1
|
Valatabar N, Oroojalian F, Kazemzadeh M, Mokhtarzadeh AA, Safaralizadeh R, Sahebkar A. Recent advances in gene delivery nanoplatforms based on spherical nucleic acids. J Nanobiotechnology 2024; 22:386. [PMID: 38951806 PMCID: PMC11218236 DOI: 10.1186/s12951-024-02648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Gene therapy is a therapeutic option for mitigating diseases that do not respond well to pharmacological therapy. This type of therapy allows for correcting altered and defective genes by transferring nucleic acids to target cells. Notably, achieving a desirable outcome is possible by successfully delivering genetic materials into the cell. In-vivo gene transfer strategies use two major classes of vectors, namely viral and nonviral. Both of these systems have distinct pros and cons, and the choice of a delivery system depends on therapeutic objectives and other considerations. Safe and efficient gene transfer is the main feature of any delivery system. Spherical nucleic acids (SNAs) are nanotechnology-based gene delivery systems (i.e., non-viral vectors). They are three-dimensional structures consisting of a hollow or solid spherical core nanoparticle that is functionalized with a dense and highly organized layer of oligonucleotides. The unique structural features of SNAs confer them a high potency in internalization into various types of tissue and cells, a high stability against nucleases, and efficay in penetrating through various biological barriers (such as the skin, blood-brain barrier, and blood-tumor barrier). SNAs also show negligible toxicity and trigger minimal immune response reactions. During the last two decades, all these favorable physicochemical and biological attributes have made them attractive vehicles for drug and nucleic acid delivery. This article discusses the unique structural properties, types of SNAs, and also optimization mechanisms of SNAs. We also focus on recent advances in the synthesis of gene delivery nanoplatforms based on the SNAs.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mina Kazemzadeh
- Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Kosara S, Singh R, Bhatia D. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. NANOSCALE ADVANCES 2024; 6:386-401. [PMID: 38235105 PMCID: PMC10790967 DOI: 10.1039/d3na00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
DNA nanotechnology has significantly progressed in the last four decades, creating nucleic acid structures widely used in various biological applications. The structural flexibility, programmability, and multiform customization of DNA-based nanostructures make them ideal for creating structures of all sizes and shapes and multivalent drug delivery systems. Since then, DNA nanotechnology has advanced significantly, and numerous DNA nanostructures have been used in biology and other scientific disciplines. Despite the progress made in DNA nanotechnology, challenges still need to be addressed before DNA nanostructures can be widely used in biological interfaces. We can open the door for upcoming uses of DNA nanoparticles by tackling these issues and looking into new avenues. The historical development of various DNA nanomaterials has been thoroughly examined in this review, along with the underlying theoretical underpinnings, a summary of their applications in various fields, and an examination of the current roadblocks and potential future directions.
Collapse
Affiliation(s)
- Sanjay Kosara
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Ramesh Singh
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
3
|
Ito K, Maeda K, Kariya M, Yasui K, Araki A, Takahashi Y, Takakura Y. Formation of DNA nanotubes increases uptake into fibroblasts via enhanced affinity for collagen. Int J Pharm 2023; 644:123297. [PMID: 37574114 DOI: 10.1016/j.ijpharm.2023.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
DNA nanostructures are promising delivery carriers because of their flexible structural design and high biocompatibility. Selectivity in cellular uptake is an important factor in the development of DNA-nanostructure-based delivery carriers. In this study, DNA nanotubes were selected as the DNA structures, and their selectivity for cellular uptake and the mechanisms involved were investigated. Unlike DNA nanostructures such as polypod-like nanostructured DNA or DNA tetrahedrons, which are easily taken up by macrophages, the formation of DNA nanotubes increases uptake by fibroblasts and fibroblast-like cells. We focused on the collagen expressed in cells as a factor in this process, and found DNA nanotube formation increased the affinity for type I collagen compared with that of single-stranded DNA. Collagenase treatment removes collagen from fibroblasts and reduces the uptake of DNA nanotubes by fibroblasts. We directly observed DNA nanotube uptake by fibroblasts using transmission electron microscopy, whereby the nanotubes were distributed on the cell surface, folded, fragmented, and taken up by phagocytosis. In conclusion, we demonstrated a novel finding that DNA nanotubes are readily taken up by fibroblasts and myoblasts.
Collapse
Affiliation(s)
- Koichi Ito
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koki Maeda
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mutsumi Kariya
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kento Yasui
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayana Araki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Li C, Wang Y, Li PF, Fu Q. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Acta Biomater 2023; 160:1-13. [PMID: 36764595 DOI: 10.1016/j.actbio.2023.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Nucleic acid nanomaterials with good biocompatibility, biodegradability, and programmability have important applications in biomedical field. Nucleic acid nanomaterials are usually combined with some inorganic nanomaterials to improve their biological stability. However, undefined toxic side effects of composite nanocarriers hamper their application in vivo. As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. RCA products with different functional parts can be customized by changing the sequence of the circular template, thereby generating complex multifunctional DNA nanostructures, such as DNA nanowire, nanoflower, origami, nanotube, nanoribbon, etc. More importantly, RCA products as nonnicked building blocks can enhance the biostability of DNA nanostructures, especially in vivo. These RCA products-based nucleic acid nanostructures can be used as scaffolds or nanocarriers to interact or load with metal nanoparticles, proteins, lipids, cationic polymers, therapeutic nucleic acids or drugs, etc. This paper reviews the assembly strategies of RCA based DNA nanostructures with different shape and their applications in biosensing, bioimaging and biomedicine. Finally, the development prospects of the nucleic acid nanomaterials in clinical diagnosis and treatment of diseases are described. STATEMENT OF SIGNIFICANCE: As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. This paper reviews the construction of various shapes of pure nucleic acid nanomaterials based on RCA products and their applications in biosensing, bioimaging and biomedicine. This will promote the development of biocompatible DNA nanovehicles and their further application in living systems, including bioimaging, molecular detection, disease diagnosis and drug delivery, finally producing a significant impact in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
5
|
Liu Y, Wang J, Sun L, Wang B, Zhang Q, Zhang X, Cao B. Active Self-Assembly of Ladder-Shaped DNA Carrier for Drug Delivery. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020797. [PMID: 36677855 PMCID: PMC9862081 DOI: 10.3390/molecules28020797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
With the advent of nanotechnology, DNA molecules have been transformed from solely genetic information carriers to multifunctional materials, showing a tremendous potential for drug delivery and disease diagnosis. In drug delivery systems, DNA is used as a building material to construct drug carriers through a variety of DNA self-assembly methods, which can integrate multiple functions to complete in vivo and in situ tasks. In this study, ladder-shaped drug carriers are developed for drug delivery on the basis of a DNA nanoladder. We first demonstrate the overall structure of the nanoladder, in which a nick is added into each rung of the nanoladder to endow the nanoladder with the ability to incorporate a drug loading site. The structure is designed to counteract the decrement of stability caused by the nick and investigated in different conditions to gain insight into the properties of the nicked DNA nanoladders. As a proof of concept, we fix the biotin in every other nick as a loading site and assemble the protein (streptavidin) on the loading site to demonstrate the feasibility of the drug-carrying function. The protein can be fixed stably and can be extended to different biological and chemical drugs by altering the drug loading site. We believe this design approach will be a novel addition to the toolbox of DNA nanotechnology, and it will be useful for versatile applications such as in bioimaging, biosensing, and targeted therapy.
Collapse
Affiliation(s)
- Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiaxin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Lijun Sun
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
- Correspondence:
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45079-45095. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, nanoscale or microscale functional materials derived from DNA have shown great potential for immunotherapy as superior delivery carriers. DNA nanostructures with excellent programmability and addressability enable the precise assembly of molecules or nanoparticles. DNA hydrogels have predictable structures and adjustable mechanical strength, thus being advantageous in controllable release of cargos. In addition, utilizing systematic evolution of ligands by exponential enrichment technology, a variety of DNA aptamers have been screened for specific recognition of ions, molecules, and even cells. Moreover, a wide variety of chemical modifications can further enrich the function of DNA. The unique advantages of functional DNA materials make them extremely attractive in immunomodulation. Recently, functional DNA materials-based immunotherapy has shown great potential in fighting against many diseases like cancer, viral infection, and inflammation. Therefore, in this review, we focus on discussing the progress of the applications of functional DNA materials in immunotherapy; before that, we also summarize the characteristics of the functional DNA materials descried above. Finally, we discuss the challenges and future opportunities of functional DNA materials in immunomodulatory therapy.
Collapse
Affiliation(s)
- Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Yuan Y, Xu W, Ma M, Zhang S, Wang D, Xu Y. Effect of fish sperm deoxyribonucleic acid encapsulation on stability, bioaccessibility, redispersibility, and solubilization of curcumin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Ishaqat A, Herrmann A. Polymers Strive for Accuracy: From Sequence-Defined Polymers to mRNA Vaccines against COVID-19 and Polymers in Nucleic Acid Therapeutics. J Am Chem Soc 2021; 143:20529-20545. [PMID: 34841867 DOI: 10.1021/jacs.1c08484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Unquestionably, polymers have influenced the world over the past 100 years. They are now more crucial than ever since the COVID-19 pandemic outbreak. The pandemic paved the way for certain polymers to be in the spotlight, namely sequence-defined polymers such as messenger ribonucleic acid (mRNA), which was the first type of vaccine to be authorized in the U.S. and Europe to protect against the SARS-CoV-2 virus. This rise of mRNA will probably influence scientific research concerning nucleic acids in general and RNA therapeutics in specific. In this Perspective, we highlight the recent trends in sequence-controlled and sequence-defined polymers. Then we discuss mRNA vaccines as an example to illustrate the need of ultimate sequence control to achieve complex functions such as specific activation of the immune system. We briefly present how mRNA vaccines are produced, the importance of modified nucleotides, the characteristic features, and the advantages and challenges associated with this class of vaccines. Finally, we discuss the chances and opportunities for polymer chemistry to provide solutions and contribute to the future progress of RNA-based therapeutics. We highlight two particular roles of polymers in this context. One represents conjugation of polymers to nucleic acids to form biohybrids. The other is concerned with advanced polymer-based carrier systems for nucleic acids. We believe that polymers can help to address present problems of RNA-based therapeutic technologies and impact the field beyond the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aman Ishaqat
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
9
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
10
|
Abstract
The preparation and applications of DNA containing polymers are comprehensively reviewed, and they are in the form of DNA−polymer covalent conjugators, supramolecular assemblies and hydrogels for advanced materials with promising features.
Collapse
Affiliation(s)
- Zeqi Min
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Biyi Xu
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Wen Li
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Afang Zhang
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
11
|
Zeng Y, Nixon RL, Liu W, Wang R. The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. Biomaterials 2020; 268:120560. [PMID: 33285441 DOI: 10.1016/j.biomaterials.2020.120560] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Deoxyribonucleic acid (DNA) is a molecular carrier of genetic information that can be fabricated into functional nanomaterials in biochemistry and engineering fields. Those DNA nanostructures, synthesized via Watson-Crick base pairing, show a wide range of attributes along with excellent applicability, precise programmability, and extremely low cytotoxicity in vitro and in vivo. In this review, the applications of functionalized DNA nanostructures in bioimaging and tumor therapy are summarized. We focused on approaches involving DNA origami nanostructures due to their widespread use in previous and current reports. Non-DNA origami nanostructures such as DNA tetrahedrons are also covered. Finally, the remaining challenges and perspectives regarding DNA nanostructures in the biomedical arena are discussed.
Collapse
Affiliation(s)
- Yun Zeng
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
| | - Rachel L Nixon
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
| |
Collapse
|
12
|
Gamble Jarvi A, Sargun A, Bogetti X, Wang J, Achim C, Saxena S. Development of Cu 2+-Based Distance Methods and Force Field Parameters for the Determination of PNA Conformations and Dynamics by EPR and MD Simulations. J Phys Chem B 2020; 124:7544-7556. [PMID: 32790374 DOI: 10.1021/acs.jpcb.0c05509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peptide nucleic acids (PNAs) are a promising group of synthetic analogues of DNA and RNA that offer several distinct advantages over the naturally occurring nucleic acids for applications in biosensing, drug delivery, and nanoelectronics. Because of its structural differences from DNA/RNA, methods to analyze and assess the structure, conformations, and dynamics are needed. In this work, we develop synergistic techniques for the study of the PNA conformation. We use CuQ2, a Cu2+ complex with 8-hydroxyquinoline (HQ), as an alternative base pair and as a spin label in electron paramagnetic resonance (EPR) distance methods. We use molecular dynamics (MD) simulations with newly developed force field parameters for the spin labels to interpret the distance constraints determined by EPR. We complement these methods by UV-vis and circular dichroism measurements and assess the efficacy of the Cu2+ label on a PNA duplex whose backbone is based on aminoethylglycine and a duplex with a hydroxymethyl backbone modification. We show that the Cu2+ label functions efficiently within the standard PNA and the hydroxymethyl-modified PNA and that the MD parameters may be used to accurately reproduce our EPR findings. Through the combination of EPR and MD, we gain new insights into the PNA structure and conformations as well as into the mechanism of orientational selectivity in Cu2+ EPR at X-band. These results present for the first time a rigid Cu2+ spin label used for EPR distance measurements in PNA and the accompanying MD force fields for the spin label. Our studies also reveal that the spin labels have a low impact on the structure of the PNA duplexes. The combined MD and EPR approach represents an important new tool for the characterization of the PNA duplex structure and provides valuable information to aid in the rational application of PNA at large.
Collapse
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Artur Sargun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| | - Catalina Achim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
13
|
Tan X, Jia F, Wang P, Zhang K. Nucleic acid-based drug delivery strategies. J Control Release 2020; 323:240-252. [PMID: 32272123 PMCID: PMC8079167 DOI: 10.1016/j.jconrel.2020.03.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Nucleic acids have not been widely considered as an optimal material for drug delivery. Indeed, unmodified nucleic acids are enzymatically unstable, too hydrophilic for cell uptake and payload encapsulation, and may cause unintended biological responses such as immune system activation and prolongation of the blood coagulation pathway. Recently, however, three major areas of development surrounding nucleic acids have made it worthwhile to reconsider their role for drug delivery. These areas include DNA/RNA nanotechnology, multivalent nucleic acid nanostructures, and nucleic acid aptamers, which, respectively, provide the ability to engineer nanostructures with unparalleled levels of structural control, completely reverse certain biological properties of linear/cyclic nucleic acids, and enable antibody-level targeting using an all-nucleic acid construct. These advances, together with nucleic acids' ability to respond to various stimuli (engineered or natural), have led to a rapidly increasing number of drug delivery systems with potential for spatiotemporally controlled drug release. In this review, we discuss recent progress in nucleic acid-based drug delivery strategies, their potential, unique use cases, and risks that must be overcome or avoided.
Collapse
Affiliation(s)
- Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ke Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Ferrara V, Zito G, Arrabito G, Cataldo S, Scopelliti M, Giordano C, Vetri V, Pignataro B. Aqueous Processed Biopolymer Interfaces for Single-Cell Microarrays. ACS Biomater Sci Eng 2020; 6:3174-3186. [PMID: 33463257 PMCID: PMC7997111 DOI: 10.1021/acsbiomaterials.9b01871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-cell microarrays are emerging tools to unravel intrinsic diversity within complex cell populations, opening up new approaches for the in-depth understanding of highly relevant diseases. However, most of the current methods for their fabrication are based on cumbersome patterning approaches, employing organic solvents and/or expensive materials. Here, we demonstrate an unprecedented green-chemistry strategy to produce single-cell capture biochips onto glass surfaces by all-aqueous inkjet printing. At first, a chitosan film is easily inkjet printed and immobilized onto hydroxyl-rich glass surfaces by electrostatic immobilization. In turn, poly(ethylene glycol) diglycidyl ether is grafted on the chitosan film to expose reactive epoxy groups and induce antifouling properties. Subsequently, microscale collagen spots are printed onto the above surface to define the attachment area for single adherent human cancer cells harvesting with high yield. The reported inkjet printing approach enables one to modulate the collagen area available for cell attachment in order to control the number of captured cells per spot, from single-cells up to double- and multiple-cell arrays. Proof-of-principle of the approach includes pharmacological treatment of single-cells by the model drug doxorubicin. The herein presented strategy for single-cell array fabrication can constitute a first step toward an innovative and environmentally friendly generation of aqueous-based inkjet-printed cellular devices.
Collapse
Affiliation(s)
- Vittorio Ferrara
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Zito
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Sicilia, Italy
| | - Giuseppe Arrabito
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Sebastiano Cataldo
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Michelangelo Scopelliti
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Carla Giordano
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Sicilia, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
15
|
Kim F, Chen T, Burgess T, Rasie P, Selinger TL, Greschner A, Rizis G, Carneiro K. Functionalized DNA nanostructures as scaffolds for guided mineralization. Chem Sci 2019; 10:10537-10542. [PMID: 32055376 PMCID: PMC6988742 DOI: 10.1039/c9sc02811k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/26/2019] [Indexed: 11/21/2022] Open
Abstract
The field of DNA nanotechnology uses synthetic DNA strands as building blocks for designing complex shapes in one-, two- and three-dimensions. Here, we investigate whether DNA nanostructures are feasible platforms for the precise organization of polyaspartic acid (pAsp), a known mineral carrier, with a goal towards biomimetic mineralization for enamel regeneration. We describe the preparation of DNA-pAsp conjugates and their subsequent assembly into ordered nanostructures. Covalent attachment of pAsp to DNA was noted to hinder DNA nanostructure formation past a certain threshold (50% pAsp) when tested on a previously published DNA system. However, a simplified double stranded DNA system (3sDH system) was more robust and efficient in its pAsp incorporation. In addition, the 3sDH system was successful in organizing mineral inducing groups in one dimension at repeating intervals of 28.7 ± 4.0 nm, as determined by atomic force microscopy. Our results demonstrate that DNA nanostructures can be functionalized with pAsp and act as a platform to investigate guided mineralization.
Collapse
Affiliation(s)
- Francesca Kim
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Tong Chen
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Trevor Burgess
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Prakash Rasie
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Tim Luca Selinger
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Andrea Greschner
- Institut National de la Recherche Scientifique (INRS) , EMT Research Center , Varennes , QC J3X 1S2 , Canada
| | - Georgios Rizis
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Karina Carneiro
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| |
Collapse
|
16
|
Jin JO, Kim H, Huh YH, Herrmann A, Kwak M. Soft matter DNA nanoparticles hybridized with CpG motifs and peptide nucleic acids enable immunological treatment of cancer. J Control Release 2019; 315:76-84. [PMID: 31639342 DOI: 10.1016/j.jconrel.2019.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022]
Abstract
Nucleic acids have been used as building blocks to assemble nanostructures by their sequence specific self-recognition properties, and resulting DNA architectures were applied as potential multifunctional drug carriers. Here, we report an amphiphilic lipid-DNA aggregate hybridized with pharmaceutically active DNA and peptide segments for cancer immunotherapy. The facile formulation of the CpG sequence and antigen peptide-bearing peptide nucleic acid representing immune-adjuvant and antigen, respectively, enabled the highly efficacious induction of antigen-specific immune activation. This immunotherapeutic formulation was evaluated in terms of multiple types of tumor growth and metastasis in vivo.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, 2901 Caolang Road, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Haejoo Kim
- Department of Chemistry and MADEC-BK21plus, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do 28119, Republic of Korea
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Minseok Kwak
- Department of Chemistry and MADEC-BK21plus, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
17
|
Abstract
Delivery of the drug to a desired point of body and controlled release of the therapeutic agent are important features, provided by drug delivery systems (DDSs), for development of today's effective medicines. A variety of nanomaterials or nanomolecules such as lipids/liposomes, nucleic acids, peptides/proteins, composites, polymers, or carbon nanotubes can be used as DDSs. Single-molecule characterization of these small materials in terms of their size, shape, surface, encapsulation efficiency, as well as interaction with the drug-receiving cell has importance for their efficiency. The loading, distribution, or leakage of the drug as well as its interaction with DDS should also be characterized. Although diverse techniques are present for characterization of specific DDS material, methods such as electron microscopy and fluorescence microscopy are widely used. In this review, the current methodologies utilized for the single-molecule characterization of mostly preferred DDS materials were presented.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey.,Department of Biology, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
18
|
Li J, Lin L, Yu J, Zhai S, Liu G, Tian L. Fabrication and Biomedical Applications of “Polymer-Like” Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. ACS APPLIED BIO MATERIALS 2019; 2:4106-4120. [DOI: 10.1021/acsabm.9b00622] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shiyao Zhai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Guoyuan Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
19
|
Seth PP, Tanowitz M, Bennett CF. Selective tissue targeting of synthetic nucleic acid drugs. J Clin Invest 2019; 129:915-925. [PMID: 30688661 DOI: 10.1172/jci125228] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are chemically synthesized nucleic acid analogs designed to bind to RNA by Watson-Crick base pairing. Following binding to the targeted RNA, the ASO perturbs RNA function by promoting selective degradation of the targeted RNA, altering RNA intermediary metabolism, or disrupting function of the RNA. Most antisense drugs are chemically modified to enhance their pharmacological properties and for passive targeting of the tissues of therapeutic interest. Recent advances in selective tissue targeting have resulted in a newer generation of ASO drugs that are more potent and better tolerated than previous generations, spawning renewed interest in identifying selective ligands that enhance targeted delivery of ASOs to tissues.
Collapse
|
20
|
Hu X, Kim CJ, Albert SK, Park SJ. DNA-Grafted Poly(acrylic acid) for One-Step DNA Functionalization of Iron Oxide Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14342-14346. [PMID: 30392363 DOI: 10.1021/acs.langmuir.8b03119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we report one-step DNA functionalization of hydrophobic iron oxide nanoparticles (IONPs) using DNA-grafted poly(acrylic acid) (PAA- g-DNA). PAA- g-DNA was synthesized by coupling PAA to amine-modified oligonucleotides via solid-phase amide chemistry, which yielded PAA grafted with multiple DNA strands with high graft efficiencies. Synthesized PAA- g-DNA was utilized as a phase-transfer and DNA functionalization agent for hydrophobic IONPs, taking advantage of unreacted carboxylic acid groups. The resulting DNA-modified IONPs were well dispersed in aqueous solutions and possessed DNA binding properties characteristic of polyvalent DNA nanostructures, showing that this approach provides a simple one-step method for DNA functionalization of hydrophobic IONPs.
Collapse
Affiliation(s)
- Xiaole Hu
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul 03760 , Korea
| | - Chan-Jin Kim
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul 03760 , Korea
| | - Shine K Albert
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul 03760 , Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul 03760 , Korea
| |
Collapse
|
21
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
22
|
Zhao Y, Liu J, Guan L, Zhang Y, Dong P, Li J, Liang X, Komiyama M. Fabrication of aqueous nanodispersion from natural DNA and chitosan as eminent carriers for water-insoluble bioactives. Int J Biol Macromol 2018; 118:263-270. [PMID: 29803748 DOI: 10.1016/j.ijbiomac.2018.05.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
For high-valued application of natural DNA as raw materials, we prepared nanocarriers by using salmon sperm DNA and chitosan to encapsulate water-insoluble bioactives. Here, water dispersible astaxanthin/DNA/chitosan nano-aggregates (ADC-NAs) were prepared by co-assemble evaporation method. The key point for preparing well formed ADC-NAs was specifically discussed. The resultant ADC-NAs were spherical with 100-300 nm diameter measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and their homogeneous dispersions were sufficiently stable at room temperature. One important feature of these nanocarriers is enormously high loading amount of cargo (about 40 wt%). According to the UV-Vis spectra of the nanosuspension, we deduced that astaxanthin was encapsulated as uniquely structured J-aggregates. Fourier transform infra-red (FTIR) spectroscopy proved fabrication was successfully and astaxanthin was embedding in DNA/chitosan nanocarriers. Cytotoxicity was examined in vitro using cell culture in L929 cell lines. When necessary, these nano-aggregates can be degraded by DNase I. Homogeneous dispersions of other non-charged guest molecules are also prepared by using DNA/chitosan nanocarriers. These dispersions are cheaply and easily obtainable from naturally occurring DNA and chitosan, and should be useful for versatile applications.
Collapse
Affiliation(s)
- Yingyuan Zhao
- College of food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Junli Liu
- College of food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Lei Guan
- College of food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Yaping Zhang
- College of food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Ping Dong
- College of food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Jing Li
- College of food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Xingguo Liang
- College of food Science and Engineering, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| | - Makoto Komiyama
- College of food Science and Engineering, Ocean University of China, Qingdao 266003, PR China; World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
23
|
Chen W, Zhou S, Ge L, Wu W, Jiang X. Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules 2018; 19:1732-1745. [PMID: 29690764 DOI: 10.1021/acs.biomac.8b00218] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most nanocarriers possess low drug loading, resulting in frequently repeated administration and thereby high cost and increased side effects. Furthermore, the characteristics of nanocarrier materials, especially the drug loading capacity, plays a vital role in the drug delivery efficacy. In this review, we focus on the readily translatable polymeric drug delivery systems with high drug loading, which are comprised of biocompatible polymers such as poly(ethylene glycol), poly( N-vinylpyrrolidone), polyoxazoline, natural proteins like albumin and casein, non-natural proteins such as recombinant elastin-like polypeptides, as well as nucleic acids. At the end of this review, applications of these polymeric nanocarriers on the delivery of proteins and gene drugs are also briefly discussed.
Collapse
Affiliation(s)
- Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| | - Sensen Zhou
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| | - Lei Ge
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
24
|
Liu K, Zheng L, Ma C, Göstl R, Herrmann A. DNA-surfactant complexes: self-assembly properties and applications. Chem Soc Rev 2018; 46:5147-5172. [PMID: 28686247 DOI: 10.1039/c7cs00165g] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the last few years, DNA-surfactant complexes have gained traction as unique and powerful materials for potential applications ranging from optoelectronics to biomedicine because they self-assemble with outstanding flexibility spanning packing modes from ordered lamellar, hexagonal and cubic structures to disordered isotropic phases. These materials consist of a DNA backbone from which the surfactants protrude as non-covalently bound side chains. Their formation is electrostatically driven and they form bulk films, lyotropic as well as thermotropic liquid crystals and hydrogels. This structural versatility and their easy-to-tune properties render them ideal candidates for assembly in bulk films, for example granting directional conductivity along the DNA backbone, for dye dispersion minimizing fluorescence quenching allowing applications in lasing and nonlinear optics or as electron blocking and hole transporting layers, such as in LEDs or photovoltaic cells, owing to their extraordinary dielectric properties. However, they do not only act as host materials but also function as a chromophore itself. They can be employed within electrochromic DNA-surfactant liquid crystal displays exhibiting remarkable absorptivity in the visible range whose volatility can be controlled by the external temperature. Concomitantly, applications in the biological field based on DNA-surfactant bulk films, liquid crystals and hydrogels are rendered possible by their excellent gene and drug delivery capabilities. Beyond the mere exploitation of their material properties, DNA-surfactant complexes proved outstandingly useful for synthetic chemistry purposes when employed as scaffolds for DNA-templated reactions, nucleic acid modifications or polymerizations. These promising examples are by far not exhaustive but foreshadow their potential applications in yet unexplored fields. Here, we will give an insight into the peculiarities and perspectives of each material and are confident to inspire future developments and applications employing this emerging substance class.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry of Chinese Academy of Sciences, 130022, Changchun, China
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Griesser H, Schwenger A, Richert C. Encapsulating Active Pharmaceutical Ingredients in Self-Assembling Adamantanes with Short DNA Zippers. ChemMedChem 2017; 12:1759-1767. [PMID: 28914989 PMCID: PMC5698727 DOI: 10.1002/cmdc.201700466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Indexed: 11/23/2022]
Abstract
Formulating pharmaceutically active ingredients for drug delivery is a challenge. There is a need for new drug delivery systems that take up therapeutic molecules and release them into biological systems. We propose a novel mode of encapsulation that involves matrices formed through co-assembly of drugs with adamantane hybrids that feature four CG dimers as sticky ends. Such adamantanes are accessible via inexpensive solution-phase syntheses, and the resulting materials show attractive properties for controlled release. This is demonstrated for two different hybrids and a series of drugs, including anticancer drugs, antibiotics, and cyclosporin. Up to 20 molar equivalents of active pharmaceutical ingredients (APIs) are encapsulated in hybrid materials. Encapsulation is demonstrated for DNA-binding and several non-DNA binding compounds. Nanoparticles were detected that range in size from 114-835 nm average diameter, and ζ potentials were found to be between -29 and +28 mV. Release of doxorubicin into serum at near-constant rates for 10 days was shown, demonstrating the potential for slow release. The encapsulation and release in self-assembling matrices of dinucleotide-bearing adamantanes appears to be broadly applicable and may thus lead to new drug delivery systems for APIs.
Collapse
Affiliation(s)
- Helmut Griesser
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Alexander Schwenger
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Clemens Richert
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
27
|
Wu D, Wang L, Li W, Xu X, Jiang W. DNA nanostructure-based drug delivery nanosystems in cancer therapy. Int J Pharm 2017; 533:169-178. [PMID: 28923770 DOI: 10.1016/j.ijpharm.2017.09.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023]
Abstract
DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems.
Collapse
Affiliation(s)
- Dandan Wu
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Lei Wang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Wei Li
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Wei Jiang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
28
|
Agarwal NP, Matthies M, Gür FN, Osada K, Schmidt TL. Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angew Chem Int Ed Engl 2017; 56:5460-5464. [DOI: 10.1002/anie.201608873] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Nayan P. Agarwal
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Michael Matthies
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Fatih N. Gür
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Kensuke Osada
- Department of Bioengineering; University of Tokyo; Japan
| | - Thorsten L. Schmidt
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
29
|
Agarwal NP, Matthies M, Gür FN, Osada K, Schmidt TL. Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608873] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nayan P. Agarwal
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Michael Matthies
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Fatih N. Gür
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Kensuke Osada
- Department of Bioengineering; University of Tokyo; Japan
| | - Thorsten L. Schmidt
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
30
|
Pan X, Lathwal S, Mack S, Yan J, Das SR, Matyjaszewski K. Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. Angew Chem Int Ed Engl 2017; 56:2740-2743. [PMID: 28164438 PMCID: PMC5341381 DOI: 10.1002/anie.201611567] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/30/2016] [Indexed: 11/07/2022]
Abstract
A DNA synthesizer was successfully employed for preparation of well-defined polymers by atom transfer radical polymerization (ATRP), in a technique termed AutoATRP. This method provides well-defined homopolymers, diblock copolymers, and biohybrids under automated photomediated ATRP conditions. PhotoATRP was selected over other ATRP methods because of mild reaction conditions, ambient temperature, tolerance to oxygen, and no need to introduce reducing agents or radical initiators. Both acrylate and methacrylate monomers were successfully polymerized with excellent control in the DNA synthesizer. Diblock copolymers were synthesized with different targeted degrees of polymerization and with high retention of chain-end functionality. Both hydrophobic and hydrophilic monomers were grafted from DNA. The DNA-polymer hybrids were characterized by SEC and DLS. The AutoATRP method provides an efficient route to prepare a range of different polymeric materials, especially polymer-biohybrids.
Collapse
Affiliation(s)
- Xiangcheng Pan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Sushil Lathwal
- Department of Chemistry and Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Stephanie Mack
- Department of Chemistry and Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Subha R Das
- Department of Chemistry and Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
31
|
Pan X, Lathwal S, Mack S, Yan J, Das SR, Matyjaszewski K. Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiangcheng Pan
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Sushil Lathwal
- Department of Chemistry and Center for Nucleic Acids Science & Technology; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Stephanie Mack
- Department of Chemistry and Center for Nucleic Acids Science & Technology; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Jiajun Yan
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Subha R. Das
- Department of Chemistry and Center for Nucleic Acids Science & Technology; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
32
|
Cox AJ, Bengtson HN, Rohde KH, Kolpashchikov DM. DNA nanotechnology for nucleic acid analysis: multifunctional molecular DNA machine for RNA detection. Chem Commun (Camb) 2016; 52:14318-14321. [PMID: 27886299 PMCID: PMC5645153 DOI: 10.1039/c6cc06889h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Nobel prize in chemistry in 2016 was awarded for 'the design and synthesis of molecular machines'. Here we designed and assembled a molecular machine for the detection of specific RNA molecules. An association of several DNA strands, named multifunctional DNA machine for RNA analysis (MDMR1), was designed to (i) unwind RNA with the help of RNA-binding arms, (ii) selectively recognize a targeted RNA fragment, (iii) attract a signal-producing substrate and (iv) amplify the fluorescent signal by catalysis. MDMR1 enabled detection of 16S rRNA at concentrations ∼24 times lower than that by a traditional deoxyribozyme probe.
Collapse
Affiliation(s)
- A J Cox
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - H N Bengtson
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - K H Rohde
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - D M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| |
Collapse
|
33
|
Kim KR, Kim HY, Lee YD, Ha JS, Kang JH, Jeong H, Bang D, Ko YT, Kim S, Lee H, Ahn DR. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J Control Release 2016; 243:121-131. [DOI: 10.1016/j.jconrel.2016.10.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
|
34
|
Luo Q, Shi Z, Zhang Y, Chen XJ, Han SY, Baumgart T, Chenoweth DM, Park SJ. DNA Island Formation on Binary Block Copolymer Vesicles. J Am Chem Soc 2016; 138:10157-62. [DOI: 10.1021/jacs.6b04076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qingjie Luo
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Zheng Shi
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yitao Zhang
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Xi-Jun Chen
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Seo-Yeon Han
- Department
of Chemistry and Nano Science, Ewha Womans University, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Tobias Baumgart
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - David M. Chenoweth
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - So-Jung Park
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry and Nano Science, Ewha Womans University, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
35
|
Vindigni G, Raniolo S, Ottaviani A, Falconi M, Franch O, Knudsen BR, Desideri A, Biocca S. Receptor-Mediated Entry of Pristine Octahedral DNA Nanocages in Mammalian Cells. ACS NANO 2016; 10:5971-9. [PMID: 27214742 DOI: 10.1021/acsnano.6b01402] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
DNA offers excellent programming properties for the generation of nanometer-scaled polyhedral structures with a broad variety of potential applications. Translation to biomedical applications requires improving stability in biological fluids, efficient and selective cell binding, and/or internalization of the assembled DNA nanostructures. Here, we report an investigation on the selective mechanism of cellular uptake of pristine DNA nanocages in cells expressing the receptor "oxidized low-density lipoprotein receptor-1" (LOX-1), a scavenger receptor associated with cardiovascular diseases and, more recently, identified as a tumor marker. For this purpose a truncated octahedral DNA nanocage functionalized with a single biotin molecule, which allows DNA cage detection through the biotin-streptavidin assays, was constructed. The results indicate that DNA nanocages are stable in biological fluids, including human serum, and are selectively bound and very efficiently internalized in vesicles only in LOX-1-expressing cells. The amount of internalized cages is 30 times higher in LOX-1-expressing cells than in normal fibroblasts, indicating that the receptor-mediated uptake of pristine DNA nanocages can be pursued for a selective cellular internalization. These results open the route for a therapeutic use of pristine DNA cages targeting LOX-1-overexpressing tumor cells.
Collapse
Affiliation(s)
- Giulia Vindigni
- Department of Systems Medicine, University of Rome Tor Vergata , Via Montpellier 1, 00133, Rome, Italy
| | - Sofia Raniolo
- Department of Systems Medicine, University of Rome Tor Vergata , Via Montpellier 1, 00133, Rome, Italy
| | - Alessio Ottaviani
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata , Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Mattia Falconi
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata , Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Alessandro Desideri
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata , Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Silvia Biocca
- Department of Systems Medicine, University of Rome Tor Vergata , Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
36
|
Heissig P, Klein PM, Hadwiger P, Wagner E. DNA as Tunable Adaptor for siRNA Polyplex Stabilization and Functionalization. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e288. [PMID: 26928236 PMCID: PMC5014462 DOI: 10.1038/mtna.2016.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023]
Abstract
siRNA and microRNA are promising therapeutic agents, which are engaged in a natural mechanism called RNA interference that modulates gene expression posttranscriptionally. For intracellular delivery of such nucleic acid triggers, we use sequence-defined cationic polymers manufactured through solid phase chemistry. They consist of an oligoethanamino amide core for siRNA complexation and optional domains for nanoparticle shielding and cell targeting. Due to the small size of siRNA, electrostatic complexes with polycations are less stable, and consequently intracellular delivery is less efficient. Here we use DNA oligomers as adaptors to increase size and charge of cargo siRNA, resulting in increased polyplex stability, which in turn boosts transfection efficiency. Extending a single siRNA with a 181-nucleotide DNA adaptor is sufficient to provide maximum gene silencing aided by cationic polymers. Interestingly, this simple strategy was far more effective than merging defined numbers (4–10) of siRNA units into one DNA scaffolded construct. For DNA attachment, the 3′ end of the siRNA passenger strand was beneficial over the 5′ end. The impact of the attachment site however was resolved by introducing bioreducible disulfides at the connection point. We also show that DNA adaptors provide the opportunity to readily link additional functional domains to siRNA. Exemplified by the covalent conjugation of the endosomolytic influenza peptide INF-7 to siRNA via a DNA backbone strand and complexing this construct with a targeting polymer, we could form a highly functional polyethylene glycol–shielded polyplex to downregulate a luciferase gene in folate receptor–positive cells.
Collapse
Affiliation(s)
- Philipp Heissig
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp M Klein
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
37
|
Abstract
The convergence of nanoscience and drug delivery has prompted the formation of the field of nanomedicine, one that exploits the novel physicochemical and biological properties of nanostructures for improved medical treatments and reduced side effects. Until recently, this nanostructure-mediated strategy considered the drug to be solely a biologically active compound to be delivered, and its potential as a molecular building unit remained largely unexplored. A growing trend within nanomedicine has been the use of drug molecules to build well-defined nanostructures of various sizes and shapes. This strategy allows for the creation of self-delivering supramolecular nanomedicines containing a high and fixed drug content. Through rational design of the number and type of the drug incorporated, the resulting nanostructures can be tailored to assume various morphologies (e.g. nanospheres, rods, nanofibers, or nanotubes) for a particular mode of administration such as systemic, topical, and local delivery. This review covers the recent advances in this rapidly developing field, with the aim of providing an in-depth evaluation of the exciting opportunities that this new field could create to improve the current clinical practice of nanomedicine.
Collapse
Affiliation(s)
- Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou, Henan 450052, China
| | - Andrew G. Cheetham
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou, Henan 450052, China
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, USA
| |
Collapse
|
38
|
Lu Q, Meng YF, Gao PC, Wei J, Sun S, Zhou JJ, Wang ZF, Jiang Y. A pH responsive micelle combined with Au nanoparticles for multi-stimuli release of both hydrophobic and hydrophilic drug. RSC Adv 2016. [DOI: 10.1039/c6ra11159a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spherical micelles self-assembled from PPMA-g-DNA interacted with ssDNA modified gold nanoparticles and the resulting hybrids may serve as nanocarriers for releasing both Nile red and DOX, which can be triggered by many stimuli.
Collapse
Affiliation(s)
- Qian Lu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Yi-Fan Meng
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Peng-Cheng Gao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Jing Wei
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Si Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Jian-Jun Zhou
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Zhi-Fei Wang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| |
Collapse
|
39
|
Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy. Angew Chem Int Ed Engl 2015; 55:174-8. [PMID: 26768820 DOI: 10.1002/anie.201507922] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Indexed: 12/16/2022]
Abstract
Fluorescent probes for detecting the physical properties of cellular structures have become valuable tools in life sciences. The fluorescence lifetime of molecular rotors can be used to report on variations in local molecular packing or viscosity. We used a nucleoside linked to a meso-substituted BODIPY fluorescent molecular rotor (dC(bdp)) to sense changes in DNA microenvironment both in vitro and in living cells. DNA incorporating dC(bdp) can respond to interactions with DNA-binding proteins and lipids by changes in the fluorescence lifetimes in the range 0.5-2.2 ns. We can directly visualize changes in the local environment of exogenous DNA during transfection of living cells. Relatively long fluorescence lifetimes and extensive contrast for detecting changes in the microenvironment together with good photostability and versatility for DNA synthesis make this probe suitable for analysis of DNA-associated processes, cellular structures, and also DNA-based nanomaterials.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic).
| |
Collapse
|
40
|
Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507922] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Wu F, Song Y, Zhao Z, Zhang S, Yang Z, Li Z, Li M, Fan QH, Liu D. Preparation and Self-Assembly of Supramolecular Coil–Rod–Coil Triblock Copolymer PPO–dsDNA–PPO. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Yongshun Song
- School
of Physics, University of Chinese Academy of Science, Beijing 100049, China
| | | | | | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | - Ming Li
- School
of Physics, University of Chinese Academy of Science, Beijing 100049, China
| | | | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Lu CH, Willner I. Stimuli-Responsive DNA-Functionalized Nano-/Microcontainers for Switchable and Controlled Release. Angew Chem Int Ed Engl 2015; 54:12212-35. [DOI: 10.1002/anie.201503054] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 01/04/2023]
|
43
|
Lu CH, Willner I. Stimuliresponsive DNA-funktionalisierte Nano- und Mikrocontainer zur schaltbaren und kontrollierten Freisetzung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Voisin H, Aimé C, Coradin T. Understanding and Tuning Bioinorganic Interfaces for the Design of Bionanocomposites. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Ming X, Laing B. Bioconjugates for targeted delivery of therapeutic oligonucleotides. Adv Drug Deliv Rev 2015; 87:81-9. [PMID: 25689735 DOI: 10.1016/j.addr.2015.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/05/2023]
Abstract
Bioconjugates have been used to deliver therapeutic oligonucleotides to their pharmacological targets in diseased cells. Molecular-scale conjugates can be prepared by directly linking targeting ligands with oligonucleotides and the resultant conjugates can selectively bind to cell surface receptors in target cells in diseased tissues. Besides targeted delivery, additional functionality can be incorporated in the conjugates by utilization of carrier molecules, and these larger conjugates are called carrier-associated conjugates. Both molecular and carrier-associated conjugates have achieved initial successes in clinical trials for treating liver diseases; therefore, currently the greater challenge is to deliver oligonucleotides to extrahepatic tissues such as tumors. This review will provide an update on the application of oligonucleotide conjugates for targeted delivery during the last decade. By identifying key elements for successful delivery, it is suggested that oligonucleotide conjugates with intermediate size, cell targeting ability, and endosomal release functionality are superior systems to advance oligonucleotides to achieve their full therapeutic potentials.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Brian Laing
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Xing S, Jiang D, Li F, Li J, Li Q, Huang Q, Guo L, Xia J, Shi J, Fan C, Zhang L, Wang L. Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13174-9. [PMID: 25345465 DOI: 10.1021/am505592e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA nanostructures have attracted great attention due to their precisely controllable geometry and great potential in various areas including bottom-up self-assembly. However, construction of higher-order DNA nanoarchitectures with individual DNA nanostructures is often hampered with the purity and quantity of these "bricks". Here, we introduced size exclusion chromatography (SEC) to prepare highly purified tetrahedral DNA nanocages in large scale and demonstrated that precise quantification of DNA nanocages was the key to the formation of higher-order DNA nanoarchitectures. We successfully purified a series of DNA nanocages with different sizes, including seven DNA tetrahedra with different edge lengths (7, 10, 13, 17, 20, 26, 30 bp) and one trigonal bipyramid with a 20-bp edge. These highly purified and aggregation-free DNA nanocages could be self-assembled into higher-order DNA nanoarchitectures with extraordinarily high yields (98% for dimer and 95% for trimer). As a comparison, unpurified DNA nanocages resulted in low yield of 14% for dimer and 12% for trimer, respectively. AFM images cleraly presented the characteristic structure of monomer, dimer and trimer, impling the purified DNA nanocages well-formed the designed nanoarchitectures. Therefore, we have demonstrated that highly purified DNA nanocages are excellent "bricks" for DNA nanotechnology and show great potential in various applications of DNA nanomaterials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiaoyun Xia
- §College of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | | | | | | | | |
Collapse
|
47
|
Enzymatic Polymerization on DNA Modified Gold Nanowire for Label-Free Detection of Pathogen DNA. Int J Mol Sci 2015; 16:13653-60. [PMID: 26084045 PMCID: PMC4490515 DOI: 10.3390/ijms160613653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022] Open
Abstract
This paper presents a label-free biosensor for the detection of single-stranded pathogen DNA through the target-enhanced gelation between gold nanowires (AuNW) and the primer DNAs branched on AuNW. The target DNA enables circularization of the linear DNA template, and the primer DNA is elongated continuously via rolling circle amplification. As a result, in the presence of the target DNA, a macroscopic hydrogel was fabricated by the entanglement of the elongated DNA with AuNWs as a scaffold fiber for effective gelation. In contrast, very small separate particles were generated in the absence of the target DNA. This label-free biosensor might be a promising tool for the detection of pathogen DNAs without any devices for further analysis. Moreover, the biosensor based on the weaving of AuNW and DNAs suggests a novel direction for the applications of AuNWs in biological engineering.
Collapse
|
48
|
Guo Y, Wu J, Ju H. Target-driven DNA association to initiate cyclic assembly of hairpins for biosensing and logic gate operation. Chem Sci 2015; 6:4318-4323. [PMID: 29218202 PMCID: PMC5707516 DOI: 10.1039/c5sc01215e] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
Target-driven DNA association is designed for initiating the cyclic assembly of hairpins for target detection and logic gate operation.
A target-driven DNA association was designed to initiate cyclic assembly of hairpins, which led to an enzyme-free amplification strategy for detection of a nucleic acid or aptamer substrate and flexible construction of logic gates. The cyclic system contained two ssDNA (S1 and S2) and two hairpins (H1 and H2). These ssDNA could co-recognize the target to produce an S1–target–S2 structure, which brought their toehold and branch-migration domains into close proximity to initiate the cyclic assembly of hairpins. The assembly product further induced the dissociation of a double-stranded probe DNA (Q:F) via toehold-mediated strand displacement to switch the fluorescence signal. This method could detect DNA and ATP as model analytes down to 21.6 pM and 38 nM, respectively. By designing different DNA input strands, the “AND”, “INHIBIT” and “NAND” logic gates could be activated to achieve the output signal. The proposed biosensing and logic gate operation platform showed potential applications in disease diagnosis.
Collapse
Affiliation(s)
- Yuehua Guo
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86 25 83593593
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86 25 83593593
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86 25 83593593
| |
Collapse
|
49
|
Zhang N, Tao J, Hua H, Sun P, Zhao Y. Low-density lipoprotein peptide-combined DNA nanocomplex as an efficient anticancer drug delivery vehicle. Eur J Pharm Biopharm 2015; 94:20-9. [PMID: 25960329 DOI: 10.1016/j.ejpb.2015.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022]
Abstract
DNA is a type of potential biomaterials for drug delivery due to its nanoscale geometry, loading capacity of therapeutics, biocompatibility, and biodegradability. Unfortunately, DNA is easily degraded by DNases in the body circulation and has low intracellular uptake. In the present study, we selected three cationic polymers polyethylenimine (PEI), hexadecyl trimethyl ammonium bromide (CTAB), and low-density lipoprotein (LDL) receptor targeted peptide (RLT), to modify DNA and improve the issues. A potent anti-tumor anthracycline-doxorubicin (DOX) was intercalated into DNA non-covalently and the DOX/DNA was then combined with PEI, CTAB, and RLT, respectively. Compact nanocomplexes were formed by electrostatic interaction and could potentially protect DNA from DNases. More importantly, RLT had the potential to enhance intracellular uptake by LDL receptor mediated endocytosis. In a series of in vitro experiments, RLT complexed DNA enhanced intracellular delivery of DOX, increased tumor cell death and intracellular ROS production, and reduced intracellular elimination of DOX. All results suggested that the easily prepared and targeted RLT/DNA nanocomplexes had great potential to be developed into a formulation for doxorubicin with enhanced anti-tumor activity.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, HeNan 45001, PR China
| | - Jun Tao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, HeNan 45001, PR China
| | - Haiying Hua
- Academy of Medical and Pharmaceutical Sciences of Zhengzhou University, Zhengzhou, HeNan 450052, PR China
| | - Pengchao Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, HeNan 45001, PR China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, HeNan 45001, PR China.
| |
Collapse
|
50
|
Laing BM, Juliano RL. DNA Three-Way Junctions Stabilized by Hydrophobic Interactions for Creation of Functional Nanostructures. Chembiochem 2015; 16:1284-7. [PMID: 25953428 DOI: 10.1002/cbic.201500034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Indexed: 01/21/2023]
Abstract
The construction of nanomaterials from oligonucleotides by modular assembly invariably requires the use of branched nucleic acid architectures such as three- and four-way junctions (3WJ and 4WJ). We describe the stabilization of DNA 3WJ by using non-nucleotide lipophilic spacers to create a hydrophobic pocket within the junction space. Stabilization of nucleic acid junctions is of particular importance when constructing nanostructures in the "ultra-nano" size range (<20 nm) with shorter double-stranded regions. UV thermal melting studies show that lipophilic spacers strategically placed within the junction space significantly increased thermal stability. For a 3WJ with eight base pair arms, thermal stability was increased from 30.5 °C for the unmodified junction to a maximum stability of 55.0 °C. The stability of the junction can be modulated within this temperature range by using the appropriate combinations of spacers.
Collapse
Affiliation(s)
- Brian M Laing
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599 (USA)
| | - Rudolph L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599 (USA).
| |
Collapse
|