1
|
Vieweger SE, Tsvetkova IB, Dragnea BG. In Vitro Assembly of Virus-Derived Designer Shells Around Inorganic Nanoparticles. Methods Mol Biol 2018; 1776:279-294. [PMID: 29869249 DOI: 10.1007/978-1-4939-7808-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle-templated assembly of virus shells provides a promising approach to the production of hybrid nanomaterials and a potential avenue toward new mechanistic insights in virus phenomena originating in many-body effects, which cannot be understood from examining the properties of molecular subunits alone. This approach complements the successful molecular biology perspective traditionally used in virology, and promises a deeper understanding of viruses and virus-like particles through an expanded methodological toolbox. Here we present protocols for forming a virus coat protein shell around functionalized inorganic nanoparticles.
Collapse
|
2
|
Choi JH, Schafer SC, Freiberg AN, Croyle MA. Bolstering Components of the Immune Response Compromised by Prior Exposure to Adenovirus: Guided Formulation Development for a Nasal Ebola Vaccine. Mol Pharm 2015; 12:2697-711. [PMID: 25549696 PMCID: PMC4525322 DOI: 10.1021/mp5006454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The
severity and longevity of the current Ebola outbreak highlight
the need for a fast-acting yet long-lasting vaccine for at-risk populations
(medical personnel and rural villagers) where repeated prime-boost
regimens are not feasible. While recombinant adenovirus (rAd)-based
vaccines have conferred full protection against multiple strains of
Ebola after a single immunization, their efficacy is impaired by pre-existing
immunity (PEI) to adenovirus. To address this important issue, a panel
of formulations was evaluated by an in vitro assay
for their ability to protect rAd from neutralization. An amphiphilic
polymer (F16, FW ∼39,000) significantly improved transgene
expression in the presence of anti-Ad neutralizing antibodies (NAB)
at concentrations of 5 times the 50% neutralizing dose (ND50). In vivo performance of rAd in F16 was compared
with unformulated virus, virus modified with poly(ethylene) glycol
(PEG), and virus incorporated into poly(lactic-co-glycolic) acid (PLGA) polymeric beads. Histochemical analysis of
lung tissue revealed that F16 promoted strong levels of transgene
expression in naive mice and those that were exposed to adenovirus
in the nasal cavity 28 days prior to immunization. Multiparameter
flow cytometry revealed that F16 induced significantly more polyfunctional
antigen-specific CD8+ T cells simultaneously producing
IFN-γ, IL-2, and TNF-α than other test formulations. These
effects were not compromised by PEI. Data from formulations that provided
partial protection from challenge consistently identified specific
immunological requirements necessary for protection. This approach
may be useful for development of formulations for other vaccine platforms
that also employ ubiquitous pathogens as carriers like the influenza
virus.
Collapse
Affiliation(s)
- Jin Huk Choi
- †Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephen C Schafer
- †Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander N Freiberg
- ‡Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Maria A Croyle
- †Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States.,§Center for Infectious Disease, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Kumar ASM, Reddy GECV, Rajmane Y, Nair S, Pai Kamath S, Sreejesh G, Basha K, Chile S, Ray K, Nelly V, Khadpe N, Kasturi R, Ramana V. siRNAs encapsulated in recombinant capsid protein derived from Dengue serotype 2 virus inhibits the four serotypes of the virus and proliferation of cancer cells. J Biotechnol 2014; 193:23-33. [PMID: 25444872 DOI: 10.1016/j.jbiotec.2014.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/23/2022]
Abstract
siRNA delivery potential of the Dengue virus capsid protein in cultured cells was recently reported, but target knockdown potential in the context of specific diseases has not been explored. In this study we have evaluated the utility of the protein as an siRNA carrier for anti Dengue viral and anti cancer applications using cell culture systems. We show that target specific siRNAs delivered using the capsid protein inhibit infection by the four serotypes of Dengue virus and proliferation of two cancer cell lines. Our data confirm the potential of the capsid for anti Dengue viral and anti cancer RNAi applications. In addition, we have optimized a fermentation strategy to improve the yield of Escherichia coli expressed D2C protein since the reported yields of E. coli expressed flaviviral capsid proteins are low.
Collapse
Affiliation(s)
- A S Manoj Kumar
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India.
| | - G E C Vidyadhar Reddy
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Yogesh Rajmane
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Soumya Nair
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Sangita Pai Kamath
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Greeshma Sreejesh
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Khalander Basha
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Shailaja Chile
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Kriti Ray
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Vivant Nelly
- Therapeutic Proteins Process Development Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Nilesh Khadpe
- Therapeutic Proteins Process Development Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Ravishankar Kasturi
- Therapeutic Proteins Process Development Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Venkata Ramana
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| |
Collapse
|