biomaterials, with sizes several orders of magnitude larger than DCs, create microenvironments that allow the effective recruitment and programming of these cells, and can be used as local depots of nanoparticles targeting resident DCs. Both material strategies have shown potential in promoting antigen-specific T cell responses of magnitudes relevant to treating cancer.
Collapse
Affiliation(s)
| | - David J. Mooney
- Corresponding Author: Prof. David J. Mooney, School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St., 325 Pierce Hall, Cambridge, MA 02138, Tel: (+1) 617-384-9624, Fax: (+1) 617-495-9837,
| |
Collapse
|
48
|
Nune SK, Gunda P, Majeti BK, Thallapally PK, Forrest ML. Advances in lymphatic imaging and drug delivery. Adv Drug Deliv Rev 2011; 63:876-85. [PMID: 21718728 PMCID: PMC3164439 DOI: 10.1016/j.addr.2011.05.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/09/2010] [Accepted: 05/09/2011] [Indexed: 01/07/2023]
Abstract
Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on the use of various nanoparticulate and polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.
Collapse
Affiliation(s)
- Satish K. Nune
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Padmaja Gunda
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Bharat K. Majeti
- Moores UCSD Cancer Center, University of California, San Diego, CA, 92093-0803
| | - Praveen K. Thallapally
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
49
|
Núñez EGF, Teodoro R, Wiecek DP, da Silva NG, Martinelli JR, de Oliveira Filho RS. Size and specificity of radiopharmaceuticals for sentinel lymph node detection. Acta Radiol 2011; 52:774-8. [PMID: 21558148 DOI: 10.1258/ar.2011.100506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Biological performance of radiotracers for sentinel node detection analyzed in the light of molecular design and dimension is not widely available. PURPOSE To evaluate the effect of dextran molecular size and the presence of tissue-binding units (mannose) within the model of (99m)Tc-carbonyl conjugate for sentinel lymph node detection. MATERIAL AND METHODS Four dextran conjugates with and without mannose in the chemical backbone were included. All polymers were radiolabeled using the precursor [(99m)Tc(OH(2))(3)(CO)(3)](+). Radiolabeling conditions targeted the best radiochemical purity and specific activity for each radiopharmaceutical, and partition coefficients were also defined. Lymphoscintigraphy and ex-vivo biodistribution in popliteal lymph node, liver and kidneys were performed in Wistar rats. The effects of molecular weight and mannose presence were assessed by a two-level factorial design. RESULTS Radiochemical purity was indirectly related to molecular weight and presence of mannose in the polymer structure. All products were able to detect popliteal lymph node, however, uptake was strongly influenced by use of mannose (4-fold higher). Excretion was similarly modulated by differences in molecular weight. Mannose-enhanced lymph node uptake and higher molecule size in the range under study benefitted lymphoscintigraphic performance. CONCLUSION Screening of radiopharmaceuticals for lymphoscintigraphy might improve with attention to the mentioned physico-chemical features of the molecule.
Collapse
Affiliation(s)
| | | | | | - Natanael Gomes da Silva
- Center of Materials Science and Technology, Institute of Energetic and Nuclear Research, Sao Paulo
| | - Jose Roberto Martinelli
- Center of Materials Science and Technology, Institute of Energetic and Nuclear Research, Sao Paulo
| | | |
Collapse
|
50
|
Kueny-Stotz M, Mamlouk-Chaouachi H, Felder-Flesch D. Synthesis of Patent Blue derivatized hydrophilic dendrons dedicated to sentinel node detection in breast cancer. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|