1
|
Shin S, Kwon S, Yeo Y. Meta-Analysis of Drug Delivery Approaches for Treating Intracellular Infections. Pharm Res 2022; 39:1085-1114. [PMID: 35146592 PMCID: PMC8830998 DOI: 10.1007/s11095-022-03188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
This meta-analysis aims to evaluate the trend, methodological quality and completeness of studies on intracellular delivery of antimicrobial agents. PubMed, Embase, and reference lists of related reviews were searched to identify original articles that evaluated carrier-mediated intracellular delivery and pharmacodynamics (PD) of antimicrobial therapeutics against intracellular pathogens in vitro and/or in vivo. A total of 99 studies were included in the analysis. The most commonly targeted intracellular pathogens were bacteria (62.6%), followed by viruses (16.2%) and parasites (15.2%). Twenty-one out of 99 (21.2%) studies performed neither microscopic imaging nor flow cytometric analysis to verify that the carrier particles are present in the infected cells. Only 31.3% of studies provided comparative inhibitory concentrations against a free drug control. Approximately 8% of studies, albeit claimed for intracellular delivery of antimicrobial therapeutics, did not provide any experimental data such as microscopic imaging, flow cytometry, and in vitro PD. Future research on intracellular delivery of antimicrobial agents needs to improve the methodological quality and completeness of supporting data in order to facilitate clinical translation of intracellular delivery platforms for antimicrobial therapeutics.
Collapse
Affiliation(s)
- Sooyoung Shin
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| | - Soonbum Kwon
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA. .,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Jiang X, Li Z, Young DJ, Liu M, Wu C, Wu YL, Loh XJ. Toward the prevention of coronavirus infection: what role can polymers play? MATERIALS TODAY. ADVANCES 2021; 10:100140. [PMID: 33778467 PMCID: PMC7980145 DOI: 10.1016/j.mtadv.2021.100140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus 2 has caused a global public health crisis with high rates of infection and mortality. Treatment and prevention approaches include vaccine development, the design of small-molecule antiviral drugs, and macromolecular neutralizing antibodies. Polymers have been designed for effective virus inhibition and as antiviral drug delivery carriers. This review summarizes recent progress and provides a perspective on polymer-based approaches for the treatment and prevention of coronavirus infection. These polymer-based partners include polyanion/polycations, dendritic polymers, macromolecular prodrugs, and polymeric drug delivery systems that have the potential to significantly improve the efficacy of antiviral therapeutics.
Collapse
Affiliation(s)
- X Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Z Li
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - D J Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - M Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - C Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Y-L Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - X J Loh
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| |
Collapse
|
3
|
Monteiro PF, Travanut A, Conte C, Alexander C. Reduction-responsive polymers for drug delivery in cancer therapy-Is there anything new to discover? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1678. [PMID: 33155421 DOI: 10.1002/wnan.1678] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Among various types of stimuli-responsive drug delivery systems, reduction-responsive polymers have attracted great interest. In general, these systems have high stability in systemic circulation, however, they can respond quickly to differences in the concentrations of reducing species in specific physiological sites associated with a pathology. This is a particularly relevant strategy to target diseases in which hypoxic regions are present, as polymers which are sensitive to in-situ expressed antioxidant species can, through a local response, release a therapeutic at high concentration in the targeted site, and thus, improve the selectivity and efficacy of the treatment. At the same time, such reduction-responsive materials can also decrease the toxicity and side effects of certain drugs. To date, polymers containing disulfide linkages are the most investigated of the class of reduction-responsive nanocarriers, however, other groups such as selenide and diselenide have also been used for the same purpose. In this review article, we discussed the rationale behind the development of reduction-responsive polymers as drug delivery systems and highlight examples of recent progress. We include the most popular design methods to generate reduction-responsive polymeric carriers and their applications in cancer therapy, and question what areas may still need to be explored in a field with already a very large number of research articles. Finally, we consider the main challenges associated with the clinical translation of these nanocarriers and the future perspectives in this area. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | | | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | | |
Collapse
|
4
|
Senapathi J, Bommakanti A, Mallepalli S, Mukhopadhyay S, Kondapi AK. Sulfonate modified Lactoferrin nanoparticles as drug carriers with dual activity against HIV-1. Colloids Surf B Biointerfaces 2020; 191:110979. [PMID: 32276212 DOI: 10.1016/j.colsurfb.2020.110979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/03/2020] [Accepted: 03/14/2020] [Indexed: 01/19/2023]
Abstract
Intriguing properties and structural dynamics of Lactoferrin have been exploited in numerous applications, including its use as self-assembling, pH sensitive nanoparticles to deliver intended cargo at the disease site. In this study, we explore the possibility of surface modification of Lactoferrin nanoparticles to hone its specificity to target HIV-1 infected cells. Existence of free cysteine groups on Lactoferrin nanoparticles available for reaction with external molecules facilitates conjugation on the surface with Sodium 2-mercaptoethanesulfonate (MES). Conjugation with MES is used to edge a negative charge that can mimic CCR5 and Heparan sulfate (initial point of contact of HIV-1 env to host cell surface) electrostatic charge (Sulfate group). A simple sono-chemical irradiation method was employed for self-assembly of Nanoparticles and for surface modification. The nanoparticles serve dual purpose to abrogate extracellular entry and to target viral enzymes, when loaded with ART drugs. The morphology and size distribution of the formed particles were explored using Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM) and Dynamic Light Scattering. Raman SERS was employed to understand the difference in the protein upon surface modification. The anti-HIV property of the particles was confirmed in-vitro. The modified device demonstrated acceptable nanoparticle properties with controlled release and higher effective concentration in the area of infection.
Collapse
Affiliation(s)
- Jagadeesh Senapathi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Akhila Bommakanti
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Suresh Mallepalli
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Satyajit Mukhopadhyay
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Mvango S, Matshe WMR, Balogun AO, Pilcher LA, Balogun MO. Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharm Res 2018; 35:237. [PMID: 30324329 DOI: 10.1007/s11095-018-2517-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.
Collapse
Affiliation(s)
- Sindisiwe Mvango
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.,Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - William M R Matshe
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Abideen O Balogun
- Department of Medicine, Nottingham University Hospital, Nottingham, UK
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - Mohammed O Balogun
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.
| |
Collapse
|
6
|
Goes A, Fuhrmann G. Biogenic and Biomimetic Carriers as Versatile Transporters To Treat Infections. ACS Infect Dis 2018; 4:881-892. [PMID: 29553240 DOI: 10.1021/acsinfecdis.8b00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biogenic and biomimetic therapeutics are a relatively new class of systems that are of physiological origin and/or take advantage of natural pathways or aim at mimicking these to improve selective interaction with target tissue. The number of biogenic and bioengineered avenues for drug therapy and diagnostics has multiplied over the past years for many applications, indicating the high expectations associated with this biological route. Nevertheless, the use of "bio"-related approaches for treating or diagnosing infectious diseases is still rare. Given that infectious diseases, in particular bacterial resistances, are seriously on the rise, there is an urgent need to take advantage of biogenic and bioengineered systems to target these challenges. In this manuscript, we first give a definition of the various "bio" terms, including biogenic, biomimetic, bioinspired, and bioengineered and we highlight them using tangible applications in the field of infectious diseases. Our examples cover cell-derived systems, including bioengineered bacteria, virus-like particles, and different cell-mimetics. Moreover, we discuss natural and bioengineered particles such as extracellular vesicles from mammalian and bacterial sources and liposomes. A concluding section outlines the potential for biomaterial-related avenues to overcome challenges associated with difficult-to-treat infections. We critically discuss benefits and risks for these applications and give an outlook on the future of biogenic engineering.
Collapse
Affiliation(s)
- Adriely Goes
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
7
|
Zuwala K, Riber CF, Løvschall KB, Andersen AHF, Sørensen L, Gajda P, Tolstrup M, Zelikin AN. Macromolecular prodrugs of ribavirin: Polymer backbone defines blood safety, drug release, and efficacy of anti-inflammatory effects. J Control Release 2018; 275:53-66. [PMID: 29432822 PMCID: PMC7114659 DOI: 10.1016/j.jconrel.2018.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022]
Abstract
Macromolecular (pro)drugs hold much promise as broad-spectrum antiviral agents as either microbicides or carriers for intracellular delivery of antiviral drugs. Intriguing opportunity exists in combining the two modes of antiviral activity in the same polymer structure such that the same polymer acts as a microbicide and also serves to deliver the conjugated drug (ribavirin) into the cells. We explore this opportunity in detail and focus on the polymer backbone as a decisive constituent of such formulations. Fourteen polyanions (polycarboxylates, polyphosphates and polyphosphonates, and polysulfonates) were analyzed for blood pro/anti coagulation effects, albumin binding and albumin aggregation, inhibitory activity on polymerases, cytotoxicity, and anti-inflammatory activity in stimulated macrophages. Ribavirin containing monomers were designed to accommodate the synthesis of macromolecular prodrugs with disulfide-exchange triggered drug release. Kinetics of drug release was fast in all cases however enhanced hydrophobicity of the polymer significantly slowed release of ribavirin. Results of this study present a comprehensive view on polyanions as backbone for macromolecular prodrugs of ribavirin as broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Kaja Zuwala
- Department of Infectious Diseases, Aarhus University Hospital, 8200, Denmark; Department of Chemistry, Aarhus University, 8000, Denmark
| | | | | | - Anna H F Andersen
- Department of Infectious Diseases, Aarhus University Hospital, 8200, Denmark; Department of Chemistry, Aarhus University, 8000, Denmark
| | - Lise Sørensen
- Department of Chemistry, Aarhus University, 8000, Denmark
| | - Paulina Gajda
- Department of Infectious Diseases, Aarhus University Hospital, 8200, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, 8200, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, 8000, Denmark; iNano Interdisciplinary Nanoscience Centre, Aarhus University, 8000, Denmark.
| |
Collapse
|
8
|
Riber CF, Andersen AHF, Rolskov LA, Zuwala K, Gajda P, Løvschall KB, Dagnæs-Hansen F, Banda DH, Pietschmann T, Tolstrup M, Zelikin AN. Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells. ACS Macro Lett 2017; 6:935-940. [PMID: 35650894 DOI: 10.1021/acsmacrolett.7b00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic polymers make strong contributions as tools for delivery of biological drugs and chemotherapeutics. The most praised characteristic of polymers in these applications is complete lack of pharmacological function such as to minimize the side effects within the human body. In contrast, synthetic polymers with curative pharmacological activity are truly rare. Moreover, such activity is typically nonspecific rather than structure-defined. In this work, we present the discovery of poly(ethylacrylic acid) (PEAA) as a polymer with a suit of structure-defined, unexpected, pharmacological, and pharmacokinetic properties not observed in close structural analogues. Specifically, PEAA reveals capacity to bind to albumin with ensuing natural hepatic deposition in vivo and exhibits concurrent inhibitory activity against the hepatitis C virus and inflammation in hepatic cells. Our findings provide a view on synthetic polymers as curative, functional agents and present PEAA as a unique biomedical tool with applications related to health of the human liver.
Collapse
Affiliation(s)
- Camilla Frich Riber
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Anna Halling Folkmar Andersen
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Lærke Anegaard Rolskov
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Kaja Zuwala
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Paulina Gajda
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Kaja Borup Løvschall
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | | | - Dominic H. Banda
- Institute
of Experimental Virology, TWINCORE Centre for Experimental and Clinical
Infection Research, Medical School Hannover/Helmholtz Centre for Infection Research, Hannover, Germany
| | - Thomas Pietschmann
- Institute
of Experimental Virology, TWINCORE Centre for Experimental and Clinical
Infection Research, Medical School Hannover/Helmholtz Centre for Infection Research, Hannover, Germany
| | - Martin Tolstrup
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Alexander N. Zelikin
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
9
|
Natfji AA, Osborn HM, Greco F. Feasibility of polymer-drug conjugates for non-cancer applications. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Smith AAA, Zuwala K, Pilgram O, Johansen KS, Tolstrup M, Dagnæs-Hansen F, Zelikin AN. Albumin-Polymer-Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles. ACS Macro Lett 2016; 5:1089-1094. [PMID: 35658186 DOI: 10.1021/acsmacrolett.6b00544] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Albumin is an exquisite tool of nature used in biomedicine to achieve long blood residence time for drugs, but the payload it can carry is typically limited to one molecule per protein. In contrast, synthetic macromolecular prodrugs contain multiple copies of drugs per polymer chain but offer only a marginal increase in the circulation lifetime of the drugs. We combine the benefits of the two platforms and at the same time overcome their respective limitations. Specifically, we develop the synthesis of albumin-polymer-drug conjugates to obtain long circulating, high payload drug delivery vehicles. In vivo data validate that albumin endows the conjugate with a blood residence time similar to that of the protein and well exceeding that of the polymer. Therapeutic activity of the conjugates is validated using prodrugs of panobinostat, an HIV latency reversal agent, in which case the conjugates matched the drug in terms of efficacy of treatment.
Collapse
Affiliation(s)
| | - Kaja Zuwala
- Department of Infectious Diseases, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | | | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
11
|
Kryger MBL, Pedersen SL, Wohl BM, Zelikin AN. Tools of gene transfer applied to the intracellular delivery of non-nucleic acid polyanionic drugs. Chem Commun (Camb) 2016; 52:889-91. [PMID: 26576493 DOI: 10.1039/c5cc08011h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first successful implementation of transfection agents to facilitate the delivery of non-nucleic acid based anti-inflammatory and anti-viral drugs. In doing so, we illustrate a new paradigm in the intracellular delivery of polyanionic drugs and also extend the scope and utility of successful tools of gene transfer into a new area of biomedical research.
Collapse
Affiliation(s)
- Mille B L Kryger
- Department of Chemistry, Aarhus University, Aarhus, Denmark. and iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Søren L Pedersen
- Department of Chemistry, Aarhus University, Aarhus, Denmark. and iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Benjamin M Wohl
- Department of Chemistry, Aarhus University, Aarhus, Denmark. and iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus, Denmark. and iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Danial M, Andersen AHF, Zuwala K, Cosson S, Riber CF, Smith AAA, Tolstrup M, Moad G, Zelikin AN, Postma A. Triple Activity of Lamivudine Releasing Sulfonated Polymers against HIV-1. Mol Pharm 2016; 13:2397-410. [DOI: 10.1021/acs.molpharmaceut.6b00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Anna H. F. Andersen
- Department
of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Kaja Zuwala
- Department
of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Steffen Cosson
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
- Tissue
Engineering and Microfluidics Laboratory, Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | - Martin Tolstrup
- Department
of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Graeme Moad
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Alexander N. Zelikin
- Department
of Chemistry, Aarhus University, Aarhus C 8000, Denmark
- iNANO
Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C 8000, Denmark
| | - Almar Postma
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| |
Collapse
|
13
|
Hinton TM, Zuwala K, Deffrasnes C, Todd S, Shi S, Marsh GA, Dearnley M, Wohl BM, Tolstrup M, Zelikin AN. Polyanionic Macromolecular Prodrugs of Ribavirin: Antiviral Agents with a Broad Spectrum of Activity. Adv Healthc Mater 2016; 5:534-40. [PMID: 26789641 DOI: 10.1002/adhm.201500841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/09/2015] [Indexed: 12/12/2022]
Abstract
Macromolecular prodrugs are developed as multiarmed agents against diverse viral pathogens. Lead candidates inhibit infectivity and replication of HIV, Ebola, influenza, measles, RSV, etc-thus being broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Tracey M. Hinton
- CSIRO-Health and Biosecurity Flagship; Australian Animal Health Laboratory; Geelong VIC 3220 Australia
| | - Kaja Zuwala
- Department of Infectious Diseases; Aarhus University Hospital; 8000 Aarhus C Denmark
- Department of Chemistry and the iNano, Interdisciplinary Nanoscience Centre; Aarhus University; 8000 Aarhus C Denmark
| | - Celine Deffrasnes
- CSIRO-Health and Biosecurity Flagship; Australian Animal Health Laboratory; Geelong VIC 3220 Australia
| | - Shawn Todd
- CSIRO-Health and Biosecurity Flagship; Australian Animal Health Laboratory; Geelong VIC 3220 Australia
| | - Shuning Shi
- CSIRO-Health and Biosecurity Flagship; Australian Animal Health Laboratory; Geelong VIC 3220 Australia
| | - Glenn A. Marsh
- CSIRO-Health and Biosecurity Flagship; Australian Animal Health Laboratory; Geelong VIC 3220 Australia
| | - Megan Dearnley
- CSIRO-Health and Biosecurity Flagship; Australian Animal Health Laboratory; Geelong VIC 3220 Australia
| | - Benjamin M. Wohl
- Department of Chemistry and the iNano, Interdisciplinary Nanoscience Centre; Aarhus University; 8000 Aarhus C Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases; Aarhus University Hospital; 8000 Aarhus C Denmark
| | - Alexander N. Zelikin
- Department of Chemistry and the iNano, Interdisciplinary Nanoscience Centre; Aarhus University; 8000 Aarhus C Denmark
| |
Collapse
|
14
|
Guo H, Sun S, Yang Z, Tang X, Wang Y. Strategies for ribavirin prodrugs and delivery systems for reducing the side-effect hemolysis and enhancing their therapeutic effect. J Control Release 2015; 209:27-36. [DOI: 10.1016/j.jconrel.2015.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 12/16/2022]
|