1
|
Gu J, Cai X, Raza F, Zafar H, Chu B, Yuan H, Wang T, Wang J, Feng X. Preparation of a minocycline polymer micelle thermosensitive gel and its application in spinal cord injury. NANOSCALE ADVANCES 2024:d4na00625a. [PMID: 39355839 PMCID: PMC11440374 DOI: 10.1039/d4na00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
Neuroprotection is an important approach for the treatment of spinal cord injury (SCI). Minocycline (MC), a known neuroprotective agent, has been utilized for SCI treatment, but its therapeutic effect is limited by instability and low bioavailability. Herein, we developed an innovative micellar thermosensitive hydrogel (MCPP-M-gel) that encapsulates MC in polyethylene glycol (PEG)-poly(lactide-co-glycolic acid) (PLGA) micelles to enhance its therapeutic efficacy in a rat model of SCI. The micelles were synthesized via the thin-film hydration method and characterized for encapsulation efficiency, particle size, zeta potential, and polydispersity index (PDI). MCPP-M-gel demonstrated favorable physico-mechanical properties and extended MC release over 72 hours in vitro without cytotoxic effects on neural crest-derived ectoderm mesenchymal stem cells (EMSCs). Thereafter, MC, MCPP-M, MCPP-M-gel and a blank micellar thermosensitive gel were injected into the injured site of SCI rats. Histopathological evaluation demonstrated that MCPP-M-gel could promote neuronal regeneration at the injured site of the SC after 28 days. Immunofluorescence techniques revealed that MCPP-M-gel increased the expression of neuronal class III β-tubulin (Tuj1), myelin basic protein (MBP), growth-associated protein 43 (GAP43), neurofilament protein-200 (NF-200) and nestin as well as reduced glial-fibrillary acidic protein (GFAP) expression in damaged areas of the SC. In conclusion, this study innovatively developed MCPP-M-gel based on a PEG-PLGA copolymer as a biomaterial, laying a solid foundation for further research and application of MCPP-M-gel in SCI models or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun Gu
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Xiaohu Cai
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Rehabilitation, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bo Chu
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Haitao Yuan
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Tianqi Wang
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Jiapeng Wang
- School of Pharmacy, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiaojun Feng
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| |
Collapse
|
2
|
Ahmad Z, Arshad N, Alsaab HO, Selamoğlu Z, Shah A. Exploration of cellular uptake and endocytosis mechanisms for doxorubicin-loaded poly (amino acid) nanocarriers. Polym Bull (Berl) 2024. [DOI: 10.1007/s00289-024-05413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/14/2024]
|
3
|
Xu Y, Zhao M, Cao J, Fang T, Zhang J, Zhen Y, Wu F, Yu X, Liu Y, Li J, Wang D. Applications and recent advances in transdermal drug delivery systems for the treatment of rheumatoid arthritis. Acta Pharm Sin B 2023; 13:4417-4441. [PMID: 37969725 PMCID: PMC10638506 DOI: 10.1016/j.apsb.2023.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 11/17/2023] Open
Abstract
Rheumatoid arthritis is a chronic, systemic autoimmune disease predominantly based on joint lesions with an extremely high disability and deformity rate. Several drugs have been used for the treatment of rheumatoid arthritis, but their use is limited by suboptimal bioavailability, serious adverse effects, and nonnegligible first-pass effects. In contrast, transdermal drug delivery systems (TDDSs) can avoid these drawbacks and improve patient compliance, making them a promising option for the treatment of rheumatoid arthritis (RA). Of course, TDDSs also face unique challenges, as the physiological barrier of the skin makes drug delivery somewhat limited. To overcome this barrier and maximize drug delivery efficiency, TDDSs have evolved in terms of the principle of transdermal facilitation and transdermal facilitation technology, and different generations of TDDSs have been derived, which have significantly improved transdermal efficiency and even achieved individualized controlled drug delivery. In this review, we summarize the different generations of transdermal drug delivery systems, the corresponding transdermal strategies, and their applications in the treatment of RA.
Collapse
Affiliation(s)
| | | | - Jinxue Cao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanli Zhen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fangling Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
4
|
Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022; 8:554. [PMID: 36135267 PMCID: PMC9498906 DOI: 10.3390/gels8090554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogel drug delivery systems are designed to release a payload when prompted by an external stimulus. These platforms have become prominent in the field of drug delivery due to their ability to provide spatial and temporal control for drug release. Among the different external triggers that have been used, ultrasound possesses several advantages: it is non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area. This review summarizes the current state of understanding about ultrasound-responsive hydrogels used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound are examined, along with the latest innovative formulations and hydrogel design strategies. We also report on the most recent applications leveraging ultrasound activation for both cancer treatment and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels are discussed.
Collapse
Affiliation(s)
- Tyus J. Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Julien H. Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Daniel J. Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| |
Collapse
|
5
|
Schmidt BVKJ. Multicompartment Hydrogels. Macromol Rapid Commun 2022; 43:e2100895. [PMID: 35092101 DOI: 10.1002/marc.202100895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels belong to the most promising materials in polymer and materials science at the moment. As they feature soft and tissue-like character as well as high water-content, a broad range of applications are addressed with hydrogels, e.g. tissue engineering and wound dressings but also soft robotics, drug delivery, actuators and catalysis. Ways to tailor hydrogel properties are crosslinking mechanism, hydrogel shape and reinforcement, but new features can be introduced by variation of hydrogel composition as well, e.g. via monomer choice, functionalization or compartmentalization. Especially, multicompartment hydrogels drive progress towards complex and highly functional soft materials. In the present review the latest developments in multicompartment hydrogels are highlighted with a focus on three types of compartments, i.e. micellar/vesicular, droplets or multi-layers including various sub-categories. Furthermore, several morphologies of compartmentalized hydrogels and applications of multicompartment hydrogels will be discussed as well. Finally, an outlook towards future developments of the field will be given. The further development of multicompartment hydrogels is highly relevant for a broad range of applications and will have a significant impact on biomedicine and organic devices. This article is protected by copyright. All rights reserved.
Collapse
|
6
|
Najafi M, Habibi M, Fokkink R, Hennink WE, Vermonden T. LCST polymers with UCST behavior. SOFT MATTER 2021; 17:2132-2141. [PMID: 33439188 DOI: 10.1039/d0sm01505a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, temperature dependent behavior of dense dispersions of core crosslinked flower-like micelles is investigated. Micelles were prepared by mixing aqueous solutions of two ABA block copolymers with PEG B-blocks and thermosensitive A-blocks containing PNIPAM and crosslinkable moieties. At a temperature above the lower critical solution temperature (LCST), self-assembly of the polymers resulted in the formation of flower-like micelles with a hydrophilic PEG shell and a hydrophobic core. The micellar core was stabilized by native chemical ligation (NCL). Above the LCST, micelles displayed a radius of ∼35 nm, while a radius of ∼48 nm was found below the LCST due to hydration of the PNIPAM core. Concentrated dispersions of these micelles (≥7.5 wt%) showed glassy state behavior below a critical temperature (Tc: 28 °C) which is close to the LCST of the polymers. Below this Tc, the increase in the micelle volume resulted in compression of micelles together above a certain concentration and formation of a glass. We quantified and compared micelle packing at different concentrations and temperatures. The storage moduli (G') of the dispersions showed a universal dependence on the effective volume fraction, which increased substantially above a certain effective volume fraction of φ = 1.2. Furthermore, a disordered lattice model describing this behavior fitted the experimental data and revealed a critical volume fraction of φc = 1.31 close to the experimental value of φ = 1.2. The findings reported provide insights for the molecular design of novel thermosensitive PNIPAM nanoparticles with tunable structural and mechanical properties.
Collapse
Affiliation(s)
- Marzieh Najafi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | - Mehdi Habibi
- Physics and Physical Chemistry of Foods, Wageningen University & Research, 6708 WG Wageningen, Wageningen, The Netherlands
| | - Remco Fokkink
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| |
Collapse
|
7
|
Shaheen MA, Elmeadawy SH, Bazeed FB, Anees MM, Saleh NM. Innovative coenzyme Q 10-loaded nanoformulation as an adjunct approach for the management of moderate periodontitis: preparation, evaluation, and clinical study. Drug Deliv Transl Res 2020; 10:548-564. [PMID: 31953677 DOI: 10.1007/s13346-019-00698-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodontal diseases are worldwide chronic inflammatory conditions that are associated with heavy production of reactive oxygen species followed by damage of the tooth-supporting tissues. Although the mechanical approach of scaling and root planing (SRP) for removing of plaque is considered as the key element for controlling periodontitis, the anatomical complexity of the teeth hinders accessibility to deeper points. The aim of this study was to design a micellar nanocarrier of coenzyme Q10 (Q10) to support the management of moderate periodontitis. Q10 was formulated in nanomicelles (NMQ10) and evaluated regarding encapsulation efficiency, loading efficiency, percent yield, hydrodynamic size (Dh), polydispersity index (PDI), and zeta potential (ζ potential). NMQ10 was incorporated to in situ gelling systems and the in vitro release of Q10 was studied. A clinical study including evaluation of periodontal parameters and biochemical assay of total antioxidant capacity (T-AOC) and lipid peroxide was achieved. Results revealed that Q10 was efficiently entrapped in spherical-shaped stable NMQ10 with Dh, PDI, and ζ potential of 154.0 nm, 0.108, and - 31.67 mV, respectively. The clinical study revealed that SRP only exhibited improvement of the periodontal parameters. Also, assay of T-AOC and lipid peroxide revealed that their values diminished by 21.5 and 23.8%, respectively. On the other hand, SRP combined with local application of NMQ10 resulted in a significant management of the periodontal parameters, and likewise, the assayed biomarkers proved enhanced antioxidant activity over SRP alone. In conclusion, NMQ10 can be suggested as a promising nanosystem as an approach to support the management of chronic periodontitis. Such results could be used to conduct larger clinical studies. Graphical abstrac.
Collapse
Affiliation(s)
| | - Samah H Elmeadawy
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Fagr B Bazeed
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed M Anees
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Noha M Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Gomhoreyah St., Mansoura, 35516, Egypt.
| |
Collapse
|
8
|
Fliervoet LAL, Zhang H, van Groesen E, Fortuin K, Duin NJCB, Remaut K, Schiffelers RM, Hennink WE, Vermonden T. Local release of siRNA using polyplex-loaded thermosensitive hydrogels. NANOSCALE 2020; 12:10347-10360. [PMID: 32369076 DOI: 10.1039/d0nr03147j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the challenges for the clinical translation of RNA interference (RNAi)-based therapies concerns the deposition of therapeutically effective doses of the nucleic acids, like siRNA, at a local tissue level without severe off-target effects. To address this issue, hydrogels can be used as matrices for the local and sustained release of the siRNA cargo. In this study, the formation of polyplexes based on siRNA and poly(2-dimethylaminoethyl methacrylate) (PDMAEMA)-based polymers was investigated, followed by their loading in a thermosensitive hydrogel to promote local siRNA release. A multifunctional NPD triblock copolymer consisting of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), a hydrophilic poly(ethylene glycol) (PEG, P), and a cationic PDMAEMA (D) block was used to study the binding properties with siRNA taking the non-thermosensitive PD polymer as control. For both polymers, small polyplexes with sizes ranging from 10-20 nm were formed in aqueous solution (HBS buffer, 20 mM HEPES, 150 mM NaCl, pH 7.4) when prepared at a N/P charge ratio of 5 or higher. Formulating the siRNA into NPD or PD polyplexes before loading into the thermosensitive PNIPAM-PEG-PNIPAM hydrogel resulted in a more controlled and sustained release compared to free siRNA release from the hydrogel. The polyplexes were released for 128 hours in HBS, when changing the release medium twice a day, while free siRNA was completely released within 50 hours with already 40% being released after changing the release medium just once. The release of the polyplexes was dependent on the dissolution rate of the hydrogel matrix. Moreover, intact polyplexes were released from the hydrogels with a similar size as before loading, suggesting that the hydrogel material did not compromise the polyplex stability. Finally, it was shown that the released polyplexes were still biologically active and transfected FaDu cells, which was observed by siRNA-induced luciferase silencing in vitro. This study shows the development of an injectable thermosensitive hydrogel to promote local and sustained release of siRNA, which can potentially be used to deliver siRNA for various applications, such as the treatment of tumors.
Collapse
Affiliation(s)
- Lies A L Fliervoet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Najafi M, Asadi H, van den Dikkenberg J, van Steenbergen MJ, Fens MHAM, Hennink WE, Vermonden T. Conversion of an Injectable MMP-Degradable Hydrogel into Core-Cross-Linked Micelles. Biomacromolecules 2020; 21:1739-1751. [PMID: 31945299 PMCID: PMC7218746 DOI: 10.1021/acs.biomac.9b01675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/16/2020] [Indexed: 01/01/2023]
Abstract
In this study, a new type of injectable hydrogel called "HyMic" that can convert into core cross-linked (CCL) micelles upon exposure to matrix metalloproteinases (MMP's), was designed and developed for drug delivery applications. HyMic is composed of CCL micelles connected via an enzyme cleavable linker. To this end, two complementary ABA block copolymers with polyethylene glycol (PEG) as B block were synthesized using atom transfer radical polymerization (ATRP). The A blocks were composed of a random copolymer of N-isopropylacrylamide (NIPAM) and either N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys) or N-(2-hydroxypropyl) methacrylamide-ethylthioglycolate succinic acid (HPMA-ETSA). Mixing the aqueous solutions of the obtained polymers and rising the temperature above the cloud point of the PNIPAM block resulted in the self-assembly of these polymers into flower-like micelles composed of a hydrophilic PEG shell and hydrophobic core. The micellar core was cross-linked by native chemical ligation between the cysteine (in HPMA-Cys) and thioester (in HPMA-ETSA) functionalities. A slight excess of thioester to cysteine groups (molar ratio 3:2) was used to allow further chemical reactions exploiting the unreacted thioester groups. The obtained micelles displayed a Z-average diameter of 80 ± 1 nm (PDI 0.1), and ζ-potential of -4.2 ± 0.4 mV and were linked using two types of pentablock copolymers of P(NIPAM-co-HPMA-Cys)-PEG-peptide-PEG-P(NIPAM-co-HPMA-Cys) (Pep-NC) to yield hydrogels. The pentablock copolymers were synthesized using a PEG-peptide-PEG ATRP macroinitiator and the peptide midblock (lysine-glycine-proline-glutamine-isoleucine-phenylalanine-glycine-glutamine-lysine (Lys-Gly-Pro-Gln-Gly-Ile-Phe-Gly-Gln-Lys)) consisted of either l- or d-amino acids (l-Pep-NC or d-Pep-NC), of which the l-amino acid sequence is a substrate for matrix metalloproteases 2 and 9 (MMPs 2 and 9). Upon mixing of the CCL micelles and the linker (l/d-Pep-NC), the cysteine functionalities of the l/d-Pep-NC reacted with remaining thioester moieties in the micellar core via native chemical ligation yielding a hydrogel within 160 min as demonstrated by rheological measurements. As anticipated, the gel cross-linked with l-Pep-NC was degraded in 7-45 days upon exposure to metalloproteases in a concentration-dependent manner, while the gel cross-linked with the d-Pep-NC remained intact even after 2 months. Dynamic light scattering analysis of the release medium revealed the presence of nanoparticles with a Z-average diameter of ∼120 nm (PDI < 0.3) and ζ-potential of ∼-3 mV, indicating release of core cross-linked micelles upon HyMic exposure to metalloproteases. An in vitro study demonstrated that the released CCL micelles were taken up by HeLa cells. Therefore, HyMic as an injectable and enzyme degradable hydrogel displaying controlled and on-demand release of CCL micelles has potential for intracellular drug delivery in tissues with upregulation of MMPs, for example, in cancer tissues.
Collapse
Affiliation(s)
- Marzieh Najafi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Hamed Asadi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Polymer
Laboratory, Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Joep van den Dikkenberg
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Mies J. van Steenbergen
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Marcel H. A. M. Fens
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
10
|
|
11
|
Song X, Zhang Z, Zhu J, Wen Y, Zhao F, Lei L, Phan-Thien N, Khoo BC, Li J. Thermoresponsive Hydrogel Induced by Dual Supramolecular Assemblies and Its Controlled Release Property for Enhanced Anticancer Drug Delivery. Biomacromolecules 2020; 21:1516-1527. [DOI: 10.1021/acs.biomac.0c00077] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Zhongxing Zhang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Feng Zhao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Lijie Lei
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Boo Cheong Khoo
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| |
Collapse
|
12
|
Pertici V, Trimaille T, Gigmes D. Inputs of Macromolecular Engineering in the Design of Injectable Hydrogels Based on Synthetic Thermoresponsive Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b00705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vincent Pertici
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Thomas Trimaille
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Didier Gigmes
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| |
Collapse
|
13
|
Fliervoet LAL, van Nostrum CF, Hennink WE, Vermonden T. Balancing hydrophobic and electrostatic interactions in thermosensitive polyplexes for nucleic acid delivery. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab12ee] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Bergsma J, van der Gucht J, Leermakers FAM. Coarse‐Grained Dendrimers in a Good Solvent: Comparison of Monte Carlo Simulations, Self‐Consistent Field Theory, and a Hybrid Modeling Strategy. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201800064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Johan Bergsma
- Physical Chemistry and Soft MatterWageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft MatterWageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Frans A. M. Leermakers
- Physical Chemistry and Soft MatterWageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
15
|
Bergsma J, Leermakers FAM, Kleijn JM, van der Gucht J. A Hybrid Monte Carlo Self-Consistent Field Model of Physical Gels of Telechelic Polymers. J Chem Theory Comput 2018; 14:6532-6543. [PMID: 30362745 PMCID: PMC6328284 DOI: 10.1021/acs.jctc.7b01264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/30/2022]
Abstract
We developed a hybrid Monte Carlo self-consistent field technique to model physical gels composed of ABA triblock copolymers and gain insight into the structure and interactions in such gels. The associative A blocks of the polymers are confined to small volumes called nodes, while the B block can move freely as long as it is connected to the A blocks. A Monte Carlo algorithm is used to sample the node configurations on a lattice, and Scheutjens-Fleer self-consistent field (SF-SCF) equations are used to determine the change in free energy. The advantage of this approach over more coarse grained methods is that we do not need to predefine an interaction potential between the nodes. Using this MC-SCF hybrid simulation, we determined the radial distribution functions of the nodes and structure factors and osmotic compressibilities of the gels. For a high number of polymers per node and a solvent-B Flory-Huggins interaction parameter of 0.5, phase separation is predicted. Because of limitations in the simulation volume, we did however not establish the full phase diagram. For comparison, we performed some coarse-grained MC simulations in which the nodes are modeled as single particles with pair potentials extracted from SF-SCF calculations. At intermediate concentrations, these simulations gave qualitatively similar results as the MC-SCF hybrid. However, at relatively low and high polymer volume fractions, the structure of the coarse-grained gels is significantly different because higher-order interactions between the nodes are not accounted for. Finally, we compare the predictions of the MC-SCF simulations with experimental and modeling data on telechelic polymer networks from literature.
Collapse
Affiliation(s)
- J. Bergsma
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - F. A. M. Leermakers
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - J. M. Kleijn
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - J. van der Gucht
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
16
|
Wang X, Cao Y, Yan H. Chlorambucil loaded in mesoporous polymeric microspheres as oral sustained release formulations with enhanced hydrolytic stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:564-569. [PMID: 30033288 DOI: 10.1016/j.msec.2018.05.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/24/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
Abstract
Chlorambucil, a chemotherapeutic agent, is usually administered orally to treat chronic lymphocytic leukemia and some other types of cancers in regimens of conventional and metronomic chemotherapies. However, the hydrolytic instability of chlorambucil is a major limitation in achieving the optimum therapeutic performance. In this work, mesoporous polymeric microspheres were prepared by free radical suspension copolymerization of methyl acrylate and divinylbenzene in the presence of porogen. Chlorambucil was loaded into the mesoporous polymeric microspheres through adsorption of the drug in aqueous media with high loading capacity up to more than 350 mg/g. Chlorambucil-loaded mesoporous polymeric microspheres showed sustained release property in media simulating gastrointestinal fluids, with nearly zero order release kinetics. Furthermore, the mesoporous polymeric microspheres as carriers greatly stabilized chlorambucil against its hydrolysis. The hydrolyzation percentage of chlorambucil that was adsorbed on the microspheres after incubation for 36 h in media simulating gastrointestinal fluids was less than 10%, while more than 90% of free chlorambucil hydrolyzed after incubation in the same media for 4 h. The chlorambucil-loaded mesoporous polymeric microspheres may be used as oral sustained release formulations, especially as oral formulations for the application in metronomic chemotherapy.
Collapse
Affiliation(s)
- Xiuyan Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanyan Cao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Husheng Yan
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| |
Collapse
|
17
|
Hembury M, Beztsinna N, Asadi H, van den Dikkenberg JB, Meeldijk JD, Hennink WE, Vermonden T. Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission. Biomacromolecules 2018; 19:2841-2848. [PMID: 29750866 PMCID: PMC6041773 DOI: 10.1021/acs.biomac.8b00414] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultrasmall gold atom clusters (<2 nm in diameter) or gold nanoclusters exhibit emergent photonic properties (near-infrared absorption and emission) compared to larger plasmonic gold particles because of the significant quantization of their conduction band. Although single gold nanocluster properties and applications are being increasingly investigated, little is still known about their behavior and properties when assembled into suprastructures, and even fewer studies are investigating their use for biomedical applications. Here, a simple synthetic pathway combines gold nanoclusters with thermosensitive diblock copolymers of poly(ethylene glycol) (PEG) and poly( N-isopropylacrylamide) (PNIPAm) to form a new class of gold-polymer, micelle-forming, hybrid nanoparticle. The nanohybrids' design is uniquely centered on enabling the temperature-dependent self-assembly of gold nanoclusters into the hydrophobic cores of micelles. This nonbulk assembly not only preserves but also enhances the attractive near-infrared photonics of the gold nanoclusters by significantly increasing their native fluorescent signal. In parallel to the fundamental insights into gold nanocluster ordering and assembly, the gold-polymer nanohybrids also demonstrated great potential as fluorescent live-imaging probes in vitro. This innovative material design based on the temperature-dependent, self-assembly of gold nanoclusters within a polymeric micelle's core shows great promise toward bioassays, nanosensors, and nanomedicine.
Collapse
Affiliation(s)
- Mathew Hembury
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Nataliia Beztsinna
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Hamed Asadi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Joep B van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Johannes D Meeldijk
- Electron Microscopy Group , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
18
|
|
19
|
Chen Z, Liu W, Zhao L, Xie S, Chen M, Wang T, Li X. Acid-Labile Degradation of Injectable Fiber Fragments to Release Bioreducible Micelles for Targeted Cancer Therapy. Biomacromolecules 2018; 19:1100-1110. [DOI: 10.1021/acs.biomac.7b01696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhoujiang Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Weiping Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Tao Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
20
|
Ahmad Z, Majeed S, Shah A. In vitro release and cytotoxicity of cisplatin loaded methoxy poly (ethylene glycol)- block -poly (glutamic acid) nanoparticles against human breast cancer cell lines. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Fliervoet LAL, Najafi M, Hembury M, Vermonden T. Heterofunctional Poly(ethylene glycol) (PEG) Macroinitiator Enabling Controlled Synthesis of ABC Triblock Copolymers. Macromolecules 2017; 50:8390-8397. [PMID: 29151618 PMCID: PMC5688415 DOI: 10.1021/acs.macromol.7b01475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Indexed: 12/30/2022]
Abstract
ABC triblock copolymers with a poly(ethylene glycol) (PEG) midblock have attractive properties for biomedical applications because of PEG's favorable properties regarding biocompatibility and hydrophilicity. However, easy strategies to synthesize polymers containing a PEG midblock are limited. In this study, the successful synthesis of a heterofunctional PEG macroinitiator containing both an azoinitiator and an atom transfer radical polymerization (ATRP) initiator is demonstrated. This novel PEG macroinitiator allows the development of elegant synthesis routes for PEG midblock-containing ABC copolymers that does not require protection of initiating sites or polymer end-group postmodification. Polymers with outer blocks composed of different monomers were synthesized to illustrate the versatility of this macroinitiator. N-Isopropylacrylamide (NIPAM) was included to obtain thermosensitive polymers, 2-(dimethylamino)ethyl methacrylate (DMAEMA) provided pH-sensitive properties, and 2-hydroxyethyl acrylate (HEA) functioned as a noncharged hydrophilic block that also allows for postmodifications reactions. This synthesis approach can further contribute to the design of high-precision polymers with tailorable block compositions and polymer topologies, which is highly attractive for applications in nanotechnology.
Collapse
Affiliation(s)
- Lies A L Fliervoet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - Marzieh Najafi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - Mathew Hembury
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
22
|
He N, Chen Z, Yuan J, Zhao L, Chen M, Wang T, Li X. Tumor pH-Responsive Release of Drug-Conjugated Micelles from Fiber Fragments for Intratumoral Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32534-32544. [PMID: 28876891 DOI: 10.1021/acsami.7b09519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The tumor accumulation of micelles is essential to enhance the cellular uptake and extend the release of chemotherapeutic agents. In the previous study camptothecin (CPT)-conjugated micelles (MCPT) were constructed with disulfide linkages and folate moieties for reduction-sensitive release and cell-selective uptake. This study proposes a strategy to integrate the promicelle polymers (PMCPT) into fiber fragments for intratumoral injection, realizing acid-liable release of PMCPT in response to acidic tumor microenvironment and spontaneous self-assembly into MCPT. Acid-liable 2-propionic-3-methylmaleic anhydride (CDM)-linked poly(ethylene glycol) initiates the ring-opening polymerization of dl-lactide as the fiber matrix. There is no apparent burst release of MCPT from fiber fragments and around 80% of accumulated releases after incubation in pH 6.5 buffers for 40 days. Compared to MCPT freshly prepared via solvent evaporation, the micelles released from fiber fragments reveal similar profiles, such as folate-mediated cellular uptake and glutathione-sensitive drug release. Taking advantage of the aggregation-induced emission (AIE) effect of tetraphenylethylene (TPE) derivatives, TPE-conjugated micelles (MTPE) have been successfully been used to track the self-assembly into micelles after release from fibers and subsequent cell internalization into cytosol. The self-assembly induced fluorescence light-up was also detected after intratumoral injection of fiber fragments. Compared with CPT-loaded fiber fragments and intratumoral or intravenous injection of free MCPT, the sustained release from fiber fragments and high accumulation of micelles in tumors result in significantly higher inhibition of tumor growths, prolongation of animal survival, and induction of tumor cell apoptosis. Thus, the integration of double targeting and double stimuli responsiveness into fragmented fibers provides a feasible strategy to realize the sustained micelle release from fibers and promote the therapeutic efficacy.
Collapse
Affiliation(s)
- Nan He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Zhoujiang Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Jiang Yuan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Tao Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| |
Collapse
|
23
|
Pitorre M, Gondé H, Haury C, Messous M, Poilane J, Boudaud D, Kanber E, Rossemond Ndombina GA, Benoit JP, Bastiat G. Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases? J Control Release 2017; 266:140-155. [PMID: 28951319 DOI: 10.1016/j.jconrel.2017.09.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/02/2023]
Abstract
The combination of pharmaceutical technologies can be a wise choice for developing innovative therapeutic strategies. The association of nanocarriers and gels provides new therapeutic possibilities due to the combined properties of the two technologies. Gels support the nanocarriers, localize their administration to the target tissue, and sustain their release. In addition to the properties afforded by the gel, nanocarriers can provide additional drug sustained release or different pharmacokinetic and biodistribution profiles than those from nanocarriers administered by the conventional route to improve the drug therapeutic index. This review focuses on recent (over the last ten years) in vivo data showing the advances and advantages of using nanocarrier-loaded gels. Liposomes, micelles, liquid and solid lipid nanocapsules, polymeric nanoparticles, dendrimers, and fullerenes are all nanotechnologies which have been recently assessed for medical applications, such as cancer therapy, the treatment of cutaneous and infectious diseases, anesthesia, the administration of antidepressants, and the treatment of unexpected diseases, such as alopecia.
Collapse
Affiliation(s)
- Marion Pitorre
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Henri Gondé
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Clotilde Haury
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Marwa Messous
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Jérémie Poilane
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - David Boudaud
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Erdem Kanber
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | | | - Jean-Pierre Benoit
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Guillaume Bastiat
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France.
| |
Collapse
|
24
|
Andrei M, Stǎnescu PO, Drǎghici C, Teodorescu M. Degradable thermosensitive injectable hydrogels with two-phase composite structure from aqueous solutions of poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)—poly(ethylene glycol) triblock copolymers and biopolymers. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4161-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Dual drug release from hydrogels covalently containing polymeric micelles that possess different drug release properties. Colloids Surf B Biointerfaces 2017; 153:19-26. [DOI: 10.1016/j.colsurfb.2017.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/23/2022]
|
26
|
Rad-Malekshahi M, Fransen MF, Krawczyk M, Mansourian M, Bourajjaj M, Chen J, Ossendorp F, Hennink WE, Mastrobattista E, Amidi M. Self-Assembling Peptide Epitopes as Novel Platform for Anticancer Vaccination. Mol Pharm 2017; 14:1482-1493. [PMID: 28088862 PMCID: PMC5415879 DOI: 10.1021/acs.molpharmaceut.6b01003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/29/2016] [Accepted: 01/14/2017] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to improve the immunogenicity of peptide epitope vaccines using novel nanocarriers based on self-assembling materials. Several studies demonstrated that peptide antigens in nanoparticulate form induce stronger immune responses than their soluble forms. However, several issues such as poor loading and risk of inducing T cell anergy due to premature release of antigenic epitopes have challenged the clinical success of such systems. In the present study, we developed two vaccine delivery systems by appending a self-assembling peptide (Ac-AAVVLLLW-COOH) or a thermosensitive polymer poly(N-isopropylacrylamide (pNIPAm) to the N-terminus of different peptide antigens (OVA250-264, HPV-E743-57) to generate self-assembling peptide epitopes (SAPEs). The obtained results showed that the SAPEs were able to form nanostructures with a diameter from 20 to 200 nm. The SAPEs adjuvanted with CpG induced and expanded antigen-specific CD8+ T cells in mice. Furthermore, tumor-bearing mice vaccinated with SAPEs harboring the HPV E743-57 peptide showed a delayed tumor growth and an increased survival compared to sham-treated mice. In conclusion, self-assembling peptide based systems increase the immunogenicity of peptide epitope vaccines and therefore warrants further development toward clinical use.
Collapse
Affiliation(s)
- Mazda Rad-Malekshahi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department
of Pharmaceutical Biomaterials and Medical Biomaterials Research Center,
Faculty of Pharmacy, Tehran University of
Medical Sciences, Tehran, Iran
| | - Marieke F. Fransen
- Department
of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Małgorzata Krawczyk
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mercedeh Mansourian
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Meriem Bourajjaj
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jian Chen
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ferry Ossendorp
- Department
of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maryam Amidi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Sun W, Qian Z, Zhao M, Shen M, Duan Y, Liu W. A combined therapy of rtPA-loaded thermoresponsive gels and ultrasound on hematoma in a rat model of intracerebral hemorrhage. RSC Adv 2017. [DOI: 10.1039/c6ra23150k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To develop and validate an effective method for the removal of residual intracerebral hematoma, we prepared a recombinant tissue-type plasminogen activator (rtPA)-loaded Pluronic F127 (NP-rtPA) delivery system to evaluate the neurological response of the ICH rat model.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurosurgery
- Pu Nan Hospital
- Shanghai 200125
- China
| | - Zhongxin Qian
- Department of Neurosurgery
- Pu Nan Hospital
- Shanghai 200125
- China
| | - Mingzhu Zhao
- Department of Neurosurgery
- Pu Nan Hospital
- Shanghai 200125
- China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Weidong Liu
- Department of Neurosurgery
- Pu Nan Hospital
- Shanghai 200125
- China
| |
Collapse
|
28
|
Wang S, Yao C, Ni M, Xu Z, Cheng M, Hu XY, Shen YZ, Lin C, Wang L, Jia D. Thermo- and oxidation-responsive supramolecular vesicles constructed from self-assembled pillar[6]arene-ferrocene based amphiphilic supramolecular diblock copolymers. Polym Chem 2017. [DOI: 10.1039/c6py01961g] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thermo- and oxidation-responsive pillar[6]arene-ferrocene based supramolecular vesicles were constructed for controlled drug release.
Collapse
|
29
|
Lin Z, Xu S, Gao W, Hu H, Chen M, Wang Y, He B, Dai W, Zhang H, Wang X, Dong A, Yin Y, Zhang Q. A comparative investigation between paclitaxel nanoparticle- and nanocrystal-loaded thermosensitive PECT hydrogels for peri-tumoural administration. NANOSCALE 2016; 8:18782-18791. [PMID: 27801924 DOI: 10.1039/c6nr05498f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For in situ thermosensitive hydrogels, it is a big challenge to achieve high drug loading, long-term local retention, and effective drug release simultaneously. To address these issues, we combined the strategy of drug nanocrystals (NCs) and thermosensitive hydrogels with higher gel strength. In particular, we developed paclitaxel NC-based hydrogels using PECT, a thermosensitive polymer synthesized by us (PTX-NC-PECT), and a nanoparticle-based system was used as the control (PTX-NP-PECT). First, high levels of PTX could be loaded in both PECT hydrogels. Moreover, in vivo near infrared fluorescence (NIRF) imaging showed that both hydrogel systems were able to maintain the payloads of 1,1-dioctadecyltetramethyl indotricarbocyanine iodide (DiR) at a peri-tumoural site for at least 21 days, much longer than that achieved with the control hydrogel of Pluronic® F127. Furthermore, we observed that PTX-NCs released free PTX more effectively and homogeneously than PTX-NPs in vitro. It was further verified in vivo that the release of DiR from DiR-NC-PECT was more complete than that from DiR-NP-PECT. Finally, PTX-NC-PECT gel demonstrated the strongest anti-tumour efficacy on MCF-7 breast cancer. In conclusion, PTX-NC-PECT hydrogel might be a high-performance thermosensitive hydrogel for local cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China. and Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Shuxin Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wei Gao
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hongxiang Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Anjie Dong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
30
|
Huang P, Song H, Zhang Y, Liu J, Zhang J, Wang W, Liu J, Li C, Kong D. Bridging the Gap between Macroscale Drug Delivery Systems and Nanomedicines: A Nanoparticle-Assembled Thermosensitive Hydrogel for Peritumoral Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29323-29333. [PMID: 27731617 DOI: 10.1021/acsami.6b10416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The objective of this study was to investigate the spatiotemporal delivery of nanomedicines by an injectable, thermosensitive, and nanoparticle-self-aggregated hydrogel for peritumoral chemotherapy. Doxorubicin (Dox) was taken as the model medicine, which was encapsulated into poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) nanoparticles (PECT/Dox NPs). Macroscale hydrogel was formed by thermosensitive self-aggregation of PECT/Dox NPs in aqueous solution. Drug release from the hydrogel formulation was dominated by sustained shedding of PECT/Dox NPs and the following drug diffusion from these NPs. The hydrogel retention and release pattern of NPs in vivo was further confirmed by fluorescence resonance energy transfer (FRET) imaging. A single treatment with the hydrogel formulation possessed similar cytotoxicity against HepG2 cells compared to triple administrations of free Dox or PECT/Dox NPs in vitro due to enhanced uptake of PECT/Dox NPs and sustained intracellular drug release. Importantly, single peritumoral injection of drug-encapsulated hydrogel in vivo showed advantages over multiple intravenous administrations of PECT/Dox NPs and free Dox, including preferential and prolonged local drug accumulation and retention in tumors, resulting in superior cancer chemotherapy efficiency. Collectively, such a unique thermosensitive and nanoparticle-shedding hydrogel could effectively combine the advantages of nanomedicines and macroscale drug delivery systems, demonstrating great potential in the local nanodrugs' delivery. It will open a new promising path for cancer chemotherapy with enhanced treatment efficacy and minimized side effects.
Collapse
Affiliation(s)
- Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| |
Collapse
|
31
|
Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma. Pharm Res 2016; 33:2059-77. [DOI: 10.1007/s11095-016-1947-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
|
32
|
Ahmad Z, Lv S, Tang Z, Shah A, Chen X. Methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 27:40-54. [PMID: 26489768 DOI: 10.1080/09205063.2015.1107707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tumor microenvironment-responsive nano drug delivery vehicles are gaining mounting attention in the field of biomedical sciences. The hypoxic response of the tumorous cells due to very low partial pressure of oxygen (some time less than 2.5 mm of Hg) in the tumor tissues makes hypoxia-responsive drug delivery system as the more appealing in cancer chemotherapy. Based on these considerations, we synthesized hypoxia-responsive polymeric materials methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine (mPEG-b-PLG-g-NID) by conjugation of the hydrophobic nitro imidazole derivative (NID)[6-(2-nitroimidazole) hexyl amine] with the pendant carboxylic group of poly (ethylene glycol)-block-poly (L-glutamic acid)(mPEG-b-PLG). The structure and degree of substitution were confirmed by proton NMR, FTIR, and UV-Vis spectroscopy. The degree of substitution was found to enhance with the increase in NID to polymer ratio. The hypoxia response of the material was evaluated by UV-Vis spectroscopy and zeta potential measurements. Doxorubicin was hydrophobically encapsulated in the micellar core of the hypoxia-responsive nanoparticles. The drug-loaded micelles showed faster release in hypoxic condition as compared to normoxic conditions. Moreover, the developed polymeric system was found non-toxic to MCF-7 cell line, thus suggesting its biocompatibility and suitability as drug delivery device.
Collapse
Affiliation(s)
- Zaheer Ahmad
- a Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , P.R. China.,b Department of Chemistry , Quaid-I-Azam University , Islamabad , Pakistan
| | - Shixian Lv
- a Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , P.R. China
| | - Zhaohui Tang
- a Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , P.R. China
| | - Afzal Shah
- b Department of Chemistry , Quaid-I-Azam University , Islamabad , Pakistan
| | - Xuesi Chen
- a Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , P.R. China
| |
Collapse
|
33
|
Yang LL, Zhang JM, He JS, Zhang J, Gan ZH. Synthesis and characterization of temperature-sensitive cellulose-graft-poly(N-isopropylacrylamide) copolymers. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1703-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Bergsma J, Leermakers FAM, van der Gucht J. Interactions between nodes in a physical gel network of telechelic polymers; self-consistent field calculations beyond the cell model. Phys Chem Chem Phys 2015; 17:9001-14. [PMID: 25751455 DOI: 10.1039/c4cp03508a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triblock copolymers, with associative end-groups and a soluble middle block, form flower-like micelles in dilute solutions and a physical gel at higher concentrations. In a gel the middle blocks form bridges between domains/nodes that contain the ends. We combine the self-consistent field theory with a simple molecular model to evaluate the pair potential between the nodes. In this model the end-groups are forced to remain in nodes and the soluble middle blocks are in solution. When the distance between the centres of the nodes is approximately the corona diameter, loops can transform into bridges, and the pair potential is attractive. Due to steric hindrance, the interaction is repulsive at smaller distances. Till now a cell-model has been used wherein a central node interacts through reflecting boundary conditions with its images in a spherical geometry. This artificial approach to estimate pair potentials is here complemented by more realistic three-gradient SCF models. We consider the pair interactions for (i) two isolated nodes, (ii) nodes positioned on a line (iii) a central node surrounded by its neighbours in simple cubic ordering, and (iv) a central node in a face centred cubic configuration of its neighbours. Qualitatively, the cell model is in line with the more refined models, but quantitative differences are significant. We also notice qualitative differences for the pair potentials in the specified geometries, which we interpret as a breakdown of the pairwise additivity of the pair potential. This implies that for course grained Monte Carlo or molecular dynamics simulations the best choice for the pair potentials depends on the expected node density.
Collapse
Affiliation(s)
- J Bergsma
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB, Wageningen, The Netherlands.
| | | | | |
Collapse
|
35
|
Das D, Pal S. Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv 2015. [DOI: 10.1039/c4ra16103c] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review describes hydrogels and their classifications along with the synthesis and properties of biopolymer-dextrin based crosslinked hydrogels towards potential application in controlled drug delivery.
Collapse
Affiliation(s)
- Dipankar Das
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Sagar Pal
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| |
Collapse
|
36
|
Petit A, Sandker M, Müller B, Meyboom R, van Midwoud P, Bruin P, Redout EM, Versluijs-Helder M, van der Lest CH, Buwalda SJ, de Leede LG, Vermonden T, Kok RJ, Weinans H, Hennink WE. Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels. Biomaterials 2014; 35:7919-28. [DOI: 10.1016/j.biomaterials.2014.05.064] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 01/26/2023]
|
37
|
Ahmad Z, Tang Z, Shah A, Lv S, Zhang D, Zhang Y, Chen X. Cisplatin Loaded Methoxy Poly (ethylene glycol)-block
-Poly (L
-glutamic acid-co
-L
-Phenylalanine) Nanoparticles against Human Breast Cancer Cell. Macromol Biosci 2014; 14:1337-45. [DOI: 10.1002/mabi.201400109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/19/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Zaheer Ahmad
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- Department of Chemistry; Quaid-I-Azam University; Islamabad 45320 Pakistan
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Afzal Shah
- Department of Chemistry; Quaid-I-Azam University; Islamabad 45320 Pakistan
| | - Shixian Lv
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Ying Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
38
|
van Elk M, Deckers R, Oerlemans C, Shi Y, Storm G, Vermonden T, Hennink WE. Triggered Release of Doxorubicin from Temperature-Sensitive Poly(N-(2-hydroxypropyl)-methacrylamide mono/dilactate) Grafted Liposomes. Biomacromolecules 2014; 15:1002-9. [DOI: 10.1021/bm401904u] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Merel van Elk
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Roel Deckers
- Image
Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chris Oerlemans
- Image
Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yang Shi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Lin Z, Gao W, Hu H, Ma K, He B, Dai W, Wang X, Wang J, Zhang X, Zhang Q. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Control Release 2014; 174:161-70. [DOI: 10.1016/j.jconrel.2013.10.026] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/19/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
40
|
Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 2013; 9:9330-42. [PMID: 23958784 DOI: 10.1016/j.actbio.2013.08.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/25/2013] [Accepted: 08/09/2013] [Indexed: 12/15/2022]
Abstract
An amphiphilic anionic copolymer, methoxy poly(ethylene glycol)-b-poly(l-glutamic acid-co-l-phenylalanine) (mPEG-b-P(Glu-co-Phe)), with three functionalized domains, was synthesized and used as a nanovehicle for cationic anticancer drug doxorubicin hydrochloride (DOX·HCl) delivery via electrostatic interactions for cancer treatment. The three domains displayed distinct functions: PEG block chain for prolonged circulation; poly(phenylalanine) domain for stabilizing the nanoparticle construct through hydrophobic/aromatic interactions; and the poly(glutamic acid) domain for providing electrostatic interactions with the cationic drug to be loaded. The copolymer could self-assemble into micellar-type nanoparticles, and DOX was successfully loaded into the interior of nanoparticles by simple mixing of DOX·HCl and the copolymer in the aqueous phase. DOX-loaded mPEG-b-P(Glu-co-Phe) nanoparticles (DOX-NP) had a superior drug-loading content (DLC) (21.7%), a high loading efficiency (almost 98%) and a pH-triggered release of DOX. The size of DOX-NP was ∼140 nm, as determined by dynamic light scattering measurements and transmission electron microscopy. In vitro assays showed that DOX-NP exhibited higher cell proliferation inhibition and higher cell uptake in A549 cell lines compared with free DOX·HCl. Maximum tolerated dose (MTD) studies showed that DOX-NP demonstrated an excellent safety profile with a significantly higher MTD (15 mg DOX kg(-1)) than that of free DOX·HCl (5 mg DOX kg(-1)). The in vivo studies on the subcutaneous non-small cell lung cancer (A549) xenograft nude mice model confirmed that DOX-NP showed significant antitumor activity and reduced side effects, and then enhanced tumor accumulation as a result of the prolonged circulation in blood and the enhanced permeation and retention effect, compared with free DOX, indicating its great potential for cancer therapy.
Collapse
|
41
|
Biodegradable in situ gel-forming controlled vancomycin delivery system based on a thermosensitive mPEG-PLCPPA hydrogel. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2013.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|