1
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
2
|
Oral Nanomedicines for siRNA Delivery to Treat Inflammatory Bowel Disease. Pharmaceutics 2022; 14:pharmaceutics14091969. [PMID: 36145716 PMCID: PMC9503894 DOI: 10.3390/pharmaceutics14091969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
RNA interference (RNAi) therapies have significant potential for the treatment of inflammatory bowel diseases (IBD). Although administering small interfering RNA (siRNA) via an oral route is desirable, various hurdles including physicochemical, mucus, and cellular uptake barriers of the gastrointestinal tract (GIT) impede both the delivery of siRNA to the target site and the action of siRNA drugs at the target site. In this review, we first discuss various physicochemical and biological barriers in the GI tract. Furthermore, we present recent strategies and the progress of oral siRNA delivery strategies to treat IBD. Finally, we consider the challenges faced in the use of these strategies and future directions of oral siRNA delivery strategies.
Collapse
|
3
|
Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021; 35:643-671. [PMID: 34705260 PMCID: PMC8548996 DOI: 10.1007/s40259-021-00500-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Delivering macromolecules into the cytosol or nucleus is possible in vitro for DNA, RNA and proteins, but translation for clinical use has been limited. Therapeutic delivery of macromolecules into cells requires overcoming substantially higher barriers compared to the use of small molecule drugs or proteins in the extracellular space. Breakthroughs like DNA delivery for approved gene therapies and RNA delivery for silencing of genes (patisiran, ONPATTRO®, Alnylam Pharmaceuticals, Cambridge, MA, USA) or for vaccination such as the RNA-based coronavirus disease 2019 (COVID-19) vaccines demonstrated the feasibility of using macromolecules inside cells for therapy. Chemical carriers are part of the reason why these novel RNA-based therapeutics possess sufficient efficacy for their clinical application. A clear advantage of synthetic chemicals as carriers for macromolecule delivery is their favourable properties with respect to production and storage compared to more bioinspired vehicles like viral vectors or more complex drugs like cellular therapies. If biologicals can be applied to intracellular targets, the druggable space is substantially broadened by circumventing the limited utility of small molecules for blocking protein–protein interactions and the limitation of protein-based drugs to the extracellular space. An in depth understanding of the macromolecular cargo types, carrier types and the cell biology of delivery is crucial for optimal application and further development of biologicals inside cells. Basic mechanistic principles of the molecular and cell biological aspects of cytosolic/nuclear delivery of macromolecules, with particular consideration of protein delivery, are reviewed here. The efficiency of macromolecule delivery and applications in research and therapy are highlighted.
Collapse
Affiliation(s)
- Andrea L J Marschall
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Brunswick, Germany.
| |
Collapse
|
4
|
Vocelle D, Chan C, Walton SP. Endocytosis Controls siRNA Efficiency: Implications for siRNA Delivery Vehicle Design and Cell-Specific Targeting. Nucleic Acid Ther 2020; 30:22-32. [PMID: 31718426 PMCID: PMC6987736 DOI: 10.1089/nat.2019.0804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
While small interfering RNAs (siRNAs) are commonly used for laboratory studies, development of siRNA therapeutics has been slower than expected, due, in part, to a still limited understanding of the endocytosis and intracellular trafficking of siRNA-containing complexes. With the recent characterization of multiple clathrin-/caveolin-independent endocytic pathways, that is, those mediated by Graf1, Arf6, and flotillin, it has become clear that the endocytic mechanism influences subsequent intracellular processing of the internalized cargo. To explore siRNA delivery in light of these findings, we developed a novel assay that differentiates uptake by each of the endocytic pathways and can be used to determine whether endocytosis by a pathway leads to the initiation of RNA interference (RNAi). Using Lipofectamine 2000 (LF2K), we determined the endocytosis pathway leading to active silencing (whether by clathrin, caveolin, Arf6, Graf1, flotillin, or macropinocytosis) across multiple cell types (HeLa, H1299, HEK293, and HepG2). We showed that LF2K is internalized by Graf1-, Arf6-, or flotillin-mediated endocytosis for the initiation of RNAi, depending on cell type. In addition, we found that a portion of siRNA-containing complexes is internalized by pathways that do not lead to initiation of silencing. Inhibition of these pathways enhanced intracellular levels of siRNAs with concomitant enhancement of silencing.
Collapse
Affiliation(s)
- Daniel Vocelle
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| |
Collapse
|
5
|
Pal Singh P, Vithalapuram V, Metre S, Kodipyaka R. Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. J Liposome Res 2019; 30:313-335. [DOI: 10.1080/08982104.2019.1652645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pirthi Pal Singh
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Veena Vithalapuram
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Sunita Metre
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Ravinder Kodipyaka
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| |
Collapse
|
6
|
Juliano RL. Intracellular Trafficking and Endosomal Release of Oligonucleotides: What We Know and What We Don't. Nucleic Acid Ther 2018; 28:166-177. [PMID: 29708838 DOI: 10.1089/nat.2018.0727] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding the cellular uptake and intracellular trafficking of oligonucleotides provides an important basic underpinning for the developing field of oligonucleotide-based therapeutics. Whether delivered as "free" oligonucleotides, as ligand-oligonucleotide conjugates, or in association with various nanocarriers, all forms of oligonucleotide enter cells by endocytosis and are initially ensconced within membrane-limited vesicles. Accordingly, the locus and extent of release to the cytosol and nucleus are key determinants of the pharmacological actions of oligonucleotides. A number of recent studies have explored the intracellular trafficking of various forms of oligonucleotides and their release from endomembrane compartments. These studies reveal a surprising convergence on an early-intermediate compartment in the trafficking pathway as the key locus of release for oligonucleotides administered in "free" form as well as those delivered with lipid complexes. Thus, oligonucleotide release from multivesicular bodies or from late endosomes seems to be the crucial endogenous process for attaining pharmacological effects. This intrinsic process of oligonucleotide release may be amplified by delivery agents such as lipid complexes or small molecule enhancers.
Collapse
Affiliation(s)
- R L Juliano
- Initos Pharmaceuticals LLC, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
7
|
Song W, Ma Z, Zhang Y, Yang C. Autophagy plays a dual role during intracellular siRNA delivery by lipoplex and polyplex nanoparticles. Acta Biomater 2017; 58:196-204. [PMID: 28528119 DOI: 10.1016/j.actbio.2017.05.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/07/2017] [Accepted: 05/15/2017] [Indexed: 01/28/2023]
Abstract
Growing evidence indicates that autophagy plays a vital role during intracellular DNA delivery mediated by lipoplex and polyplex nanoparticles. However, autophagy in intracellular siRNA delivery has not been well understood. In this study, lipofectamine 2000 and chitosan were used to formulate lipoplex and polyplex with siRNA for systematically investigating the interplay between siRNA delivery and autophagy. After transfection of H1299 cells with lipoplex and polyplex, the number of autophagic vacuoles was increased significantly indicated by the accumulation of monodansylcadaverine (MDC) staining. Western blot revealed that the LC3-II expression was significantly increased after transfection, whereas p-mTOR expression was not influenced apparently. In addition, small-molecule autophagy modulators significantly affected transfection efficiency. Specifically, the mTOR-dependent autophagy inducer rapamycin enhanced the knockdown efficiency of both lipoplex and polyplex, whereas mTOR-dependent autophagy inhibitor 3-methyladenine (3-MA) suppressed their silencing efficiency. On the contrary, mTOR-independent autophagy inducer LiBr decreased whereas mTOR-independent autophagy inhibitor thapsigargin (TG) increased the knockdown efficacy. Immunofluorescence staining showed that siRNA was partially co-localized with autophagosomes and the percentage of co-localized siRNA was significantly affected by autophagy modulators in the opposite trend of gene knockdown efficacy. In conclusion, our study suggests that autophagy plays an important role during the intracellular siRNA trafficking mediated by both lipoplex and polyplex. Modulating autophagy process will result in distinct knockdown efficiency, which may be applied as a potential convenient way for improving siRNA delivery efficacy. STATEMENT OF SIGNIFICANCE Although tremendous effects has been made in the development of non-viral siRNA delivery systems, the intracellular siRNA trafficking has not been elucidated clearly. In this study, we systematically investigated the relationship between autophagy and intracellular siRNA delivery. We found that the non-viral siRNA delivery by both lipoplex and polyplex could induce mTOR-independent autophagy response. More interestingly, knockdown efficiency of both lipoplex and polyplex could be modulated with different autophagy regulators. Specifically, the mTOR-dependent autophagy inducer rapamycin enhances the knockdown efficiency of both lipoplex and polyplex, whereas mTOR-dependent autophagy inhibitor 3-methyladenine suppresses their silencing efficiency. On the contrary, mTOR-independent autophagy inducer lithium bromide decreases, whereas mTOR-independent autophagy inhibitor thapsigargin increases the knockdown efficacy. These findings suggest that the mTOR-dependent and -independent autophagy play a distinct role in the intracellular siRNA trafficking. Furthermore, co-administration with proper autophagy regulators could be potential convenient method to modulate siRNA transfection efficacy.
Collapse
Affiliation(s)
- Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - Zhiwei Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Chuanxu Yang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|
8
|
Li F, Zhao Y, Mao C, Kong Y, Ming X. RGD-Modified Albumin Nanoconjugates for Targeted Delivery of a Porphyrin Photosensitizer. Mol Pharm 2017; 14:2793-2804. [PMID: 28700237 DOI: 10.1021/acs.molpharmaceut.7b00321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in photodynamic therapy of cancer have been restrained by lack of cancer specificity and side effects to normal tissues. Molecularly targeted photodynamic therapy can achieve higher cancer specificity by combination of active cancer targeting and localized laser activation. We aimed to use albumin as a carrier to prepare targeted nanoconjugates that are selective to cancer cells and smaller than conventional nanoparticles for superior tumor penetration. IRDye 700DX (IR700), a porphyrin photosensitizer, was covalently conjugated to human serum albumin that was also linked with tumor-targeting RGD peptides. With multiple IR700 and RGD molecules in a single albumin molecule, the resultant nanoconjugates demonstrated monodispersed and uniform size distribution with a diameter of 10.9 nm. These targeted nanoconjugates showed 121-fold increase in cellular delivery of IR700 into TOV21G ovarian cancer cells compared to control nanoconjugates. Mechanistic studies revealed that the integrin specific cellular delivery was achieved through dynamin-mediated caveolae-dependent endocytosis pathways. They produced massive cell killing in TOV21G cells at low nanomolar concentrations upon light irradiation, while NIH/3T3 cells that do not express integrin αvβ3 were not affected. Because of their small size, targeted albumin nanoconjugates could penetrate tumor spheroids of SKOV-3 ovarian cancer cells and produced strong phototoxicity in this 3-D model. Owing to their cancer-specific delivery and small size, these targeted nanoconjugates may become an effective drug delivery system for enabling molecularly targeted photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Fang Li
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States.,School of Pharmacy, Jiangsu Vocational College of Medicine , Yancheng 224005, China
| | - Yan Zhao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Yi Kong
- School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
9
|
Chernousova S, Epple M. Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther 2017; 24:282-289. [PMID: 28218744 PMCID: PMC5442419 DOI: 10.1038/gt.2017.13] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
Abstract
The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2-3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.
Collapse
Affiliation(s)
- S Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - M Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
González-Barriga A, Nillessen B, Kranzen J, van Kessel IDG, Croes HJE, Aguilera B, de Visser PC, Datson NA, Mulders SAM, van Deutekom JCT, Wieringa B, Wansink DG. Intracellular Distribution and Nuclear Activity of Antisense Oligonucleotides After Unassisted Uptake in Myoblasts and Differentiated Myotubes In Vitro. Nucleic Acid Ther 2017; 27:144-158. [PMID: 28375678 PMCID: PMC5467152 DOI: 10.1089/nat.2016.0641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clinical efficacy of antisense oligonucleotides (AONs) for the treatment of neuromuscular disorders depends on efficient cellular uptake and proper intracellular routing to the target. Selection of AONs with highest in vitro efficiencies is usually based on chemical or physical methods for forced cellular delivery. Since these methods largely bypass existing natural mechanisms for membrane passage and intracellular trafficking, spontaneous uptake and distribution of AONs in cells are still poorly understood. Here, we report on the unassisted uptake of naked AONs, so-called gymnosis, in muscle cells in culture. We found that gymnosis works similarly well for proliferating myoblasts as for terminally differentiated myotubes. Cell biological analyses combined with microscopy imaging showed that a phosphorothioate backbone promotes efficient gymnosis, that uptake is clathrin mediated and mainly results in endosomal-lysosomal accumulation. Nuclear localization occurred at a low level, but the gymnotically delivered AONs effectively modulated the expression of their nuclear RNA targets. Chloroquine treatment after gymnotic delivery helped increase nuclear AON levels. In sum, we demonstrate that gymnosis is feasible in proliferating and non-proliferating muscle cells and we confirm the relevance of AON chemistry for uptake and intracellular trafficking with this method, which provides a useful means for bio-activity screening of AONs in vitro.
Collapse
Affiliation(s)
- Anchel González-Barriga
- 1 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands .,2 BioMarin Nederland B.V., Leiden, the Netherlands
| | - Bram Nillessen
- 1 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Julia Kranzen
- 1 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Ingeborg D G van Kessel
- 1 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Huib J E Croes
- 1 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | | | | | | | | | | | - Bé Wieringa
- 1 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Derick G Wansink
- 1 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| |
Collapse
|
11
|
Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 2017; 35:230-237. [PMID: 28244996 DOI: 10.1038/nbt.3779] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023]
Abstract
Antisense oligonucleotides (ASOs) modified with phosphorothioate (PS) linkages and different 2' modifications can be used either as drugs (e.g., to treat homozygous familial hypercholesterolemia and spinal muscular atrophy) or as research tools to alter gene expression. PS-ASOs can enter cells without additional modification or formulation and can be designed to mediate sequence-specific cleavage of different types of RNA (including mRNA and non-coding RNA) targeted by endogenous RNase H1. Although PS-ASOs function in both the cytoplasm and nucleus, localization to different subcellular regions can affect their therapeutic potency. Cellular uptake and intracellular distribution of PS ASOs are mediated by protein interactions. The main proteins involved in these processes have been identified, and intracellular sites in which PS ASOs are active, or inactive, cataloged.
Collapse
|
12
|
Endocytic Transport of Polyplex and Lipoplex siRNA Vectors in HeLa Cells. Pharm Res 2016; 33:2999-3011. [DOI: 10.1007/s11095-016-2022-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
|
13
|
Imae R, Dejima K, Kage-Nakadai E, Arai H, Mitani S. Endomembrane-associated RSD-3 is important for RNAi induced by extracellular silencing RNA in both somatic and germ cells of Caenorhabditis elegans. Sci Rep 2016; 6:28198. [PMID: 27306325 PMCID: PMC4910058 DOI: 10.1038/srep28198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022] Open
Abstract
RNA silencing signals in C. elegans spread among cells, leading to RNAi
throughout the body. During systemic spread of RNAi, membrane trafficking is thought
to play important roles. Here, we show that RNAi Spreading Defective-3
(rsd-3), which encodes a homolog of epsinR, a conserved ENTH (epsin
N-terminal homology) domain protein, generally participates in cellular uptake of
silencing RNA. RSD-3 is previously thought to be involved in systemic RNAi only in
germ cells, but we isolated several deletion alleles of rsd-3, and found that
these mutants are defective in the spread of silencing RNA not only into germ cells
but also into somatic cells. RSD-3 is ubiquitously expressed, and intracellularly
localized to the trans-Golgi network (TGN) and endosomes. Tissue-specific
rescue experiments indicate that RSD-3 is required for importing silencing RNA into
cells rather than exporting from cells. Structure/function analysis showed that the
ENTH domain alone is sufficient, and membrane association of the ENTH domain is
required, for RSD-3 function in systemic RNAi. Our results suggest that endomembrane
trafficking through the TGN and endosomes generally plays an important role in
cellular uptake of silencing RNA.
Collapse
Affiliation(s)
- Rieko Imae
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Katsufumi Dejima
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.,Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| |
Collapse
|
14
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Neuhaus B, Tosun B, Rotan O, Frede A, Westendorf AM, Epple M. Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Adv 2016. [DOI: 10.1039/c5ra25333k] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The performance of transfection agents to deliver nucleic acids into cells strongly depends on the cell type.
Collapse
Affiliation(s)
- Bernhard Neuhaus
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Benjamin Tosun
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Annika Frede
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- Essen
- Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- Essen
- Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| |
Collapse
|
16
|
Ming X, Wu L, Carver K, Yuan A, Min Y. Dendritic nanoconjugates for intracellular delivery of neutral oligonucleotides. NANOSCALE 2015; 7:12302-6. [PMID: 26134311 PMCID: PMC4598944 DOI: 10.1039/c5nr01665g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dendrimer-based gene delivery has been constrained by intrinsic toxicity and suboptimal nanostructure. Conjugation of neutral morpholino oligonucleotides (ONs) with PAMAM dendrimers resulted in neutral, uniform, and ultra-small (∼10 nm) nanoconjugates. The nanoconjugates dramatically enhanced cellular delivery of the ONs in cancer cells. After release from the dendrimer in the cytosol, the ONs produced potent functional activity without causing significant cytotoxicity. When carrying an apoptosis-promoting ON, the nanoconjugates produced cancer cell killing directly. Thus, the dendritic nanoconjugates may provide an effective tool for delivering ONs to tumors and other diseased tissues.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
17
|
Carver K, Ming X, Juliano RL. Tumor cell-targeted delivery of nanoconjugated oligonucleotides in composite spheroids. Nucleic Acid Ther 2015; 24:413-9. [PMID: 25238564 DOI: 10.1089/nat.2014.0493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Standard tissue culture has often been a poor model for predicting the efficacy of anti-cancer agents including oligonucleotides. In contrast to the simplicity of monolayer tissue cultures, a tumor mass includes tightly packed tumor cells, tortuous blood vessels, high levels of extracellular matrix, and stromal cells that support the tumor. These complexities pose a challenge for delivering therapeutic agents throughout the tumor, with many drugs limited to cells proximal to the vasculature. Multicellular tumor spheroids are superior to traditional monolayer cell culture for the assessment of cancer drug delivery, since they possess many of the characteristics of metastatic tumor foci. However, homogeneous spheroids comprised solely of tumor cells do not account for some of the key aspects of metastatic tumors, particularly the interaction with host cells such as fibroblasts. Further, homogeneous culture does not allow for the assessment of targeted delivery to tumor versus host cells. Here we have evaluated delivery of targeted and untargeted oligonucleotide nanoconjugates and of oligonucleotide polyplexes in both homogeneous and composite tumor spheroids. We find that inclusion of fibroblasts in the spheroids reduces delivery efficacy of the polyplexes. In contrast, targeted multivalent RGD-oligonucleotide nanoconjugates were able to effectively discriminate between melanoma cells and fibroblasts, thus providing tumor-selective uptake and pharmacological effects.
Collapse
Affiliation(s)
- Kyle Carver
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | | | | |
Collapse
|
18
|
Cellular uptake and intracellular trafficking of oligonucleotides. Adv Drug Deliv Rev 2015; 87:35-45. [PMID: 25881722 DOI: 10.1016/j.addr.2015.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/10/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Oligonucleotides manifest much promise as potential therapeutic agents. However, understanding of how oligonucleotides function within living organisms is still rather limited. A major concern in this regard is the mechanisms of cellular uptake and intracellular trafficking of both 'free' oligonucleotides and oligonucleotides associated with various polymeric or nanocarrier delivery systems. Here we review basic aspects of the mechanisms of endocytosis and intracellular trafficking and how insights from these processes can be used to understand oligonucleotide delivery. In particular we discuss opportunities for escape of oligonucleotides from endomembrane compartments and describe recent studies using small molecules to enhance oligonucleotide effects.
Collapse
|
19
|
Ashizawa AT, Cortes J. Liposomal delivery of nucleic acid-based anticancer therapeutics: BP-100-1.01. Expert Opin Drug Deliv 2014; 12:1107-20. [PMID: 25539721 DOI: 10.1517/17425247.2015.996545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antisense oligonucleotides, siRNA, anti-microRNA are designed to selectively bind to target mRNAs, and silence disease-causing or -associated proteins. The clinical development of nucleic acid drugs has been limited by their poor bioavailability. AREAS COVERED This review article examines the strategies that have been utilized to improve the bioavailability of nucleic acids. The chemical modifications made to nucleic acids that have improved their resistance against nuclease degradation are briefly discussed. The design of cationic and neutral lipid nanoparticles that enable the systemic delivery of nucleic acids in vivo is reviewed, and the proof-of-concept evidence that intravenous administration of nucleic acids incorporated into lipid nanoparticles leads to decreased expression of target genes in humans. Preclinical results of the neutral BP-100-1.01 nanoparticle are highlighted. EXPERT OPINION To further improve the clinical potential of nucleic acid cancer drugs, we predict research on the next generation of lipid nanoparticles will focus on: i) enhancing nucleic acid delivery to poorly vascularized tumors, as well as tumors behind the blood-brain barrier; and ii) improving the accessibility of nucleic acids to the cytoplasm by enhancing endosomal escape of nucleic acids and/or reducing exocytosis of nucleic acids to the external milieu.
Collapse
Affiliation(s)
- Ana Tari Ashizawa
- BioPath Holdings, Inc. , 4710 Bellaire Blvd Suite 210, Houston, TX 77401 , USA +1 713 385 4392 ;
| | | |
Collapse
|
20
|
Pinel S, Aman E, Erblang F, Dietrich J, Frisch B, Sirman J, Kichler A, Sibler AP, Dontenwill M, Schaffner F, Zuber G. Quantitative measurement of delivery and gene silencing activities of siRNA polyplexes containing pyridylthiourea-grafted polyethylenimines. J Control Release 2014; 182:1-12. [DOI: 10.1016/j.jconrel.2014.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 01/11/2023]
|
21
|
Cheng CJ, Saltzman WM, Slack FJ. Canonical and non-canonical barriers facing antimiR cancer therapeutics. Curr Med Chem 2014; 20:3582-93. [PMID: 23745563 DOI: 10.2174/0929867311320290004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/14/2022]
Abstract
Once considered genetic "oddities", microRNAs (miRNAs) are now recognized as key epigenetic regulators of numerous biological processes, including some with a causal link to the pathogenesis, maintenance, and treatment of cancer. The crux of small RNA-based therapeutics lies in the antagonism of potent cellular targets; the main shortcoming of the field in general, lies in ineffective delivery. Inhibition of oncogenic miRNAs is a relatively nascent therapeutic concept, but as with predecessor RNA-based therapies, success hinges on delivery efficacy. This review will describes the canonical (e.g. pharmacokinetics and clearance, cellular uptake, endosome escape, etc.) and non-canonical (e.g. spatial localization and accessibility of miRNA, technical limitations of miRNA inhibition, off-target impacts, etc.) challenges to the delivery of antisense-based anti-miRNA therapeutics (i.e. antimiRs) for the treatment of cancer. Emphasis will be placed on how the current leading antimiR platforms-ranging from naked chemically modified oligonucleotides to nanoscale delivery vehicles-are affected by and overcome these barriers. The perplexity of antimiR delivery presents both engineering and biological hurdles that must be overcome in order to capitalize on the extensive pharmacological benefits of antagonizing tumor-associated miRNAs.
Collapse
Affiliation(s)
- Christopher J Cheng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
22
|
Multicellular tumor spheroids as a model for assessing delivery of oligonucleotides in three dimensions. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e153. [PMID: 24618852 PMCID: PMC4027982 DOI: 10.1038/mtna.2014.5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/17/2014] [Indexed: 01/13/2023]
Abstract
Oligonucleotides have shown promise in selectively manipulating gene expression in vitro, but that success has not translated to the clinic for cancer therapy. A potential reason for this is that cells behave differently in monolayer than in the three-dimensional tumor, resulting in limited penetration and distribution of oligonucleotides in the tumor. This may be especially true when oligonucleotides are associated with nanocarriers such as lipoplexes and polyplexes, commonly used delivery vehicles for oligonucleotides. The multicellular tumor spheroid (MCTS), a three-dimensional model that closely resembles small avascular tumors and micrometastases, has been utilized as an intermediate between monolayer culture and in vivo studies for the screening of small-molecule drugs. However, spheroids have been little used for the study of various oligonucleotide delivery formulations. Here, we have evaluated the uptake and efficacy of splice-switching antisense oligonucleotides using various delivery modalities in two- and three-dimensional culture models. We find that the size of the delivery agent dramatically influences penetration into the spheroid and thus the biological effect of the oligonucleotides. We hypothesize that the MCTS model will prove to be a useful tool in the future development of oligonucleotide delivery formulations.
Collapse
|
23
|
Juliano RL, Ming X, Carver K, Laing B. Cellular uptake and intracellular trafficking of oligonucleotides: implications for oligonucleotide pharmacology. Nucleic Acid Ther 2014; 24:101-13. [PMID: 24383421 DOI: 10.1089/nat.2013.0463] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
24
|
Qin B, Chen Z, Jin W, Cheng K. Development of cholesteryl peptide micelles for siRNA delivery. J Control Release 2013; 172:159-168. [PMID: 23968830 DOI: 10.1016/j.jconrel.2013.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 12/27/2022]
Abstract
Despite the rapid progress in the siRNA field, developing a safe and efficient delivery system of siRNA remains to be an obstacle in the therapeutical application of siRNA. The purpose of this study is to develop an efficient peptide-based siRNA delivery system for cancer therapy. To this end, cholesterol was conjugated to a series of peptides composed of lysine and histidine residues. The resultant cholesteryl peptides were characterized, and their potential for siRNA delivery was evaluated. Our results indicate that short peptides (11-21 mer) composed of various numbers of lysine and histidine residues alone are not sufficient to mediate efficient siRNA delivery. However, the amphiphilic cholesteryl peptides can self-assemble to form a micelle-like structure in aqueous solutions, which significantly promotes the siRNA condensation capability of the peptides. The cholesteryl peptides form stable complex with siRNA and effectively protect siRNA from degradation in rat serum up to three days. Furthermore, the cholesteryl peptides efficiently transfect siRNA into different cancer cells and trigger potent gene silencing effect, whereas peptides without cholesterol modification cannot deliver siRNA into the cells. In addition, one of the cholesteryl peptides Chol-H3K2s displays comparable cellular uptake and gene silencing effect but less cytotoxicity compared with branched polyethylenimine (bPEI) and Lipofectamine-2000. Our results reveal that the cholesteryl peptides possess great potential as an efficient siRNA delivery system.
Collapse
Affiliation(s)
- Bin Qin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Zhijin Chen
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
25
|
Albumin-based nanoconjugates for targeted delivery of therapeutic oligonucleotides. Biomaterials 2013; 34:7939-49. [PMID: 23876758 DOI: 10.1016/j.biomaterials.2013.06.066] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/28/2013] [Indexed: 12/20/2022]
Abstract
Nanoparticle-based delivery has become an important strategy to advance siRNA and antisense oligonucleotides into clinical reality. However, limited biodistribution of nanoparticles and the toxicity of some nanocarriers restrict the wider application of this strategy. To address these issues we aimed to construct oligonucleotide delivery systems which are non-cytotoxic and smaller than typical nanoparticles. Thus, a morpholino oligonucleotide was conjugated to a tumor-targeting RGD peptide, and then, multiple RGD-oligo conjugates were linked to a single molecule of human serum albumin via a reductively responsive linkage. The resultant nanoconjugates showed uniform and monodispersed size distribution with a diameter of 13 nm. A single nanoconjugate molecule contains 15 oligonucleotides as well as 15 targeting ligands on the surface of albumin. The nanoparticle demonstrated 61-fold enhancement in receptor-specific cellular delivery of oligonucleotides in integrin-expressing tumor cells compared to the non-targeted control nanoconjugates and were able to robustly enhance functional activity of the oligonucleotide at low nanomolar concentrations without causing cytotoxicity. Due to their small size, the targeted nanoconjugates could penetrate deeply and distribute throughout 3-D tumor spheroids, whereas the conventional nanoparticles with sizes over 300 nm could only deliver to the cells on the surface of the tumor spheroids. As a result of their greater cellular delivery, smaller size, and lack of cytotoxicity compared to conventional nanoparticles, the multivalent nanoconjugates may provide an effective tool for targeting oligonucleotides to tumors and other diseased tissues.
Collapse
|
26
|
|
27
|
Ming X, Carver K, Fisher M, Noel R, Cintrat JC, Gillet D, Barbier J, Cao C, Bauman J, Juliano RL. The small molecule Retro-1 enhances the pharmacological actions of antisense and splice switching oligonucleotides. Nucleic Acids Res 2013; 41:3673-87. [PMID: 23396438 PMCID: PMC3616695 DOI: 10.1093/nar/gkt066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The attainment of strong pharmacological effects with oligonucleotides is hampered by inefficient access of these molecules to their sites of action in the cytosol or nucleus. Attempts to address this problem with lipid or polymeric delivery systems have been only partially successful. Here, we describe a novel alternative approach involving the use of a non-toxic small molecule to enhance the pharmacological effects of oligonucleotides. The compound Retro-1 was discovered in a screen for small molecules that reduce the actions of bacterial toxins and has been shown to block the retrograde trafficking pathway. We demonstrate that Retro-1 can also substantially enhance the effectiveness of antisense and splice switching oligonucleotides in cell culture. This effect occurs at the level of intracellular trafficking or processing and is correlated with increased oligonucleotide accumulation in the nucleus but does not involve the perturbation of lysosomal compartments. We also show that Retro-1 can alter the effectiveness of splice switching oligonucleotides in the in vivo setting. These observations indicate that it is possible to enhance the pharmacological actions of oligonucleotides using non-toxic and non-lysosomotropic small molecule adjuncts.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bioresponsive Deciduous-Charge Amphiphiles for Liposomal Delivery of DNA and siRNA. Pharm Res 2013; 30:1362-79. [DOI: 10.1007/s11095-013-0976-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/04/2013] [Indexed: 01/12/2023]
|
29
|
Overcoming Drug Resistance Through Elevation of ROS in Cancer. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7070-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Juliano RL, Carver K, Cao C, Ming X. Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Target 2012; 21:27-43. [PMID: 23163768 DOI: 10.3109/1061186x.2012.740674] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problem of targeted delivery of antisense and siRNA oligonucleotides can be resolved into two distinct aspects. The first concerns devising ligand-oligonucleotide or ligand-carrier moieties that bind with high selectivity to receptors on the cell type of interest and that are efficiently internalized by endocytosis. The second concerns releasing oligonucleotides from pharmacologically inert endomembrane compartments so that they can access RNA in the cytosol or nucleus. In this review, we will address both of these aspects. Thus, we present information on three important receptor families, the integrins, the receptor tyrosine kinases, and the G protein-coupled receptors in terms of their suitability for targeted delivery of oligonucleotides. This includes discussion of receptor abundance, internalization and trafficking pathways, and the availability of suitable high affinity ligands. We also consider the process of oligonucleotide uptake and intracellular trafficking and discuss approaches to modulating these processes in a pharmacologically productive manner. Hopefully, the basic information presented in this review will be of value to investigators involved in designing delivery approaches for oligonucleotides.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
31
|
Metwally AA, Blagbrough IS, Mantell JM. Quantitative silencing of EGFP reporter gene by self-assembled siRNA lipoplexes of LinOS and cholesterol. Mol Pharm 2012; 9:3384-95. [PMID: 23057412 PMCID: PMC3495574 DOI: 10.1021/mp300435x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonviral siRNA vectors prepared by the direct mixing of siRNA and mixtures of an asymmetric N(4),N(9)-diacyl spermine conjugate, N(4)-linoleoyl-N(9)-oleoyl-1,12-diamino-4,9-diazadodecane (LinOS), with either cholesterol or DOPE, at various molar ratios of the neutral lipids, are reported. The effects of varying the lipid formulation and changing the N/P charge ratio on the intracellular delivery of siRNA to HeLa cells and on the siRNA-mediated gene silencing of a stably expressed reporter gene (EGFP) were evaluated. The presence of either cholesterol or DOPE in the mixture resulted in a marked increase in the delivery of the siRNA as well as enhanced EGFP silencing as evaluated by FACS. A LinOS/Chol 1:2 mixture resulted in the highest siRNA delivery and the most efficient EGFP silencing (reduced to 20%) at N/P = 3.0. Lowering the amount of siRNA from 15 pmol to 3.75 pmol, thus increasing the N/P charge ratio to 11.9, resulted in decreasing the amount of delivered siRNA, while the efficiency of gene silencing was comparable to that obtained with 15 pmol (N/P = 3.0) of siRNA. Mixtures of symmetrical N(4),N(9)-dioleoyl spermine (DOS) with cholesterol at 1:2 molar ratio showed less siRNA delivery than with LinOS/Chol at N/P = 3.0 (15 pmol of siRNA), and comparable delivery at N/P = 11.9 (3.75 pmol of siRNA). The EGFP silencing was comparable with LinOS and with DOS when mixed with cholesterol 1:2 (lipoplexes prepared with 15 pmol of siRNA), but LinOS mixtures showed better EGFP silencing when the siRNA was reduced to 3.75 pmol. Lipoplex particle size determination by DLS of cholesterol mixtures was 106-118 nm, compared to 194-356 nm for lipoplexes prepared with the spermine conjugates only, and to 685 nm for the LinOS/DOPE 1:1 mixture. Confocal microscopy showed successful siRNA delivery of red tagged siRNA and quantitative EGFP knockdown in HeLa EGFP cells; Z-stack photomicrographs showed that the delivered siRNA is distributed intracellularly. Cryo-TEM of siRNA LinOS/Chol 1:2 lipoplexes shows the formation of multilamellar spheres with a size of ∼100 nm, in good agreement with the particle size measured by DLS. The constant distance between lamellar repeats is ∼6 nm, with the electron-dense layers fitting a monolayer of siRNA. AlamarBlue cell viability assay showed that the lipoplexes resulted in cell viability ≥81%, with LinOS/Chol 1:2 mixtures resulting in cell viabilities of 89% and 94% at siRNA 15 nM and 3.75 nM respectively. These results show that lipoplexes of siRNA and LinOS/Chol mixtures prepared by the direct mixing of the lipid mixture and siRNA, without any preceding preformulation steps, result in enhanced siRNA delivery and EGFP knockdown, with excellent cell viability. Thus, LinOS/Chol 1:2 mixture is a promising candidate as a nontoxic nonviral siRNA vector.
Collapse
|
32
|
Durymanov MO, Beletkaia EA, Ulasov AV, Khramtsov YV, Trusov GA, Rodichenko NS, Slastnikova TA, Vinogradova TV, Uspenskaya NY, Kopantsev EP, Rosenkranz AA, Sverdlov ED, Sobolev AS. Subcellular trafficking and transfection efficacy of polyethylenimine-polyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1. J Control Release 2012; 163:211-9. [PMID: 22964392 DOI: 10.1016/j.jconrel.2012.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/16/2012] [Accepted: 08/24/2012] [Indexed: 11/25/2022]
Abstract
We have synthesized and investigated properties of new PEI-PEG-based polyplexes containing MC1SP-peptide, a ligand specific for melanocortin receptor-1 (targeted polyplexes), and control polyplexes without this ligand peptide (non-targeted polyplexes). The targeted polyplexes demonstrated receptor-mediated transfection of Cloudman S91 (clone M-3) murine melanoma cells that was more efficient than with the non-targeted ones. Transfection with the targeted polyplexes was inhibited by chlorpromazine, an inhibitor of the clathrin-mediated endocytosis pathway, and, to a lesser extent, by filipin III or nystatin, inhibitors of the lipid-raft endocytosis pathway, whereas transfection with the non-targeted polyplexes was inhibited mainly by nystatin or filipin III. The targeted polyplexes caused significantly higher in vivo transfection of melanoma tumor cells after intratumoral administration compared to the non-targeted control. The targeted polyplexes carrying the HSVtk gene, after ganciclovir administration, more efficiently inhibited melanoma tumor growth and prolonged the lifespan of DBA/2 tumor-bearing mice compared to the non-targeted ones. Packed targeted polyplexes appeared and accumulated in the melanoma cells 6h earlier than the non-targeted ones. The targeted polyplexes enter into the nuclei of the melanoma cells more rapidly than the non-targeted control, and this difference may also be attributed to processes of receptor-mediated endocytosis. We believe that these data may be useful for the optimization of polyplex systems.
Collapse
Affiliation(s)
- Mikhail O Durymanov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5, Vavilov St., 119334, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pozzi D, Marchini C, Cardarelli F, Amenitsch H, Garulli C, Bifone A, Caracciolo G. Transfection efficiency boost of cholesterol-containing lipoplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2335-43. [DOI: 10.1016/j.bbamem.2012.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
34
|
Liu C, Zhang N. Emerging biotechnological strategies for non-viral antiangiogenic gene therapy. Angiogenesis 2012; 15:521-42. [DOI: 10.1007/s10456-012-9295-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/04/2012] [Indexed: 01/08/2023]
|
35
|
Juliano RL, Ming X, Nakagawa O. The chemistry and biology of oligonucleotide conjugates. Acc Chem Res 2012; 45:1067-76. [PMID: 22353142 DOI: 10.1021/ar2002123] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Short DNA or RNA oligonucleotides have tremendous potential as therapeutic agents. Because of their ability to engage in Watson-Crick base pairing, they can interact with mRNA or pre-mRNA targets with high selectivity. As a result, they could precisely manipulate gene expression. This possibility has engendered extensive efforts to develop oligonucleotides as drugs, and many candidates are already in clinical trials. However, a major impediment to the maturation of this field of oligonucleotide-based therapeutics remains: these relatively large and often highly charged molecules don't easily cross cellular membranes, making it difficult for them to reach their sites of action in the cytosol or nucleus. In this Account, we summarize some basic features of the biology of antisense and siRNA oligonucleotides. We then discuss chemical conjugation as an approach to improving the intracellular delivery and therapeutic potential of these agents. Instead of focusing on the details of conjugation chemistry, we emphasize the pharmacological ramifications of oligonucleotide conjugates. In one important approach to improving delivery and efficacy, researchers have conjugated oligonucleotides with ligands designed to bind to particular receptors and thus provide specific interactions with cells. In another strategy, researchers have coupled antisense or siRNA with agents such as cell penetrating peptides that are designed to provoke escape of the conjugate from intracellular vesicular compartments. Although both of these strategies have had some success, further research is needed before oligonucleotide conjugates can find an important place in human therapeutics.
Collapse
Affiliation(s)
- R. L. Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Osamu Nakagawa
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
36
|
Lietard J, Leumann CJ. Synthesis, pairing, and cellular uptake properties of C(6')-functionalized tricyclo-DNA. J Org Chem 2012; 77:4566-77. [PMID: 22551389 DOI: 10.1021/jo300648u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tricyclo-DNA (tc-DNA) is a promising candidate for oligonucleotide-based therapeutic applications exhibiting increased affinity to RNA and increased resistance to nucleases. However, as many other oligonucleotide analogs, tc-DNA does not readily cross cell membranes. We wished to address this issue by preparing a prodrug of tc-DNA containing a metabolically labile group at C(6') that promotes cellular uptake. Two monomeric nucleoside building blocks bearing an ester function at C(6') (tc(ee)-T and tc(hd)-T) were synthesized starting from a known C(6') functionalized bicyclic sugar unit to which the cyclopropane ring was introduced via carbene addition. NIS-mediated nucleosidation of the corresponding glycal with in situ persilylated thymine afforded the β-iodonucleoside exclusively that was dehalogenated via radical reduction. Diversity in the ester function was obtained by hydrolysis and reesterification. The two nucleosides were subsequently incorporated into DNA or tc-DNA by standard phosphoramidite chemistry. The reactivity of the ester function during oligonucleotide deprotection was explored and the corresponding C(6') amide, carboxylic acid, or unchanged ester functions were obtained, depending on the deprotection conditions. Compared to unmodified DNA, these tc-DNA derivatives increased the stability of duplexes investigated with ΔT(m)/mod of +0.4 to +2.0 °C. The only destabilizing residue was tc(hd)-T, most likely due to self-aggregation of the lipophilic side chains in the single stranded oligonucleotide. A decamer containing five tc(hd)-T residues was readily taken up by HeLa and HEK 293T cells without the use of a transfection agent.
Collapse
Affiliation(s)
- Jory Lietard
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | | |
Collapse
|
37
|
Ming X, Feng L. Targeted delivery of a splice-switching oligonucleotide by cationic polyplexes of RGD-oligonucleotide conjugate. Mol Pharm 2012; 9:1502-10. [PMID: 22497548 DOI: 10.1021/mp300113c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanoparticle-based delivery has become an important strategy to advance therapeutic oligonucleotides into clinical reality. Delivery by nanocarriers can enhance access of oligonucleotides to their pharmacological targets within cells; preferably, targeting ligands are incorporated into nanoparticles for targeting oligonucleotides to disease sites, often by conjugation to delivery carriers. In this study, a splice-switching oligonucleotide (SSO) was conjugated to a bivalent RGD peptide, and then, the RGD-SSO conjugate was formulated into polyplexes with a cationic polymer polyethylenimine. The resultant polyplexes of RGD-oligonucleotide conjugate demonstrated dramatic increase in the pharmacological response of splicing correction compared to free RGD-SSO conjugate or the polyplexes of unconjugated SSO, through integrin-mediated endocytosis and rapid endosomal release. This study has shown that coupling a targeting ligand to cargo oligonucleotide can maintain the integrin targeting ability after the peptide-oligonucleotide conjugate is complexed with cationic polymer. Preliminary study also revealed that integrin targeting redirects intracellular trafficking of the polyplexes to caveolar pathway and thereby generates greater effectiveness of the oligonucleotide. This study provides a new platform technology to construct multifunctional delivery systems of therapeutic oligonucleotides.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
| | | |
Collapse
|
38
|
Liu CH, Lu DD, Deng XX, Wang Y, Zhang JY, Zhang YL, Wang SQ. The analysis of major impurities of lipophilic-conjugated phosphorothioate oligonucleotides by ion-pair reversed-phase HPLC combined with MALDI-TOF-MS. Anal Bioanal Chem 2012; 403:1333-42. [PMID: 22441199 DOI: 10.1007/s00216-012-5935-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 12/13/2022]
Abstract
A simple and rapid ion-pair reversed phase high-performance liquid chromatography (IP-RP-HPLC) method was developed to analyse the major impurities of lipophilic-conjugated phosphorothioate oligonucleotides (ODNs), which provided better separation performance than capillary gel electrophoresis and ion exchange chromatograph methods. The study showed that covalent conjugations of lipophilic group (docosanyl, C(22)) to ODN at 5'-termini (denoted as 5'C(22)-Flu) or 3'-termini (denoted as 3'C(22)-Flu) exhibited similar chromatographic retention behavior. Some important analytical conditions of IP-RP-HPLC, including column type, ion-pairing buffer composition, and separation temperature, were investigated for the effects on the separation of crude 5'C(22)-Flu. As expected, the method developed was successfully applied to the analysis of crude 3'C(22)-Flu and both purified products. Furthermore, the related impurities derived from the synthetic process were identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrum. These MS results are of benefit to understanding the major process-related impurities in lipophilic-ODN conjugates synthesis, thereby elevating the quality of target products.
Collapse
Affiliation(s)
- Cai-Hong Liu
- Chinese PLA Postgraduate Medical School, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Gindy ME, Leone AM, Cunningham JJ. Challenges in the pharmaceutical development of lipid-based short interfering ribonucleic acid therapeutics. Expert Opin Drug Deliv 2012; 9:171-82. [DOI: 10.1517/17425247.2012.642363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Juliano RL, Ming X, Nakagawa O. Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconjug Chem 2011; 23:147-57. [PMID: 21992697 DOI: 10.1021/bc200377d] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant progress is being made concerning the development of oligonucleotides as therapeutic agents. Studies with antisense, siRNA, and other forms of oligonucleotides have shown promise in cellular and animal models and in some clinical studies. Nonetheless, our understanding of how oligonucleotides function in cells and tissues is really quite limited. One major issue concerns the modes of uptake and intracellular trafficking of oligonucleotides, whether as "free" molecules or linked to various delivery moieties such as nanoparticles or targeting ligands. In this review, we examine the recent literature on oligonucleotide internalization and subcellular trafficking in the context of current insights into the basic machinery for endocytosis and intracellular vesicular traffic.
Collapse
Affiliation(s)
- Rudolph L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|