1
|
Prajapati JL, Dhurandhar Y, Singh AP, Gupta DK, Baghel VS, Kushwaha U, Namdeo KP. Redox chemical delivery system: an innovative strategy for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 2025. [PMID: 40188375 DOI: 10.1080/17425247.2025.2489558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/03/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
INTRODUCTION It is anticipated that the prevalence of illnesses affecting the central nervous system (CNS) will rise significantly due to longer lifespans and changing demography. Age-related decline in brain function and neuronal death are features of neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, which provide formidable treatment challenges. Because most therapeutic drugs cannot pass across the blood-brain barrier (BBB) to reach the brain, there are still few treatment alternatives available despite a great deal of research. AREAS COVERED This study explores the role of redox chemical delivery systems in CNS drug delivery and addresses challenges associated with neurodegenerative disease (ND). Redox Chemical Delivery System offers a promising approach to enhancing leveraging redox reactions that facilitate the transport of therapeutic agents across the BBB. Through the optimization of medication delivery pathways to the brain, this technology has the potential to greatly improve the treatment of ND. EXPERT OPINION As our understanding of the biological underpinnings of ND deepens, the potential for effective interventions increases. Refining drug delivery strategies, such as RCDS, is essential for advancing CNS therapies from research to clinical practice. These advancements could transform the management of ND, improving both treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
| | - Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - As Pee Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Deepak Kumar Gupta
- Department of pharmaceutics, IQ city Institute of Pharmaceutical Sciences Durgapur West Bengal, India
| | | | - Umesh Kushwaha
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | |
Collapse
|
2
|
shaikh R, Bhattacharya S, Saoji SD. Development, optimization, and characterization of polymeric micelles to improve dasatinib oral bioavailability: Hep G2 cell cytotoxicity and in vivo pharmacokinetics for targeted liver cancer therapy. Heliyon 2024; 10:e39632. [PMID: 39559212 PMCID: PMC11570312 DOI: 10.1016/j.heliyon.2024.e39632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
The efficacy of dasatinib (DAS) in treating hepatocellular carcinoma (HCC) is hindered by its poor bioavailability, limiting its clinical potential. In this study, we explored the use of TPGS-Soluplus micelles as an innovative drug delivery platform to enhance DAS solubility, stability, and therapeutic impact. A series of TPGS-Soluplus copolymers were synthesized, varying the D-α-tocopheryl polyethylene glycol succinate (TPGS) forms (1000, 2000, and 3500) and adjusting the TPGS to Soluplus weight ratios (1:1, 1:2, and 1:3). Our goal was to identify the optimal formulation with the highest entrapment efficiency, smallest particle size, and enhanced drug loading. The TPGS1000-Soluplus copolymer, with a DAS-to-polymer ratio of 1:30 and a TPGS ratio of 1:2, demonstrated superior performance, achieving an entrapment efficiency of 64.479 ± 1.45 % and drug loading of 5.05 ± 1.01 %. The DAS-loaded micelles (DAS-PMs) exhibited a notably small particle size of 64.479 ± 1.45 nm and demonstrated controlled release kinetics, with 85.60 ± 5.4 % of the drug released over 72 h. Cellular uptake studies using Hep G2 cells revealed significantly enhanced absorption of DAS-PMs compared to free DAS, reflected in lower IC50 values in MTT assays at 24 and 48 h. Pharmacokinetic analysis further highlighted the benefits of the DAS-PMs, with an AUC0-∞ 2.16 times higher and mean residual time (MRT) 1.3 times longer than free DAS, a statistically significant improvement (p < 0.01). These findings suggest that TPGS-Soluplus micelles offer a promising strategy for improving the bioavailability and efficacy of DAS in HCC treatment, presenting a potential new therapeutic avenue for patients with limited options. This innovative formulation could significantly enhance DAS delivery, potentially leading to improved clinical outcomes in liver cancer therapy.
Collapse
Affiliation(s)
- Rehan shaikh
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Suprit D. Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur, Mahatma Jyotiba Fuley Shaikshanik Parisar, University Campus, Amravati Road, Nagpur, 440033, Maharashtra, India
| |
Collapse
|
3
|
Rumyantsev M, Kalagaev IY, Rumyantsev S. Catalytic Effect of Potassium Xanthates and Related Compounds on Disulfide Bond Enrichment of Polyalkylene Sulfides Synthesized in the Course of Episulfide Polymerization. J Phys Chem B 2024; 128:11277-11292. [PMID: 39491547 DOI: 10.1021/acs.jpcb.4c05474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The original method for the preparation of high-molecular-weight polyalkylene sulfides was reported. Assuming anomalous peculiarities of the reaction (high polymerization rates, high degrees of polymerization, and huge discrepancy between the expected Mn values and the experimentally obtained values), the priority task was set to study the mechanism underlying the observed new type of polymerization. Thus, it was demonstrated that xanthate and related molecules could act as pure catalysts, facilitating both the chain-growth polymerization (ring-opening of episulfides) realized via an anionic route and the direct attack of the sulfur atom of one episulfide molecule on the methylene carbon atom of the second (neighbor) episulfide molecule, accompanied by the subsequent formation of a stable thiiranium-based zwitterionic adduct. The role of xanthate and related compounds as catalysts and stabilizing particles was further supplemented by modeling the attack of thiolate on the sulfur atom of a thiiranium-based adduct. The xanthate molecule acting as a catalyst was found to be involved in all stages of the process discussed by sharing the potassium atom with the sulfur atoms of active components of the system (the initial episulfide molecule, thiolate, and the zwitterionic intermediate). The subsequent analysis revealed the exceptional transparency of the materials obtained, which was found to exceed 99%. The pronounced self-healing ability was also found to be a distinctive feature of the synthesized high-molecular-weight polyalkylene sulfides enriched with disulfide bonds.
Collapse
Affiliation(s)
- Mikhail Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 minin St., Nizhny Novgorod 603950, Russia
| | - Ivan Yu Kalagaev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 minin St., Nizhny Novgorod 603950, Russia
| | - Sergey Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 minin St., Nizhny Novgorod 603950, Russia
| |
Collapse
|
4
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
5
|
Hosford BM, Ramos W, Lamb JR. Combining photocontrolled-cationic and anionic-group-transfer polymerizations using a universal mediator: enabling access to two- and three-mechanism block copolymers. Chem Sci 2024; 15:13523-13530. [PMID: 39183918 PMCID: PMC11339941 DOI: 10.1039/d4sc02511c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
An ongoing challenge in polymer chemistry is accessing diverse block copolymers from multiple polymerization mechanisms and monomer classes. One strategy to accomplish this goal without intermediate compatibilization steps is the use of universal mediators. Thiocarbonyl thio (TCT) functional groups are well-known mediators to combine radical with either cationic or anionic polymerization, but a sequential cationic-anionic universal mediator system has never been reported. Herein, we report a TCT universal mediator that can sequentially perform photocontrolled cationic polymerization and thioacyl anionic group transfer polymerization to access poly(ethyl vinyl ether)-block-poly(thiirane) polymers for the first time. Thermal analyses of these block copolymers provide evidence of microphase separation. The success of this system, along with the established compatibility of radical polymerization, enabled us to further chain extend the cationic-anionic diblock using radical polymerization of N-isopropylacrylamide. The resulting terpolymer represents the first example of a triblock made from three different monomer classes incorporated via three different mechanisms without any end-group modification steps. The development of this simple, sequential synthesis using a universal mediator approach opens up new possibilities by providing facile access to diverse block copolymers of vinyl ethers, thiiranes, and acrylamides.
Collapse
Affiliation(s)
- Brandon M Hosford
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - William Ramos
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Jessica R Lamb
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| |
Collapse
|
6
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
7
|
Li X, Gao J, Wu C, Wang C, Zhang R, He J, Xia ZJ, Joshi N, Karp JM, Kuai R. Precise modulation and use of reactive oxygen species for immunotherapy. SCIENCE ADVANCES 2024; 10:eadl0479. [PMID: 38748805 PMCID: PMC11095489 DOI: 10.1126/sciadv.adl0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Reactive oxygen species (ROS) play an important role in regulating the immune system by affecting pathogens, cancer cells, and immune cells. Recent advances in biomaterials have leveraged this mechanism to precisely modulate ROS levels in target tissues for improving the effectiveness of immunotherapies in infectious diseases, cancer, and autoimmune diseases. Moreover, ROS-responsive biomaterials can trigger the release of immunotherapeutics and provide tunable release kinetics, which can further boost their efficacy. This review will discuss the latest biomaterial-based approaches for both precise modulation of ROS levels and using ROS as a stimulus to control the release kinetics of immunotherapeutics. Finally, we will discuss the existing challenges and potential solutions for clinical translation of ROS-modulating and ROS-responsive approaches for immunotherapy, and provide an outlook for future research.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jingjing Gao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Engineering, Material Science and Engineering Graduate Program and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziting Judy Xia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nitin Joshi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
8
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
9
|
Tang S, Gao Y, Wang W, Wang Y, Liu P, Shou Z, Yang R, Jin C, Zan X, Wang C, Geng W. Self-Report Amphiphilic Polymer-Based Drug Delivery System with ROS-Triggered Drug Release for Osteoarthritis Therapy. ACS Macro Lett 2024; 13:58-64. [PMID: 38153092 DOI: 10.1021/acsmacrolett.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The development of drug delivery systems with real-time cargo release monitoring capabilities is imperative for optimizing nanomedicine performance. Herein, we report an innovative self-reporting drug delivery platform based on a ROS-responsive random copolymer (P1) capable of visualizing cargo release kinetics via the activation of an integrated fluorophore. P1 was synthesized by copolymerization of pinacol boronate, PEG, and naphthalimide monomers to impart ROS-sensitivity, hydrophilicity, and fluorescence signaling, respectively. Detailed characterization verified that P1 self-assembles into 11 nm micelles with 10 μg mL-1 CMC and can encapsulate hydrophobic curcumin with 79% efficiency. Fluorescence assays demonstrated H2O2-triggered disassembly and curcumin release with concurrent polymer fluorescence turn-on. Both in vitro and in vivo studies validated the real-time visualization of drug release and ROS scavenging, as well as the therapeutic effect on osteoarthritis (OA). Overall, this nanotheranostic polymeric micelle system enables quantitative monitoring of drug release kinetics for enhanced treatment optimization across oxidative stress-related diseases.
Collapse
Affiliation(s)
- Sicheng Tang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325001, China
| | - Yuhan Gao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Wenchao Wang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yijian Wang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Pan Liu
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zeyu Shou
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Chaofan Jin
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325001, China
| | - Xingjie Zan
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325001, China
| | - Chenglong Wang
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, 250021, Shandong Province, China
| | - Wujun Geng
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou 325001, China
| |
Collapse
|
10
|
Ferrier RC, Kumbhar G, Crum-Dacon S, Lynd NA. A guide to modern methods for poly(thio)ether synthesis using Earth-abundant metals. Chem Commun (Camb) 2023; 59:12390-12410. [PMID: 37753731 DOI: 10.1039/d3cc03046f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Polyethers and polythioethers have a long and storied history dating back to the start of polymer science as a distinct field. As such, these materials have been utilized in a wide range of commercial applications and fundamental studies. The breadth of their material properties and the contexts in which they are applied is ultimately owed to their diverse monomer pre-cursors, epoxides and thiiranes, respectively. The facile polymerization of these monomers, both historically and contemporaneously, across academia and industry, has occurred through the use of Earth-abundant metals as catalysts and/or initiators. Despite this, polymerization methods for these monomers are underutilized compared to other monomer classes like cyclic olefins, vinyls, and (meth)acrylates. We feel a focused review that clearly outlines the benefits and shortcomings of extant synthetic methods for poly(thio)ethers along with their proposed mechanisms and quirks will help facilitate the utilization of these methods and by extension the unique polymer materials they create. Therefore, this Feature Article briefly describes the applications of poly(thio)ethers before discussing the feature-set of each poly(thio)ether synthetic method and qualitatively scoring them on relevant metrics (e.g., ease-of-use, molecular weight control, etc.) to help would-be poly(thio)ether-makers find an appropriate synthetic approach. The article is concluded with a look ahead at the future of poly(thio)ether synthesis with Earth-abundant metals.
Collapse
Affiliation(s)
- Robert C Ferrier
- Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing MI, USA.
| | - Gouree Kumbhar
- Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing MI, USA.
| | - Shaylynn Crum-Dacon
- Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing MI, USA.
| | - Nathaniel A Lynd
- University of Texas-Austin, McKetta Department of Chemical Engineering, Austin, TX, USA
| |
Collapse
|
11
|
Turhan Z, d’Arcy R, El Mohtadi F, Teixeira LI, Francini N, Geven M, Castagnola V, Alshamsan A, Benfenati F, Tirelli N. Dual Thermal- and Oxidation-Responsive Polymers Synthesized by a Sequential ROP-to-RAFT Procedure Inherently Temper Neuroinflammation. Biomacromolecules 2023; 24:4478-4493. [PMID: 36757736 PMCID: PMC10565819 DOI: 10.1021/acs.biomac.2c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
This study is about multiple responsiveness in biomedical materials. This typically implies "orthogonality" (i.e., one response does not affect the other) or synergy (i.e., one increases efficacy or selectivity of the other), but an antagonist effect between responses may also occur. Here, we describe a family of very well-defined amphiphilic and micelle-forming block copolymers, which show both oxidative and temperature responses. They are produced via successive anionic ring-opening polymerization of episulfides and RAFT polymerization of dialkylacrylamides and differ only in the ratio between inert (N,N-dimethylacrylamide, DMA) and temperature-sensitive (N,N-diethylacrylamide, DEA) units. By scavenging Reactive Oxygen Species (ROS), these polymers are anti-inflammatory; through temperature responsiveness, they can macroscopically aggregate, which may allow them to form depots upon injection. The localization of the anti-inflammatory action is an example of synergy. An extensive evaluation of toxicity and anti-inflammatory effects on in vitro models, including BV2 microglia, C8D30 astrocytes and primary neurons, shows a link between capacity of aggregation and detrimental effects on viability which, albeit mild, can hinder the anti-inflammatory potential (antagonist action). Although limited in breadth (e.g., only in vitro models and only DEA as a temperature-responsive unit), this study suggests that single-responsive controls should be used to allow for a precise assessment of the (synergic or antagonist) potential of double-responsive systems.
Collapse
Affiliation(s)
- Zulfiye
Y. Turhan
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Division
of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United
Kingdom
| | - Richard d’Arcy
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Farah El Mohtadi
- Division
of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United
Kingdom
| | - Lorena Infante Teixeira
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Nora Francini
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mike Geven
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Valentina Castagnola
- Center
for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Aws Alshamsan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Nanobiotechnology
Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fabio Benfenati
- Center
for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Nicola Tirelli
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Division
of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United
Kingdom
| |
Collapse
|
12
|
Bezold MG, Hanna AR, Dollinger BR, Patil P, Yu F, Duvall CL, Gupta MK. Hybrid Shear-thinning Hydrogel Integrating Hyaluronic Acid with ROS-Responsive Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2213368. [PMID: 38107427 PMCID: PMC10723243 DOI: 10.1002/adfm.202213368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 12/19/2023]
Abstract
Nanoparticle (NP) supra-assembly offers unique opportunities to tune macroscopic hydrogels' mechanical strength, material degradation, and drug delivery properties. Here, synthetic, reactive oxygen species (ROS)-responsive NPs are physically crosslinked with hyaluronic acid (HA) through guest-host chemistry to create shear-thinning NP/HA hydrogels. A library of triblock copolymers composed of poly(propylene sulfide)-bl-poly(N,N-dimethylacrylamide)-bl-poly(N,N-dimethylacrylamide-co-N-(1-adamantyl)acrylamide) are synthesized with varied triblock architectures and adamantane grafting densities and then self-assembled into NPs displaying adamantane on their corona. Self-assembled NPs are mixed with β-cyclodextrin grafted HA to yield eighteen NP/HA hydrogel formulations. The NP/HA hydrogel platform demonstrates superior mechanical strength to HA-only hydrogels, susceptibility to oxidative/enzymatic degradation, and inherent cell-protective, antioxidant function. The performance of NP/HA hydrogels is shown to be affected by triblock architecture, guest/host grafting densities, and HA composition. In particular, the length of the hydrophilic second block and adamantane grafting density of self-assembled NPs significantly impacts hydrogel mechanical properties and shear-thinning behavior, while ROS-reactivity of poly(propylene sulfide) protects cells from cytotoxic ROS and reduces oxidative degradation of HA compared to HA-only hydrogels. This work provides insight into polymer structure-function considerations for designing hybrid NP/HA hydrogels and identifies antioxidant, shear-thinning hydrogels as promising injectable delivery platforms for small molecule drugs and therapeutic cells.
Collapse
Affiliation(s)
- Mariah G. Bezold
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Andrew R. Hanna
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Bryan R. Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
13
|
Tang S, Yang R, Gao Y, Zhu L, Zheng S, Zan X. Hydrazone-Based Amphiphilic Brush Polymer for Fast Endocytosis and ROS-Active Drug Release. ACS Macro Lett 2023; 12:639-645. [PMID: 37129207 DOI: 10.1021/acsmacrolett.3c00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to the high reactivity of reactive oxygen species (ROS), it is essential to sweep them away in time. In this study, ClO--responsible amphiphilic brush polymers were prepared by free radical polymerization using two monomers consisting of polyethylene glycol as the hydrophilic part, and an alkyl chain connected by hydrazone as the hydrophobic part. The macromolecules assemble into particles with nanoscaled dimensions in a neutral buffer, which ensures quick cellular internalization. The polymer has a low critical micellization concentration and can encapsulate hydrophobic drug molecules up to 19% wt. The micelles formed by the polymer disassemble in a ClO--rich environment and release 80% of their cargo within 2 h, which possesses a faster release rate compared to the previous systems. The relatively small size and the quick response of hydrazone toward ClO- ensure a quick uptake and elimination of ROS in vitro and in vivo.
Collapse
Affiliation(s)
- Sicheng Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325001, China
| | - Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Yuhan Gao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Limeng Zhu
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325001, China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., Ltd., Wenzhou, 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, Zhejiang Province 325001, China
| |
Collapse
|
14
|
Shofolawe-Bakare OT, de Mel JU, Mishra SK, Hossain M, Hamadani CM, Pride MC, Dasanayake GS, Monroe W, Roth EW, Tanner EEL, Doerksen RJ, Smith AE, Werfel TA. ROS-Responsive Glycopolymeric Nanoparticles for Enhanced Drug Delivery to Macrophages. Macromol Biosci 2022; 22:e2200281. [PMID: 36125638 PMCID: PMC10013198 DOI: 10.1002/mabi.202200281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/12/1912] [Indexed: 02/02/2023]
Abstract
Macrophages play a diverse, key role in many pathologies, including inflammatory diseases, cardiovascular diseases, and cancer. However, many therapeutic strategies targeting macrophages suffer from systemic off-target toxicity resulting in notoriously narrow therapeutic windows. To address this shortcoming, the development of poly(propylene sulfide)-b-poly(methacrylamidoglucopyranose) [PPS-b-PMAG] diblock copolymer-based nanoparticles (PMAG NPs) capable of targeting macrophages and releasing drug in the presence of reactive oxygen species (ROS) is reported. PMAG NPs have desirable physicochemical properties for systemic drug delivery, including slightly negative surface charge, ≈100 nm diameter, and hemo-compatibility. Additionally, due to the presence of PPS in the NP core, PMAG NPs release drug cargo preferentially in the presence of ROS. Importantly, PMAG NPs display high cytocompatibility and are taken up by macrophages in cell culture at a rate ≈18-fold higher than PEGMA NPs-NPs composed of PPS-b-poly(oligoethylene glycol methacrylate). Computational studies indicate that PMAG NPs likely bind with glucose transporters such as GLUT 1/3 on the macrophage cell surface to facilitate high levels of internalization. Collectively, this study introduces glycopolymeric NPs that are uniquely capable of both receptor-ligand targeting to macrophages and ROS-dependent drug release and that can be useful in many immunotherapeutic settings.
Collapse
Affiliation(s)
| | - Judith U de Mel
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Sushil K Mishra
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Mehjabeen Hossain
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Christine M Hamadani
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Mercedes C Pride
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Gaya S Dasanayake
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Wake Monroe
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Eric W Roth
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Adam E Smith
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Thomas A Werfel
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
15
|
Temporally programmed polymer - solvent interactions using a chemical reaction network. Nat Commun 2022; 13:6242. [PMID: 36271045 PMCID: PMC9587023 DOI: 10.1038/s41467-022-33810-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 12/25/2022] Open
Abstract
Out of equilibrium operation of chemical reaction networks (CRNs) enables artificial materials to autonomously respond to their environment by activation and deactivation of intermolecular interactions. Generally, their activation can be driven by various chemical conversions, yet their deactivation to non-interacting building blocks remains largely limited to hydrolysis and internal pH change. To achieve control over deactivation, we present a new, modular CRN that enables reversible formation of positive charges on a tertiary amine substrate, which are removed using nucleophilic signals that control the deactivation kinetics. The modular nature of the CRN enables incorporation in diverse polymer materials, leading to a temporally programmed transition from collapsed and hydrophobic to solvated, hydrophilic polymer chains by controlling polymer-solvent interactions. Depending on the layout of the CRN, we can create stimuli-responsive or autonomously responding materials. This concept will not only offer new opportunities in molecular cargo delivery but also pave the way for next-generation interactive materials.
Collapse
|
16
|
Sołtan M, Bartusik-Aebisher D, Aebisher D. The potential of oxygen and nitrogen species-regulating drug delivery systems in medicine. Front Bioeng Biotechnol 2022; 10:973080. [PMID: 36110312 PMCID: PMC9468659 DOI: 10.3389/fbioe.2022.973080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The focus of this review is to present most significant advances in biomaterials used for control of reactive oxygen/nitrogen species (ROS/RNS, RONS) in medicine. A summary of the main pathways of ROS production and the main pathways of RNS production are shown herein. Although the physiological and pathological roles of RONS have been known for at least 2decades, the potential of their control in management of disease went unappreciated. Recently, advances in the field of biochemical engineering and materials science have allowed for development of RONS-responsive biomaterials for biomedical applications, which aim to control and change levels of reactive species in tissue microenvironments. These materials utilize polymers, inorganic nanoparticles (NPs), or organic-inorganic hybrids. Thus, biomaterials like hydrogels have been developed to promote tissue regeneration by actively scavenging and reducing RONS levels. Their promising utility comes from thermo- and RONS-sensitivity, stability as a delivery-medium, ease for incorporation into other materials and facility for injection. Their particular attractiveness is attributed to drug release realized in targeted tissues and cells with elevated RONS levels, which leads to enhanced treatment outcomes and reduced adverse effects. The mechanism of their action depends on the functional groups employed and their response to oxidation, and may be based on solubility changes or cleavage of chemical bonds. When talking about antioxidants, one should also mention oxidative stress, which we call the imbalance between antioxidants and reactive oxygen species, which occurs due to a deficiency of endogenous antioxidants and a low supply of exogenous antioxidants. This study is a review of articles in English from the databases PubMed and Web of Science retrieved by applying the search terms “Oxygen Species, Nitrogen Species and biomaterials” from 1996 to 2021.
Collapse
Affiliation(s)
- Michał Sołtan
- English Division Science Club, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
- *Correspondence: Dorota Bartusik-Aebisher, ; David Aebisher,
| | - David Aebisher
- English Division Science Club, Medical College of The University of Rzeszów, Rzeszów, Poland
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
- *Correspondence: Dorota Bartusik-Aebisher, ; David Aebisher,
| |
Collapse
|
17
|
Cao W, Peng S, Yao Y, Xie J, Li S, Tu C, Gao C. A nanofibrous membrane loaded with doxycycline and printed with conductive hydrogel strips promotes diabetic wound healing in vivo. Acta Biomater 2022; 152:60-73. [DOI: 10.1016/j.actbio.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
|
18
|
Quek JY, Bright R, Dabare P, Vasilev K. ROS-responsive copolymer micelles for inflammation triggered delivery of ibuprofen. Colloids Surf B Biointerfaces 2022; 217:112590. [PMID: 35660744 DOI: 10.1016/j.colsurfb.2022.112590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for the treatment of pain, inflammation and fever. However, most NSAIDs are poorly water soluble, making it difficult to be administered thus high doses are required to reach the intended therapeutic effect, resulting in associated side effects. In this study, ROS-responsive micellar systems based on a block copolymer consisting of methylpropyl thioether (MTPA) and N'N-dimethylacrylamide was developed and loaded with ibuprofen (IBU). Using lipopolysaccharide activated RAW 264.7 macrophage like cells, we demonstrated that IBU was released from the copolymer, specifically in the presence of ROS. Interestingly, IBU encapsulated in ROS-responsive nanoparticles exhibited greater anti-inflammatory potency compared to its free form. The work highlights the potential of the ROS-responsive micellar system developed in this work to be used as carrier of NSAIDs for the treatment of relevant inflammatory conditions.
Collapse
Affiliation(s)
- Jing Yang Quek
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Richard Bright
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Prl Dabare
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia; College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| | - Krasimir Vasilev
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia; College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
19
|
Chauhan M, Basu SM, Yadava SK, Sarviya N, Giri J. A facile strategy for the preparation of polypropylene sulfide nanoparticles for hydrophobic and base‐sensitive cargo. J Appl Polym Sci 2022. [DOI: 10.1002/app.51767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Meenakshi Chauhan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| | - Nandini Sarviya
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
- Department of Chemistry and Biotechnology Swinburne University of Technology Melbourne Victoria Australia
| | - Jyotsnendu Giri
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| |
Collapse
|
20
|
Peng H, Li Y, Ji W, Zhao R, Lu Z, Shen J, Wu Y, Wang J, Hao Q, Wang J, Wang W, Yang J, Zhang X. Intranasal Administration of Self-Oriented Nanocarriers Based on Therapeutic Exosomes for Synergistic Treatment of Parkinson's Disease. ACS NANO 2022; 16:869-884. [PMID: 34985280 DOI: 10.1021/acsnano.1c08473] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The treatment of Parkinson's disease (PD) has been hindered by the complex pathologies and multiple membrane barriers during drug delivery. Although exosomes derived from mesenchymal stem cells (MSCs) have great potential for PD, MSC-derived exosomes alone could not fully meet the therapeutic requirements due to their limitation in therapy and delivery. Here, we develop a self-oriented nanocarrier called PR-EXO/PP@Cur that combines therapeutic MSC-derived exosomes with curcumin. PR-EXO/PP@Cur can be self-oriented across the multiple membrane barriers and directly release drugs into the cytoplasm of target cells after intranasal administration. With enhanced accumulation of drugs in the action site, PR-EXO/PP@Cur achieves three-pronged synergistic treatment to deal with the complex pathologies of PD by reducing α-synuclein aggregates, promoting neuron function recovery, and alleviating the neuroinflammation. After treatment with PR-EXO/PP@Cur, the movement and coordination ability of PD model mice are significantly improved. These results show that PR-EXO/PP@Cur has great prospects in treatment of PD or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Huan Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Weihong Ji
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanyue Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianze Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiulian Hao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jingwen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wenli Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
21
|
Gardey E, Sobotta FH, Quickert S, Bruns T, Brendel JC, Stallmach A. ROS-Sensitive Polymer Micelles for Selective Degradation in Primary Human Monocytes from Patients with Active IBD. Macromol Biosci 2022; 22:e2100482. [PMID: 35068059 DOI: 10.1002/mabi.202100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Indexed: 11/11/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by increased levels of reactive oxygen species (ROS) in inflamed areas of the gastrointestinal tract and in circulating immune cells, providing novel opportunities for targeted drug delivery. In recent experiments, oxidation-responsive polymeric nanostructures selectively degrade in the presence of H2 O2 . Based on these results, hypothesize that such degradation process can be triggered in a similar way by the incubation with stimulated monocytes isolated from patients with IBD. A first indication is given by a significant correlation between excessive ROS and degradation of micelles in monocytes isolated from healthy individuals after phorbol 12-myristate 13-acetate (PMA) stimulation. But even if the ROS-sensitive micelles are incubated with non-stimulated monocytes from patients with active IBD, a spontaneous degradation is observed in contrast to micelles incubated with monocytes from healthy donors. The findings indicate that the thioether-based micelles are indeed promising for selective drug release in the presence of activated immune cells.
Collapse
Affiliation(s)
- Elena Gardey
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Am Klinikum 1, Jena, 07747, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Fabian H Sobotta
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, Jena, 07743, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Am Klinikum 1, Jena, 07747, Germany
| | - Tony Bruns
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Johannes C Brendel
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, Jena, 07743, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Am Klinikum 1, Jena, 07747, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
22
|
Naman S, Naryal S, Palliwal R, Paliwal SR, Baldi A. Combating atherosclerosis with nanodrug delivery approaches: from bench side to commercialization. DRUG DELIVERY SYSTEMS FOR METABOLIC DISORDERS 2022:97-136. [DOI: 10.1016/b978-0-323-99616-7.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Piergentili I, Bouwmans PR, Reinalda L, Lewis RW, Klemm B, Liu H, de Kruijff RM, Denkova AG, Eelkema R. Thioanisole ester based logic gate cascade to control ROS-triggered micellar degradation. Polym Chem 2022; 13:2383-2390. [PMID: 35664499 PMCID: PMC9016795 DOI: 10.1039/d2py00207h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
Thioanisole ester polymer side chains hydrolyze exclusively upon thioether oxidation, showing logic gate response. ROS-induced ester hydrolysis on the hydrophobic domain leads to nanocarrier disassembly with potential for targeted drug release.
Collapse
Affiliation(s)
- Irene Piergentili
- Delft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Pepijn R. Bouwmans
- Delft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Luuk Reinalda
- Delft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Reece W. Lewis
- Delft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Benjamin Klemm
- Delft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Huanhuan Liu
- Delft University of Technology, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Robin M. de Kruijff
- Delft University of Technology, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Antonia G. Denkova
- Delft University of Technology, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Rienk Eelkema
- Delft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
24
|
Fan X, Zhu S, Yan L, Zhu H. Reactive oxygen species‐responsive degradable poly(amino acid)s for biomedical use. J Appl Polym Sci 2021. [DOI: 10.1002/app.51386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoxia Fan
- Medical College Yan'an University Yan'an China
| | - Sudi Zhu
- Medical College Yan'an University Yan'an China
| | - Lin Yan
- Medical College Yan'an University Yan'an China
| | - Hui Zhu
- Medical College Yan'an University Yan'an China
| |
Collapse
|
25
|
Deng M, Rao JD, Guo R, Li M, He Q. Size-Adjustable Nano-Drug Delivery Systems for Enhanced Tumor Retention and Penetration. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1736474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Over the past decades, nano-drug delivery systems have shown great potential in improving tumor treatment. And the controllability and design flexibility of nanoparticles endow them a broad development space. The particle size is one of the most important factors affecting the potency of nano-drug delivery systems. Large-size (100–200 nm) nanoparticles are more conducive to long circulation and tumor retention, but have poor tumor penetration; small-size (<50 nm) nanoparticles can deeply penetrate tumor but are easily cleared. Most of the current fixed-size nanoparticles are difficult to balance the retention and penetration, while the proposal of size-adjustable nano-drug delivery systems offers a solution to this paradox. Many endogenous and exogenous stimuli, such as acidic pH, upregulated enzymes, temperature, light, catalysts, redox conditions, and reactive oxygen species, can trigger the in situ transformation of nanoparticles based on protonation, hydrolysis, click reaction, phase transition, photoisomerization, redox reaction, etc. In this review, we summarize the principles and applications of stimuli-responsive size-adjustable strategies, including size-enlargement strategies and size-shrinkage strategies. We also propose the challenges faced by size-adjustable nano-drug delivery systems, hoping to promote the development of this strategy.
Collapse
Affiliation(s)
- Miao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Jing-Dong Rao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
26
|
van der Vlies AJ, Xu J, Ghasemi M, Bator C, Bell A, Rosoff-Verbit B, Liu B, Gomez ED, Hasegawa U. Thioether-Based Polymeric Micelles with Fine-Tuned Oxidation Sensitivities for Chemotherapeutic Drug Delivery. Biomacromolecules 2021; 23:77-88. [PMID: 34762396 DOI: 10.1021/acs.biomac.1c01010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidation-sensitive drug delivery systems (DDSs) have attracted attention due to the potential to improve efficacy and safety of chemotherapeutics. These systems are designed to release the payload in response to oxidative stress conditions, which are associated with many types of cancer. Despite extensive research on the development of oxidation-sensitive DDS, the lack of selectivity toward cancer cells over healthy cells remains a challenge. Here, we report the design and characterization of polymeric micelles containing thioether groups with varying oxidation sensitivities within the micellar core, which become hydrophilic upon thioether oxidation, leading to destabilization of the micellar structure. We first used the thioether model compounds, 3-methylthiopropylamide (TPAM), thiomorpholine amide (TMAM), and 4-(methylthio)benzylamide (TPhAM) to investigate the effect of the chemical structures of the thioethers on the oxidation by hydrogen peroxide (H2O2). TPAM shows the fastest oxidation, followed by TMAM and TPhAM, showing that the oxidation reaction of thioethers can be modulated by changing the substituent groups bound to the sulfur atom. We next prepared micelles containing these different thioether groups within the core (TP, TM, and TPh micelles). The micelles containing the thioether groups with a higher oxidation sensitivity were destabilized by H2O2 at a lower concentration. Micelle destabilization was also tested in human liver cancer (HepG2) cells and human umbilical vein endothelial cells (HUVECs). The TP micelles having the highest oxidation sensitivity were destabilized in both HepG2 cells and HUVECs, while the TPh micelles, which showed the lowest reactivity toward H2O2, were stable in these cell lines. The TM micelles possessing a moderate oxidation sensitivity were destabilized in HepG2 cells but were stable in HUVECs. Furthermore, the micelles were loaded with doxorubicin (Dox) to evaluate their potential in drug delivery applications. Among the micelles, the TM micelles loaded with Dox showed the enhanced relative toxicity in HepG2 cells over HUVECs. Therefore, our approach to fine-tune the oxidation sensitivity of the micelles has potential for improving therapeutic efficacy and safety of drugs in cancer treatment.
Collapse
Affiliation(s)
- André J van der Vlies
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiayi Xu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Masoud Ghasemi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carol Bator
- Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amanda Bell
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brett Rosoff-Verbit
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bin Liu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Enrique D Gomez
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Urara Hasegawa
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
27
|
Ding W, Kameta N, Oyane A. Reactive Oxygen Species (ROS)-responsive Organic Nanotubes. CHEM LETT 2021. [DOI: 10.1246/cl.210413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
28
|
Cheng M, Liu Q, Liu W, Yuan F, Feng J, Jin Y, Tu L. Engineering micelles for the treatment and diagnosis of atherosclerosis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Martin JR, Howard MT, Wang S, Berger AG, Hammond PT. Oxidation-Responsive, Tunable Growth Factor Delivery from Polyelectrolyte-Coated Implants. Adv Healthc Mater 2021; 10:e2001941. [PMID: 33738985 DOI: 10.1002/adhm.202001941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/04/2021] [Indexed: 12/27/2022]
Abstract
Polyelectrolyte multilayer (PEM) coatings, constructed on the surfaces of tissue engineering scaffolds using layer-by-layer assembly (LbL), promote sustained release of therapeutic molecules and have enabled regeneration of large-scale, pre-clinical bone defects. However, these systems primarily rely on non-specific hydrolysis of PEM components to foster drug release, and their pre-determined drug delivery schedules potentially limit future translation into innately heterogeneous patient populations. To trigger therapeutic delivery directly in response to local environmental stimuli, an LbL-compatible polycation solely degraded by cell-generated reactive oxygen species (ROS) was synthesized. These thioketal-based polymers were selectively cleaved by physiologic doses of ROS, stably incorporated into PEM films alongside growth factors, and facilitated tunable release of therapeutic bone morphogenetic protein-2 (BMP-2) upon oxidation. These coatings' sensitivity to oxidation was also dependent on the polyanions used in film construction, providing a simple method for enhancing ROS-mediated protein delivery in vitro. Correspondingly, when implanted in critically-sized rat calvarial defects, the most sensitive ROS-responsive coatings generated a 50% increase in bone regeneration compared with less sensitive formulations and demonstrated a nearly threefold extension in BMP-2 delivery half-life over conventional hydrolytically-sensitive coatings. These combined results highlight the potential of environmentally-responsive PEM coatings as tunable drug delivery systems for regenerative medicine.
Collapse
Affiliation(s)
- John R. Martin
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - MayLin T. Howard
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Sheryl Wang
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Adam G. Berger
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
30
|
Rajes K, Walker KA, Hadam S, Zabihi F, Ibrahim-Bacha J, Germer G, Patoka P, Wassermann B, Rancan F, Rühl E, Vogt A, Haag R. Oxidation-Sensitive Core-Multishell Nanocarriers for the Controlled Delivery of Hydrophobic Drugs. ACS Biomater Sci Eng 2021; 7:2485-2495. [PMID: 33905661 DOI: 10.1021/acsbiomaterials.0c01771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A synthetic route for oxidation-sensitive core-multishell (osCMS) nanocarriers was established, and their drug loading and release properties were analyzed based on their structural variations. The nanocarriers showed a drug loading of 0.3-3 wt % for the anti-inflammatory drugs rapamycin and dexamethasone and the photosensitizer meso-tetra-hydroxyphenyl-porphyrin (mTHPP). Oxidative processes of the nanocarriers were probed in vitro by hydrogen peroxide, and the degradation products were identified by infrared spectroscopy supported by ab initio calculations, yielding mechanistic details on the chemical changes occurring in redox-sensitive nanocarriers. Oxidation-triggered drug release of the model drug Nile Red measured and assessed by time-dependent fluorescence spectroscopy showed a release of up to 80% within 24 h. The drug delivery capacity of the new osCMS nanocarriers was tested in ex vivo human skin with and without pretreatments to induce local oxidative stress. It was found that the delivery of mTHPP was selectively enhanced in skin under oxidative stress. The number and position of the thioether groups influenced the physicochemical as well as drug delivery properties of the carriers.
Collapse
Affiliation(s)
- Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Karolina A Walker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany.,Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jumana Ibrahim-Bacha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Gregor Germer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Piotr Patoka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Bernhard Wassermann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Eckart Rühl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| |
Collapse
|
31
|
Deng Z, Liu S. Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases. Drug Deliv Transl Res 2021; 11:1475-1497. [PMID: 33860447 PMCID: PMC8048351 DOI: 10.1007/s13346-021-00977-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2021] [Indexed: 12/30/2022]
Abstract
Inflammation is the biological response of immune system to protect living organisms from injurious factors. However, excessive and uncontrolled inflammation is implicated in a variety of devastating chronic diseases including atherosclerosis, inflammatory bowel disease (IBD), and rheumatoid arthritis (RA). Improved understanding of inflammatory response has unveiled a rich assortment of anti-inflammatory therapeutics for the treatment and management of relevant chronic diseases. Notwithstanding these successes, clinical outcomes are variable among patients and serious adverse effects are often observed. Moreover, there exist some limitations for clinical anti-inflammatory therapeutics such as aqueous insolubility, low bioavailability, off-target effects, and poor accessibility to subcellular compartments. To address these challenges, the rational design of inflammation-specific drug delivery systems (DDSs) holds significant promise. Moreover, as compared to normal tissues, inflamed tissue-associated pathological milieu (e.g., oxidative stress, acidic pH, and overexpressed enzymes) provides vital biochemical stimuli for triggered delivery of anti-inflammatory agents in a spatiotemporally controlled manner. In this review, we summarize recent advances in the development of anti-inflammatory DDSs with built-in pathological inflammation-specific responsiveness for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Zhengyu Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China.
| |
Collapse
|
32
|
Geven M, d'Arcy R, Turhan ZY, El-Mohtadi F, Alshamsan A, Tirelli N. Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Ji W, Li Y, Liu R, Lu Z, Liu L, Shi Z, Shen J, Zhang X. Synaptic vesicle-inspired nanoparticles with spatiotemporally controlled release ability as a "nanoguard" for synergistic treatment of synucleinopathies. MATERIALS HORIZONS 2021; 8:1199-1206. [PMID: 34821912 DOI: 10.1039/d0mh01542c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synaptic vesicle-inspired nanoparticles (RT-PPB NPs) as a "nanoguard" were designed for clearing the toxic α-synuclein aggregates in diseased neurons and preventing the culprits from escaping to affect other normal cells. The NPs could overcome a series of tissue and cellular barriers and controllably release drugs in the diseased neurons, which ensured the optimization of synergistic treatment. This study indicates that the synaptic vesicle-inspired NPs may have the potential to open up a new avenue for the treatment of synucleinopathies, as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Weihong Ji
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Notabi MK, Arnspang EC, Andersen MØ. Antibody conjugated lipid nanoparticles as a targeted drug delivery system for hydrophobic pharmaceuticals. Eur J Pharm Sci 2021; 161:105777. [PMID: 33647401 DOI: 10.1016/j.ejps.2021.105777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Cancer remains a significant health issue worldwide. The most common group of chemotherapeutic agents are small-molecule drugs, which often are associated with toxic side-effects and non-specific delivery, leading to limited therapeutic effect. This paper describes the development of a targeted drug delivery system based on lipid nanoparticles for cancer therapy. The lipid nanoparticles consist of a lipid core conjugated to an albumin stealth coating and targeting antibodies through thiol chemistry synthesized utilizing a one-step method. Applying the developed method, lipid nanoparticles with diameters down to 87 nm, capable of encapsulating small molecule compounds were synthesized. Cellular uptake studies of the lipid nanoparticles loaded with the model drug Nile red demonstrated that stealth-coating reduced non-specific cell uptake by up to a 1000-fold compared to free drug. Moreover, antibody-conjugation led to a significant cellular retargeting. Finally, it was shown that the lipid nanoparticles undergo cellular uptake through the endocytic pathway. The lipid nanoparticles are simple to synthesize, stabile in serum and have the potential to be versatile targeted towards receptors selectively expressed by diseased cells using antibodies. Thus, the system may reduce the toxic side-effects of cancer drugs while improving their delivery to cancer cells, increasing the therapeutic effect.
Collapse
Affiliation(s)
- Martine K Notabi
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Eva C Arnspang
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Morten Ø Andersen
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark.
| |
Collapse
|
35
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
36
|
Ford CA, Spoonmore TJ, Gupta MK, Duvall CL, Guelcher SA, Cassat JE. Diflunisal-loaded poly(propylene sulfide) nanoparticles decrease S. aureus-mediated bone destruction during osteomyelitis. J Orthop Res 2021; 39:426-437. [PMID: 33300149 PMCID: PMC7855846 DOI: 10.1002/jor.24948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis is a debilitating infection of bone that results in substantial morbidity. Staphylococcus aureus is the most commonly isolated pathogen causing bone infections and features an arsenal of virulence factors that contribute to bone destruction and counteract immune responses. We previously demonstrated that diflunisal, a nonsteroidal anti-inflammatory drug, decreases S. aureus-induced bone destruction during osteomyelitis when delivered locally from a resorbable drug delivery depot. However, local diflunisal therapy was complicated by bacterial colonization of the depot's surface, highlighting a common pitfall of devices for local drug delivery to infected tissue. It is, therefore, critical to develop an alternative drug delivery method for diflunisal to successfully repurpose this drug as an antivirulence therapy for osteomyelitis. We hypothesized that a nanoparticle-based parenteral delivery strategy would provide a method for delivering diflunisal to infected tissue while circumventing the complications associated with local delivery. In this study, we demonstrate that poly(propylene sulfide) (PPS) nanoparticles accumulate at the infectious focus in a murine model of staphylococcal osteomyelitis and are capable of efficaciously delivering diflunisal to infected bone. Moreover, diflunisal-loaded PPS nanoparticles effectively decrease S. aureus-mediated bone destruction, establishing the feasibility of systemic delivery of an antivirulence compound to mitigate bone pathology during osteomyelitis.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Thomas J. Spoonmore
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Mukesh K. Gupta
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Craig L. Duvall
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Scott A. Guelcher
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Center for Bone BiologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - James E. Cassat
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Center for Bone BiologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Institute for Infection, Immunology, and InflammationVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
37
|
Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Rumyantsev M. Living polymerizations of propylene sulfide initiated with potassium xanthates characterized by unprecedentedly high propagation rates. Polym Chem 2021. [DOI: 10.1039/d0py01740j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this paper we describe the original thiol-free approach towards the polymerization of propylene sulfide (PS) under various conditions (bulk, solution, and emulsion) initiated with potassium xanthates.
Collapse
Affiliation(s)
- Misha Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev
- 603950 Nizhny Novgorod
- Russia
| |
Collapse
|
39
|
Dailing EA, Kilchrist KV, Tierney JW, Fletcher RB, Evans BC, Duvall CL. Modifying Cell Membranes with Anionic Polymer Amphiphiles Potentiates Intracellular Delivery of Cationic Peptides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50222-50235. [PMID: 33124813 PMCID: PMC9082340 DOI: 10.1021/acsami.0c13304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rapid, facile, and noncovalent cell membrane modification with alkyl-grafted anionic polymers was sought as an approach to enhance intracellular delivery and bioactivity of cationic peptides. We synthesized a library of acrylic acid-based copolymers containing varying amounts of an amine-reactive pentafluorophenyl acrylate monomer followed by postpolymerization modification with a series of alkyl amines to afford precise control over the length and density of aliphatic alkyl side chains. This synthetic strategy enabled systematic investigation of the effect of the polymer structure on membrane binding, potentiation of peptide cell uptake, pH-dependent disruption of lipid bilayers for endosome escape, and intracellular bioavailability. A subset of these polymers exhibited pKa of ∼6.8, which facilitated stable membrane association at physiological pH and rapid, pH-dependent endosomal disruption upon endocytosis as quantified in Galectin-8-YFP reporter cells. Cationic cell penetrating peptide (CPP) uptake was enhanced up to 15-fold in vascular smooth muscle cells in vitro when peptide treatment was preceded by a 30-min pretreatment with lead candidate polymers. We also designed and implemented a new and highly sensitive assay for measuring the intracellular bioavailability of CPPs based on the NanoLuciferase (NanoLuc) technology previously developed for measuring intracellular protein-protein interactions. Using this split luciferase class of assay, polymer pretreatment enhanced intracellular delivery of the CPP-modified HiBiT peptide up to 30-fold relative to CPP-HiBiT without polymer pretreatment (p < 0.05). The overall structural analyses show that polymers containing 50:50 or 70:30 molar ratios of carboxyl groups to alkyl side chains of 6-8 carbons maximized peptide uptake, pH-dependent membrane disruption, and intracellular bioavailability and that this potentiation effect was maximized by pairing with CPPs with high cationic charge density. These results demonstrate a rapid, mild method for polymer modification of cell surfaces to potentiate intracellular delivery, endosome escape, and bioactivity of cationic peptides.
Collapse
Affiliation(s)
- Eric A Dailing
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - J William Tierney
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - R Brock Fletcher
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Brian C Evans
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| |
Collapse
|
40
|
Dou Y, Li C, Li L, Guo J, Zhang J. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release 2020; 327:641-666. [PMID: 32911014 PMCID: PMC7476894 DOI: 10.1016/j.jconrel.2020.09.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is intimately related to the pathogenesis of numerous acute and chronic diseases like cardiovascular disease, inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases. Therefore anti-inflammatory therapy is a very promising strategy for the prevention and treatment of these inflammatory diseases. To overcome the shortcomings of existing anti-inflammatory agents and their traditional formulations, such as nonspecific tissue distribution and uncontrolled drug release, bioresponsive drug delivery systems have received much attention in recent years. In this review, we first provide a brief introduction of the pathogenesis of inflammation, with an emphasis on representative inflammatory cells and mediators in inflammatory microenvironments that serve as pathological fundamentals for rational design of bioresponsive carriers. Then we discuss different materials and delivery systems responsive to inflammation-associated biochemical signals, such as pH, reactive oxygen species, and specific enzymes. Also, applications of various bioresponsive drug delivery systems in the treatment of typical acute and chronic inflammatory diseases are described. Finally, crucial challenges in the future development and clinical translation of bioresponsive anti-inflammatory drug delivery systems are highlighted.
Collapse
Affiliation(s)
- Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiawei Guo
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
41
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Materialien mit Selektivität für oxidative Molekülspezies für die Diagnostik und Therapie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
42
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Oxidative‐Species‐Selective Materials for Diagnostic and Therapeutic Applications. Angew Chem Int Ed Engl 2020; 60:9804-9827. [DOI: 10.1002/anie.201915833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
43
|
Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox-Responsive Nanobiomaterials-Based Therapeutics for Neurodegenerative Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907308. [PMID: 32940007 DOI: 10.1002/smll.201907308] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Redox regulation has recently been proposed as a critical intracellular mechanism affecting cell survival, proliferation, and differentiation. Redox homeostasis has also been implicated in a variety of degenerative neurological disorders such as Parkinson's and Alzheimer's disease. In fact, it is hypothesized that markers of oxidative stress precede pathologic lesions in Alzheimer's disease and other neurodegenerative diseases. Several therapeutic approaches have been suggested so far to improve the endogenous defense against oxidative stress and its harmful effects. Among such approaches, the use of artificial antioxidant systems has gained increased popularity as an effective strategy. Nanoscale drug delivery systems loaded with enzymes, bioinspired catalytic nanoparticles and other nanomaterials have emerged as promising candidates. The development of degradable hydrogels scaffolds with antioxidant effects could also enable scientists to positively influence cell fate. This current review summarizes nanobiomaterial-based approaches for redox regulation and their potential applications as central nervous system neurodegenerative disease treatments.
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- UCL Centre for Nerve Engineering, University College London, London, WC1E 6BT, UK
| | - Despoina Kesidou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Francisco Moura
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Eric Felli
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| |
Collapse
|
44
|
3D Bone Morphology Alters Gene Expression, Motility, and Drug Responses in Bone Metastatic Tumor Cells. Int J Mol Sci 2020; 21:ijms21186913. [PMID: 32967150 PMCID: PMC7555977 DOI: 10.3390/ijms21186913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Patients with advanced skeletal metastases arising from primary cancers including breast, lung, and prostate suffer from extreme pain, bone loss, and frequent fractures. While the importance of interactions between bone and tumors is well-established, our understanding of complex cell–cell and cell–microenvironment interactions remains limited in part due to a lack of appropriate 3D bone models. To improve our understanding of the influence of bone morphometric properties on the regulation of tumor-induced bone disease (TIBD), we utilized bone-like 3D scaffolds in vitro and in vivo. Scaffolds were seeded with tumor cells, and changes in cell motility, proliferation, and gene expression were measured. Genes associated with TIBD significantly increased with increasing scaffold rigidity. Drug response differed when tumors were cultured in 3D compared to 2D. Inhibitors for Integrin β3 and TGF-β Receptor II significantly reduced bone-metastatic gene expression in 2D but not 3D, while treatment with the Gli antagonist GANT58 significantly reduced gene expression in both 2D and 3D. When tumor-seeded 3D scaffolds were implanted into mice, infiltration of myeloid progenitors changed in response to pore size and rigidity. This study demonstrates a versatile 3D model of bone used to study the influence of mechanical and morphometric properties of bone on TIBD.
Collapse
|
45
|
Martin JR, Patil P, Yu F, Gupta MK, Duvall CL. Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels. Biomaterials 2020; 263:120377. [PMID: 32947094 DOI: 10.1016/j.biomaterials.2020.120377] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels crosslinked with enzyme-cleavable peptides are promising biodegradable vehicles for therapeutic cell delivery. However, peptide synthesis at the level required for bulk biomaterial manufacturing is costly, and fabrication of hydrogels from scalable, low-cost synthetic precursors while supporting cell-specific degradation remains a challenge. Reactive oxygen species (ROS) are cell-generated signaling molecules that can also be used as a trigger to mediate specific in vivo degradation of biomaterials. Here, PEG-based hydrogels crosslinked with ROS-degradable poly(thioketal) (PTK) polymers were successfully synthesized via thiol-maleimide chemistry and employed as a cell-degradable, antioxidative stem cell delivery platform. PTK hydrogels were mechanically robust and underwent ROS-mediated, dose-dependent degradation in vitro, while promoting robust cellular infiltration, tissue regeneration, and bioresorption in vivo. Moreover, these ROS-sensitive materials successfully encapsulated mesenchymal stem cells (MSCs) and maintained over 40% more viable cells than gold-standard hydrogels crosslinked with enzymatically-degradable peptides. The higher cellular survival in PTK-based gels was associated with the antioxidative function of the ROS-sensitive crosslinker, which scavenged free radicals and protected encapsulated MSCs from cytotoxic doses of ROS. Improved MSC viability was also observed in vivo as MSCs delivered within injectable PTK hydrogels maintained significantly more viability over 11 days compared against cells delivered within gels crosslinked with either a PEG-only control polymer or a gold-standard enzymatically-degradable peptide. Together, this study establishes a new paradigm for scalable creation and application of cell-degradable hydrogels, particularly for cell delivery applications.
Collapse
Affiliation(s)
- John R Martin
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA
| | - Prarthana Patil
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA
| | - Fang Yu
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA
| | - Mukesh K Gupta
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA.
| | - Craig L Duvall
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA.
| |
Collapse
|
46
|
Schunk HC, Hernandez DS, Austin MJ, Dhada KS, Rosales AM, Suggs LJ. Assessing the range of enzymatic and oxidative tunability for biosensor design. J Mater Chem B 2020; 8:3460-3487. [PMID: 32159202 PMCID: PMC7219111 DOI: 10.1039/c9tb02666e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Development of multi-functional materials and biosensors that can achieve an in situ response designed by the user is a current need in the biomaterials field, especially in complex biological environments, such as inflammation, where multiple enzymatic and oxidative signals are present. In the past decade, there has been extensive research and development of materials chemistries for detecting and monitoring enzymatic activity, as well as for releasing therapeutic and diagnostic agents in regions undergoing oxidative stress. However, there has been limited development of materials in the context of enzymatic and oxidative triggers together, despite their closely tied and overlapping mechanisms. With research focusing on enzymatically and oxidatively triggered materials separately, these systems may be inadequate in monitoring the complexity of inflammatory environments, thus limiting in vivo translatability and diagnostic accuracy. The intention of this review is to highlight a variety of enzymatically and oxidatively triggered materials chemistries to draw attention to the range of synthetic tunability available for the construction of novel biosensors with a spectrum of programmed responses. We focus our discussion on several types of macromolecular sensors, generally classified by the causative material response driving ultimate signal detection. This includes sensing based on degradative processes, conformational changes, supramolecular assembly/disassembly, and nanomaterial interactions, among others. We see each of these classes providing valuable tools toward coalescing current gaps in the biosensing field regarding specificity, selectivity, sensitivity, and flexibility in application. Additionally, by considering the materials chemistry of enzymatically and oxidatively triggered biomaterials in tandem, we hope to encourage synthesis of new biosensors that capitalize on their synergistic roles and overlapping mechanisms in inflammatory environments for applications in disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Hattie C Schunk
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Kareem F, Abdul‐Karim R, Maharjan R, Shah MR, Simjee SU, Khan KM, Malik MI. Enhanced Anti‐Bacterial Activity of Non‐Antibacterial Drug Candesartan Cilexetil by Delivery through Polymeric Micelles. ChemistrySelect 2020. [DOI: 10.1002/slct.201904758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Faheem Kareem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Rubina Abdul‐Karim
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Rukesh Maharjan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Muhammad Raza Shah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Shabana U. Simjee
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Khalid M. Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University P.O. Box 31441 Dammam Saudi Arabia
| | - Muhammad Imran Malik
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
48
|
Gardey E, Sobotta FH, Hoeppener S, Bruns T, Stallmach A, Brendel JC. Influence of Core Cross-Linking and Shell Composition of Polymeric Micelles on Immune Response and Their Interaction with Human Monocytes. Biomacromolecules 2020; 21:1393-1406. [PMID: 32084317 DOI: 10.1021/acs.biomac.9b01656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Block copolymer micelles have received increasing attention in the last decades, in particular for their appealing properties in nanomedicine. However, systematic investigations of the interaction between polymeric micelles and immune cells are still rare. Therefore, broader studies comparing the structural effects remain inevitable for a comprehensive understanding of the immune response and for the design of efficient, nonimmunogenic delivery systems. Here, we present novel block copolymer micelles with the same hydrophobic core, based on a copolymer of BA and VDM, and various hydrophilic shells ranging from common PEG derivatives to morpholine-based materials. The influence of these shells on innate immune responses was studied in detail. In addition, we investigated the impact of micelle stability by varying the cross-linking density in the micellar core. Surprisingly, whereas different shells had only a minor impact on immune response, micelles with reduced cross-linking density considerably enhanced the release of cytokines from isolated human monocytes. Moreover, the uptake of non-cross-linked micelles by monocytes was significantly higher as compared to cross-linked materials. Our study emphasizes the importance of the micellar stability on the interaction with the immune system, which is the key for any stealth properties in vivo. Polymers based on morpholines result in a similar low response as the PEG derivative and may represent an interesting alternative to the common PEGylation.
Collapse
Affiliation(s)
- Elena Gardey
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Fabian H Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany.,Medical Department III, University Hospital RWTH Aachen, Aachen, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
49
|
Wu W, Chen M, Luo T, Fan Y, Zhang J, Zhang Y, Zhang Q, Sapin-Minet A, Gaucher C, Xia X. ROS and GSH-responsive S-nitrosoglutathione functionalized polymeric nanoparticles to overcome multidrug resistance in cancer. Acta Biomater 2020; 103:259-271. [PMID: 31846803 DOI: 10.1016/j.actbio.2019.12.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
Multidrug resistance of cancer cells is one of the major obstacle for chemotherapeutic efficiency. Nitric oxide (NO) has raised the potential to overcome multidrug resistance (MDR) with low side effects. Herein, we report a reactive oxygen species (ROS) and glutathione (GSH) responsive nanoparticle for the delivery of NO prodrug such as S-nitrosoglutathione (GSNO), which was chemically conjugated to an amphiphilic block copolymer. The GSNO functionalized nanoparticles show high NO loading capacity, good stability and sustained NO release with specific GSH activated NO-releasing kinetics. Such GSNO functionalized nanoparticles delivered doxorubicin (DOX) in a ROS triggered manner and increased the intracellular accumulation of DOX. However, in normal healthy cells, showing physiological concentrations of ROS, these nanoparticles presented good biocompatibility. The present work indicated that these multifunctional nanoparticles can serve as effective co-delivery platforms of NO and DOX to selectively kill chemo-resistant cancer cells through increasing chemo-sensitivity. STATEMENT OF SIGNIFICANCE: In this work, we constructed nitric oxide donor (S-nitrosoglutathione, GSNO) functionalized amphiphilic copolymer (PEG-PPS-GSNO) to deliver doxorubicin (DOX). The developed PEG-PPS-GSNO@DOX nanoparticles presented high NO capacity, ROS triggered DOX release and GSH triggered NO release. Thus NO reversed the chemo-resistance in HepG2/ADR cells increasing intrcellular accumulation of DOX. Furthermore, these PEG-PPS-GSNO@DOX nanoparticles exhibited biocompatibility to healthy cells and toxicity to cancer cells, due to elevated ROS.
Collapse
|
50
|
Vanderburgh J, Hill JL, Gupta MK, Kwakwa KA, Wang SK, Moyer K, Bedingfield SK, Merkel AR, d'Arcy R, Guelcher SA, Rhoades JA, Duvall CL. Tuning Ligand Density To Optimize Pharmacokinetics of Targeted Nanoparticles for Dual Protection against Tumor-Induced Bone Destruction. ACS NANO 2020; 14:311-327. [PMID: 31894963 PMCID: PMC7216559 DOI: 10.1021/acsnano.9b04571] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Breast cancer patients are at high risk for bone metastasis. Metastatic bone disease is a major clinical problem that leads to a reduction in mobility, increased risk of pathologic fracture, severe bone pain, and other skeletal-related events. The transcription factor Gli2 drives expression of parathyroid hormone-related protein (PTHrP), which activates osteoclast-mediated bone destruction, and previous studies showed that Gli2 genetic repression in bone-metastatic tumor cells significantly reduces tumor-induced bone destruction. Small molecule inhibitors of Gli2 have been identified; however, the lipophilicity and poor pharmacokinetic profile of these compounds have precluded their success in vivo. In this study, we designed a bone-targeted nanoparticle (BTNP) comprising an amphiphilic diblock copolymer of poly[(propylene sulfide)-block-(alendronate acrylamide-co-N,N-dimethylacrylamide)] [PPS-b-P(Aln-co-DMA)] to encapsulate and preferentially deliver a small molecule Gli2 inhibitor, GANT58, to bone-associated tumors. The mol % of the bisphosphonate Aln in the hydrophilic polymer block was varied in order to optimize BTNP targeting to tumor-associated bone by a combination of nonspecific tumor accumulation (presumably through the enhanced permeation and retention effect) and active bone binding. Although 100% functionalization with Aln created BTNPs with strong bone binding, these BTNPs had highly negative zeta-potential, resulting in shorter circulation time, greater liver uptake, and less distribution to metastatic tumors in bone. However, 10 mol % of Aln in the hydrophilic block generated a formulation with a favorable balance of systemic pharmacokinetics and bone binding, providing the highest bone/liver biodistribution ratio among formulations tested. In an intracardiac tumor cell injection model of breast cancer bone metastasis, treatment with the lead candidate GANT58-BTNP formulation decreased tumor-associated bone lesion area 3-fold and increased bone volume fraction in the tibiae of the mice 2.5-fold. Aln conferred bone targeting to the GANT58-BTNPs, which increased GANT58 concentration in the tumor-associated bone relative to untargeted NPs, and also provided benefit through the direct antiresorptive therapeutic function of Aln. The dual benefit of the Aln in the BTNPs was supported by the observations that drug-free Aln-containing BTNPs improved bone volume fraction in bone-tumor-bearing mice, while GANT58-BTNPs created better therapeutic outcomes than both unloaded BTNPs and GANT58-loaded untargeted NPs. These findings suggest GANT58-BTNPs have potential to potently inhibit tumor-driven osteoclast activation and resultant bone destruction in patients with bone-associated tumor metastases.
Collapse
Affiliation(s)
- Joseph Vanderburgh
- Department of Chemical and Biomolecular Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
- Center for Bone Biology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
- Department of Veterans Affairs , Tennessee Valley Healthcare System , Nashville , Tennessee 37212 , United States
| | - Jordan L Hill
- Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Mukesh K Gupta
- Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Kristin A Kwakwa
- Center for Bone Biology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
- Department of Veterans Affairs , Tennessee Valley Healthcare System , Nashville , Tennessee 37212 , United States
- Program in Cancer Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Sean K Wang
- Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Kathleen Moyer
- Interdisciplinary Graduate Program in Materials Science , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Sean K Bedingfield
- Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Alyssa R Merkel
- Center for Bone Biology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
- Department of Veterans Affairs , Tennessee Valley Healthcare System , Nashville , Tennessee 37212 , United States
| | - Richard d'Arcy
- Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
- Center for Bone Biology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
- Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Julie A Rhoades
- Center for Bone Biology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
- Department of Veterans Affairs , Tennessee Valley Healthcare System , Nashville , Tennessee 37212 , United States
- Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
- Department of Medicine, Division of Clinical Pharmacology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Craig L Duvall
- Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States
| |
Collapse
|