1
|
Yue YY, Lai CZ, Guo XS, Yang CS, Wang Y, Song GD, Jin XL. New CRISPR/Cas9-based Fgfr2 C361Y/+ mouse model of Crouzon syndrome exhibits skull and behavioral abnormalities. J Mol Med (Berl) 2024; 102:1255-1266. [PMID: 39158595 DOI: 10.1007/s00109-024-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Crouzon syndrome (CS), a syndromic craniosynostosis, is a craniofacial developmental deformity caused by mutations in fibroblast growth factor receptor 2 (FGFR2). Previous CS mouse models constructed using traditional gene editing techniques faced issues such as low targeting efficiency, extended lineage cycles, and inconsistent and unstable phenotypes. In this study, a CRISPR/Cas9-mediated strategy was employed to induce a functional augmentation of the Fgfr2 point mutation in mice. Various techniques, including bone staining, micro-CT, histological methods, and behavioral experiments, were employed to systematically examine and corroborate phenotypic disparities between mutant mice (Fgfr2C361Y/+) and their wild-type littermates. Confirmed via PCR-Sanger sequencing, we successfully induced the p.Cys361Tyr missense mutation in the Fgfr2 IIIc isoform of the extracellular domain (corresponding to the p.Cys342Tyr mutation in humans) based on Fgfr2-215 transcript (ENSMUST00000122054.8). Fgfr2C361Y/+ mice exhibited characteristics consistent with the phenotypic features associated with CS, including skull-vault craniosynostosis, skull deformity, shallow orbits accompanied by exophthalmos, midface hypoplasia with malocclusion, and shortened skull base, notably without any apparent limb defects. Furthermore, mutant mice displayed behavioral abnormalities encompassing deficits in learning and memory, social interaction, and motor dysfunction, without anxiety-related disorders. Histopathological examination of the hippocampal region revealed structural abnormalities, suggesting possible brain development impairment secondary to craniosynostosis. In conclusion, we constructed a novel gene-edited Fgfr2C361Y/+ mice strain based on CRISPR/Cas9, which displayed skull and behavioral abnormalities, serving as a new model for studying genetic molecular mechanisms and exploring treatments for CS. KEY MESSAGES: CRISPR/Cas9 crafted a Crouzon model by enhancing Fgfr2-C361Y in mice. Fgfr2C361Y/+ mice replicate CS phenotypes-craniosynostosis and midface anomalies. Mutant mice show diverse behavioral abnormalities, impacting learning and memory. Fgfr2C361Y/+ mice offer a novel model for cranial suture studies and therapeutic exploration.
Collapse
Affiliation(s)
- Ying Ying Yue
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen-Zhi Lai
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Shuang Guo
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang-Sheng Yang
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Wang
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guo-Dong Song
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Lei Jin
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Yan W, Li Y, Xie S, Tao WA, Hu J, Liu H, Zhang G, Liu F, Nie Y, Chen X, Zhang X, Liu Y, Wei D, Ma C, Zhang H, Xu H, Wang S. Chondrocyte-Targeted Delivery System of Sortase A-Engineered Extracellular Vesicles Silencing MMP13 for Osteoarthritis Therapy. Adv Healthc Mater 2024; 13:e2303510. [PMID: 38545904 DOI: 10.1002/adhm.202303510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Targeted drug delivery and the reduction of off-target effects are crucial for the promising clinical application of nucleic acid drugs. To address this challenge, a new approach for treating osteoarthritis (OA) that accurately delivers antisense oligonucleotides (ASO) targeting matrix metalloproteinase-13 (ASO-MMP13) to chondrocytes, is developed. Small extracellular vesicles (exos) are ligated with chondrocyte affinity peptide (CAP) using Sortase A and subsequently incubated with cholesterol-modified ASO-MMP13 to construct a chondrocyte-targeted drug delivery exo (CAP-exoASO). Compared with exos without CAP (ExoASO), CAP-exoASOs attenuate IL-1β-induced chondrocyte damage and prolong the retention time of ASO-MMP13 in the joint without distribution in major organs following intra-articular injection. Notably, CAP-exoASOs decrease MMP13 expression (P < 0.001) and upregulate COL2A1 expression (P = 0.006), resulting in reorganization of the cartilage matrix and alleviation of progression in the OA model. Furthermore, the Osteoarthritis Research Society International (OARSI) score of articular cartilage tissues treated with CAP-exoASO is comparable with that of healthy rats (P = 0.148). A mechanistic study demonstrates that CAP-exoASO may reduce inflammation by suppressing the IL-17 and TNF signaling pathways. Based on the targeted delivery effect, CAP-exoASOs successfully accomplish cartilage repair and have considerable potential for development as a promising therapeutic modality for satisfactory OA therapy.
Collapse
Affiliation(s)
- Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Ying Li
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Epidemiology, School of Public Health of Suzhou University, Suzhou, Jiangsu, 215127, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - W Andy Tao
- Departments of Chemistry and Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hao Zhang
- EVLiXiR Biotech Inc., Nanjing, Jiangsu, 210032, China
| | - Hongtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| |
Collapse
|
3
|
Chen M, Lu Y, Liu Y, Liu Q, Deng S, Liu Y, Cui X, Liang J, Zhang X, Fan Y, Wang Q. Injectable Microgels with Hybrid Exosomes of Chondrocyte-Targeted FGF18 Gene-Editing and Self-Renewable Lubrication for Osteoarthritis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312559. [PMID: 38266145 DOI: 10.1002/adma.202312559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Abnormal silencing of fibroblast growth factor (FGF) signaling significantly contributes to joint dysplasia and osteoarthritis (OA); However, the clinical translation of FGF18-based protein drugs is hindered by their short half-life, low delivery efficiency and the need for repeated articular injections. This study proposes a CRISPR/Cas9-based approach to effectively activate the FGF18 gene of OA chondrocytes at the genome level in vivo, using chondrocyte-affinity peptide (CAP) incorporated hybrid exosomes (CAP/FGF18-hyEXO) loaded with an FGF18-targeted gene-editing tool. Furthermore, CAP/FGF18-hyEXO are encapsulated in methacrylic anhydride-modified hyaluronic (HAMA) hydrogel microspheres via microfluidics and photopolymerization to create an injectable microgel system (CAP/FGF18-hyEXO@HMs) with self-renewable hydration layers to provide persistent lubrication in response to frictional wear. Together, the injectable CAP/FGF18-hyEXO@HMs, combined with in vivo FGF18 gene editing and continuous lubrication, have demonstrated their capacity to synergistically promote cartilage regeneration, decrease inflammation, and prevent ECM degradation both in vitro and in vivo, holding great potential for clinical translation.
Collapse
Affiliation(s)
- Manyu Chen
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yan Lu
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yuhan Liu
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, P. R. China
| | - Quanying Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Siyan Deng
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yuan Liu
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaolin Cui
- School of medicine the Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Orthopedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine University of Otago, Christchurch, 8140, New Zealand
| | - Jie Liang
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Biomedical Engineering Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
4
|
Park CS, Habib O, Lee Y, Hur JK. Applications of CRISPR technologies to the development of gene and cell therapy. BMB Rep 2024; 57:2-11. [PMID: 38178651 PMCID: PMC10828430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
Advancements in gene and cell therapy have resulted in novel therapeutics for diseases previously considered incurable or challenging to treat. Among the various contributing technologies, genome editing stands out as one of the most crucial for the progress in gene and cell therapy. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the subsequent evolution of genetic engineering technology have markedly expanded the field of target-specific gene editing. Originally studied in the immune systems of bacteria and archaea, the CRISPR system has demonstrated wide applicability to effective genome editing of various biological systems including human cells. The development of CRISPR-based base editing has enabled directional cytosine-tothymine and adenine-to-guanine substitutions of select DNA bases at the target locus. Subsequent advances in prime editing further elevated the flexibility of the edit multiple consecutive bases to desired sequences. The recent CRISPR technologies also have been actively utilized for the development of in vivo and ex vivo gene and cell therapies. We anticipate that the medical applications of CRISPR will rapidly progress to provide unprecedented possibilities to develop novel therapeutics towards various diseases. [BMB Reports 2024; 57(1): 2-11].
Collapse
Affiliation(s)
- Chul-Sung Park
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Omer Habib
- Division of R&D, RedGene Inc., Seoul 08790, Korea
| | - Younsu Lee
- Division of R&D, RedGene Inc., Seoul 08790, Korea
| | - Junho K. Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Genetics, College of Medicine, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
5
|
Zheng R, Zhang L, Parvin R, Su L, Chi J, Shi K, Ye F, Huang X. Progress and Perspective of CRISPR-Cas9 Technology in Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300195. [PMID: 37356052 PMCID: PMC10477906 DOI: 10.1002/advs.202300195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Indexed: 06/27/2023]
Abstract
Translational medicine aims to improve human health by exploring potential treatment methods developed during basic scientific research and applying them to the treatment of patients in clinical settings. The advanced perceptions of gene functions have remarkably revolutionized clinical treatment strategies for target agents. However, the progress in gene editing therapy has been hindered due to the severe off-target effects and limited editing sites. Fortunately, the development in the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system has renewed hope for gene therapy field. The CRISPR-Cas9 system can fulfill various simple or complex purposes, including gene knockout, knock-in, activation, interference, base editing, and sequence detection. Accordingly, the CRISPR-Cas9 system is adaptable to translational medicine, which calls for the alteration of genomic sequences. This review aims to present the latest CRISPR-Cas9 technology achievements and prospect to translational medicine advances. The principle and characterization of the CRISPR-Cas9 system are firstly introduced. The authors then focus on recent pre-clinical and clinical research directions, including the construction of disease models, disease-related gene screening and regulation, and disease treatment and diagnosis for multiple refractory diseases. Finally, some clinical challenges including off-target effects, in vivo vectors, and ethical problems, and future perspective are also discussed.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Rokshana Parvin
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Lihuang Su
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Junjie Chi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Keqing Shi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Fangfu Ye
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| |
Collapse
|
6
|
Boti MA, Athanasopoulou K, Adamopoulos PG, Sideris DC, Scorilas A. Recent Advances in Genome-Engineering Strategies. Genes (Basel) 2023; 14:129. [PMID: 36672870 PMCID: PMC9859587 DOI: 10.3390/genes14010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
In October 2020, the chemistry Nobel Prize was awarded to Emmanuelle Charpentier and Jennifer A. Doudna for the discovery of a new promising genome-editing tool: the genetic scissors of CRISPR-Cas9. The identification of CRISPR arrays and the subsequent identification of cas genes, which together represent an adaptive immunological system that exists not only in bacteria but also in archaea, led to the development of diverse strategies used for precise DNA editing, providing new insights in basic research and in clinical practice. Due to their advantageous features, the CRISPR-Cas systems are already employed in several biological and medical research fields as the most suitable technique for genome engineering. In this review, we aim to describe the CRISPR-Cas systems that have been identified among prokaryotic organisms and engineered for genome manipulation studies. Furthermore, a comprehensive comparison between the innovative CRISPR-Cas methodology and the previously utilized ZFN and TALEN editing nucleases is also discussed. Ultimately, we highlight the contribution of CRISPR-Cas methodology in modern biomedicine and the current plethora of available applications for gene KO, repression and/or overexpression, as well as their potential implementation in therapeutical strategies that aim to improve patients' quality of life.
Collapse
Affiliation(s)
| | | | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | | | | |
Collapse
|
7
|
Rahimi A, Karimipoor M, Mahdian R, Alipour A, Hosseini S, Kaghazian H, Abbasi A, Shahsavarani H, Shokrgozar MA. Targeting Caspase-3 Gene in rCHO Cell Line by CRISPR/Cas9 Editing Tool and Its Effect on Protein Production in Manipulated Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130236. [PMID: 36915405 PMCID: PMC10007989 DOI: 10.5812/ijpr-130236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 03/06/2023]
Abstract
Background Chinese hamster ovary (CHO) cells are the widely used mammalian cell host for biopharmaceutical manufacturing. During cell cultures, CHO cells lose viability mainly from apoptosis. Inhibiting cell death is useful because prolonging cell lifespans can direct to more productive cell culture systems for biotechnology requests. Objectives This study exploited a CRISPR/Cas9 technology to generate site-specific gene disruptions in the caspase-3 gene in the apoptosis pathway, which acts as an apoptotic regulator to extend cell viability in the CHO cell line. Methods The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 system. The guide RNAs targeting the caspase-3 gene were designed, and vectors containing sgRNA and Cas9 were transfected into CHO cells that expressed erythropoietin as a heterologous protein. Indel formation was investigated by DNA sequencing. Caspase-3 expression was quantified by real-time PCR and western blot. The effect of editing the caspase-3 gene on the inhibition of apoptosis was also investigated by induction of apoptosis in manipulated cell lines by oleuropein. Finally, the erythropoietin production in the edited cells was compared to the control cells. Results The caspase-3 manipulation significantly prolongation of the cell viability and decreased the caspase-3 expression level of protein in manipulated CHO cells (more than 6-fold, P-value < 0.0001). Manipulated cells displayed higher threshold tolerance to apoptosis compared to the control cells when they were induced by oleuropein. They show a higher IC50 than the control ones (7271 µM/mL Vs. 5741 µM/mL). They also show a higher proliferation rate than the control cells in the presence of an apoptosis inducer (P-value < 0.0001). Furthermore, manipulated cell lines significantly produce more recombinant protein in the presence of 2,000 µM oleuropein compared to the control ones (P-value = 0.0021). Conclusions We understood that CRISPR/Cas9 could be effectively applied to suppress the expression of the caspase-3 gene and rescue CHO cells from apoptosis induced by cell stress and metabolites. The CRISPR/Cas9 system-assisted caspase-3 gene ablation can potentially increase erythropoietin yield in CHO cells.
Collapse
Affiliation(s)
- Amirabbas Rahimi
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Mahdian
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nano-Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Sadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research & Development, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Corresponding Author: Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
- Corresponding Author: Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, 13169-43551, Tehran, Iran.
| |
Collapse
|
8
|
Kanu GA, Parambath JBM, Abu Odeh RO, Mohamed AA. Gold Nanoparticle-Mediated Gene Therapy. Cancers (Basel) 2022; 14:5366. [PMID: 36358785 PMCID: PMC9653658 DOI: 10.3390/cancers14215366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Gold nanoparticles (AuNPs) have gained increasing attention as novel drug-delivery nanostructures for the treatment of cancers, infections, inflammations, and other diseases and disorders. They are versatile in design, synthesis, modification, and functionalization. This has many advantages in terms of gene editing and gene silencing, and their application in genetic illnesses. The development of several techniques such as CRISPR/Cas9, TALEN, and ZFNs has raised hopes for the treatment of genetic abnormalities, although more focused experimentation is still needed. AuNPs, however, have been much more effective in trending research on this subject. In this review, we highlight recently well-developed advancements that are relevant to cutting-edge gene therapies, namely gene editing and gene silencing in diseases caused by a single gene in humans by taking an edge of the unique properties of the AuNPs, which will be an important outlook for future research.
Collapse
Affiliation(s)
- Gayathri A. Kanu
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Javad B. M. Parambath
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raed O. Abu Odeh
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed A. Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (Beijing) 2022; 3:e162. [PMID: 36000086 PMCID: PMC9390875 DOI: 10.1002/mco2.162] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Evidence shows that neutrophils can protect the host against pathogens in multiple ways, including the formation and release of neutrophil extracellular traps (NETs). NETs are web-like structures composed of fibers, DNA, histones, and various neutrophil granule proteins. NETs can capture and kill pathogens, including bacteria, viruses, fungi, and protozoa. The process of NET formation is called NETosis. According to whether they depend on nicotinamide adenine dinucleotide phosphate (NADPH), NETosis can be divided into two categories: "suicidal" NETosis and "vital" NETosis. However, NET components, including neutrophil elastase, myeloperoxidase, and cell-free DNA, cause a proinflammatory response and potentially severe diseases. Compelling evidence indicates a link between NETs and the pathogenesis of a number of diseases, including sepsis, systemic lupus erythematosus, rheumatoid arthritis, small-vessel vasculitis, inflammatory bowel disease, cancer, COVID-19, and others. Therefore, targeting the process and products of NETosis is critical for treating diseases linked with NETosis. Researchers have discovered that several NET inhibitors, such as toll-like receptor inhibitors and reactive oxygen species scavengers, can prevent uncontrolled NET development. This review summarizes the mechanism of NETosis, the receptors associated with NETosis, the pathology of NETosis-induced diseases, and NETosis-targeted therapy.
Collapse
Affiliation(s)
- Jiayu Huang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
10
|
Sarvari P, Sarvari P, Ramírez-Díaz I, Mahjoubi F, Rubio K. Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. Int J Mol Sci 2022; 23:ijms23179521. [PMID: 36076918 PMCID: PMC9455804 DOI: 10.3390/ijms23179521] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Epigenetic modifications are known to regulate cell phenotype during cancer progression, including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical treatment for breast cancer patients, however, will likely depend upon a better understanding of epigenetic modifications. The present review aims to outline different epigenetic mechanisms including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer, as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as breast cancer therapeutics.
Collapse
Affiliation(s)
- Pourya Sarvari
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Correspondence:
| |
Collapse
|
11
|
Hillary VE, Ceasar SA. Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects. Bioessays 2022; 44:e2200032. [PMID: 35750651 DOI: 10.1002/bies.202200032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/06/2023]
Abstract
Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system has revolutionized genetic research in the life sciences. Four classes of CRISPR/Cas-derived genome editing agents, such as nuclease, base editor, recombinase, and prime editor have been introduced for engineering the genomes of diverse organisms. The recently introduced prime editing system offers precise editing without many off-target effects than traditional CRISPR-based systems. Many researchers have successfully applied this gene-editing toolbox in diverse systems for various genome-editing applications. This review presents the mechanism of prime editing and summarizes the details of the prime editing system applied in plants and mammalian cells for precise genome editing. We also discuss the advantages, limitations, and potential future applications of prime editing in these systems. This review enables the researcher to gain knowledge on prime editing tools and their potential applications in plants and mammalian cells.
Collapse
Affiliation(s)
- V Edwin Hillary
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, India
| |
Collapse
|
12
|
Whitley JA, Kim S, Lou L, Ye C, Alsaidan OA, Sulejmani E, Cai J, Desrochers EG, Beharry Z, Rickman CB, Klingeborn M, Liu Y, Xie Z, Cai H. Encapsulating Cas9 into extracellular vesicles by protein myristoylation. J Extracell Vesicles 2022; 11:e12196. [PMID: 35384352 PMCID: PMC8982324 DOI: 10.1002/jev2.12196] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/29/2023] Open
Abstract
CRISPR/Cas9 genome editing is a very promising avenue for the treatment of a variety of genetic diseases. However, it is still very challenging to encapsulate CRISPR/Cas9 machinery for delivery. Protein N-myristoylation is an irreversible co/post-translational modification that results in the covalent attachment of the myristoyl-group to the N-terminus of a target protein. It serves as an anchor for a protein to associate with the cell membrane and determines its intracellular trafficking and activity. Extracellular vesicles (EVs) are secreted vesicles that mediate cell-cell communication. In this study, we demonstrate that myristoylated proteins were preferentially encapsulated into EVs. The octapeptide derived from the leading sequence of the N-terminus of Src kinase was a favourable substrate for N-myristoyltransferase 1, the enzyme that catalyzes myristoylation. The fusion of the octapeptide onto the N-terminus of Cas9 promoted the myristoylation and encapsulation of Cas9 into EVs. Encapsulation of Cas9 and sgRNA-eGFP inside EVs was confirmed using protease digestion assays. Additionally, to increase the transfection potential, VSV-G was introduced into the EVs. The encapsulated Cas9 in EVs accounted for 0.7% of total EV protein. Importantly, the EVs coated with VSV-G encapsulating Cas9/sgRNA-eGFP showed up to 42% eGFP knock out efficiency with limited off-target effects in recipient cells. Our study provides a novel approach to encapsulate CRISPR/Cas9 protein and sgRNA into EVs. This strategy may open an effective avenue to utilize EVs as vehicles to deliver CRISPR/Cas9 for genome-editing-based gene therapy.
Collapse
Affiliation(s)
- Joseph Andrew Whitley
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Sungjin Kim
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Lei Lou
- School of Electrical and Computer EngineeringCollege of EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Chenming Ye
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Essilvo Sulejmani
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Jingwen Cai
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Ellison Gerona Desrochers
- School of Electrical and Computer EngineeringCollege of EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Zanna Beharry
- Department of Chemical and Physical SciencesUniversity of Virgin IslandsSt. ThomasVirgin Islands
| | - Catherine Bowes Rickman
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Yutao Liu
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Zhong‐Ru Xie
- School of Electrical and Computer EngineeringCollege of EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
13
|
Wang X, Marchisio MA. Synthetic polycistronic sequences in eukaryotes. Synth Syst Biotechnol 2021; 6:254-261. [PMID: 34584993 PMCID: PMC8449083 DOI: 10.1016/j.synbio.2021.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
The need for co-ordinate, high-level, and stable expression of multiple genes is essential for the engineering of biosynthetic circuits and metabolic pathways. This work outlines the functionality and design of IRES- and 2 A-peptide-based constructs by comparing different strategies for co-expression in polycistronic vectors. In particular, 2 A sequences are small peptides, mostly derived from viral polyproteins, that mediate a ribosome-skipping event such that several, different, separate proteins can be generated from a single open reading frame. When applied to metabolic engineering and synthetic gene circuits, 2 A peptides permit to achieve co-regulated and reliable expression of various genes in eukaryotic cells.
Collapse
Affiliation(s)
- Xuekun Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| |
Collapse
|
14
|
Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol 2021; 61:194-211. [PMID: 32740860 PMCID: PMC7395212 DOI: 10.1007/s12016-020-08804-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) in response to a variety of stimuli. NETosis is driven by protein-arginine deiminase type 4, with the release of intracellular granule components that function by capturing and destroying microbes, including viral, fungal, bacterial, and protozoal pathogens. The positive effects of pathogen control are countered by pro-inflammatory effects as demonstrated in a variety of diseases. Components of NETS are non-specific, and other than controlling microbes, they cause injury to surrounding tissue by themselves or by increasing the pro-inflammatory response. NETs can play a role in enhancement of the inflammation seen in autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosis. In addition, autoinflammatory diseases such as gout have been associated with NETosis. Inhibition of NETs may decrease the severity of many diseases improving survival. Herein, we describe NETosis in different diseases focusing on the detrimental effect of NETs and outline possible therapeutics that can be used to mitigate netosis. There is a need for more studies and clinical trials on these and other compounds that could prevent or destroy NETs, thereby decreasing damage to patients.
Collapse
Affiliation(s)
- Victoria Mutua
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA.
| | - Laurel J Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA
| |
Collapse
|
15
|
Cas9 conjugate complex delivering donor DNA for efficient gene editing by homology-directed repair. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Sun B, Chen H, Gao X. Versatile modification of the CRISPR/Cas9 ribonucleoprotein system to facilitate in vivo application. J Control Release 2021; 337:698-717. [PMID: 34364918 DOI: 10.1016/j.jconrel.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
The development of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems has created a tremendous wave that is sweeping the world of genome editing. The ribonucleoprotein (RNP) method has evolved to be the most advantageous form for in vivo application. Modification of the CRISPR/Cas9 RNP method to adapt delivery through a variety of carriers can either directly improve the stability and specificity of the gene-editing tool in vivo or indirectly endow the system with high gene-editing efficiency that induces few off-target mutations through different delivery methods. The exploration of in vivo applications mediated by various delivery methods lays the foundation for genome research and variety improvements, which is especially promising for better in vivo research in the field of translational biomedicine. In this review, we illustrate the modifiable structures of the Cas9 nuclease and single guide RNA (sgRNA), summarize the latest research progress and discuss the feasibility and advantages of various methods. The highlighted results will enhance our knowledge, stimulate extensive research and application of Cas9 and provide alternatives for the development of rational delivery carriers in multiple fields.
Collapse
Affiliation(s)
- Bixi Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China
| | - Hening Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China
| | - Xiaoshu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| |
Collapse
|
17
|
Fiaz S, Ahmar S, Saeed S, Riaz A, Mora-Poblete F, Jung KH. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. Int J Mol Sci 2021; 22:5585. [PMID: 34070430 PMCID: PMC8197453 DOI: 10.3390/ijms22115585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Sajjad Saeed
- Department of Forestry and Wildlife Management, University of Haripur, Haripur 22620, Pakistan
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Ki-Hung Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
18
|
Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans 2021; 49:915-931. [PMID: 33704400 PMCID: PMC8106501 DOI: 10.1042/bst20200840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Collapse
Affiliation(s)
- Roberto Donini
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
19
|
Sabit H, Abdel-Ghany S, Tombuloglu H, Cevik E, Alqosaibi A, Almulhim F, Al-Muhanaa A. New insights on CRISPR/Cas9-based therapy for breast Cancer. Genes Environ 2021; 43:15. [PMID: 33926574 PMCID: PMC8082964 DOI: 10.1186/s41021-021-00188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 has revolutionized genome-editing techniques in various biological fields including human cancer research. Cancer is a multi-step process that encompasses the accumulation of mutations that result in the hallmark of the malignant state. The goal of cancer research is to identify these mutations and correlate them with the underlying tumorigenic process. Using CRISPR/Cas9 tool, specific mutations responsible for cancer initiation and/or progression could be corrected at least in animal models as a first step towards translational applications. In the present article, we review various novel strategies that employed CRISPR/Cas9 to treat breast cancer in both in vitro and in vivo systems.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, Dammam, 31441, Saudi Arabia.
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, Dammam, 31441, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, Dammam, 31441, Saudi Arabia
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. 4 Box, Dammam, 1982, Saudi Arabia
| | - Fatma Almulhim
- Breast Imaging Division, KFHU, Imam Abdulrahman Bin Faisal University, P. O. 4 Box, Dammam, 1982, Saudi Arabia
| | - Afnan Al-Muhanaa
- Breast Imaging Division, KFHU, Imam Abdulrahman Bin Faisal University, P. O. 4 Box, Dammam, 1982, Saudi Arabia
| |
Collapse
|
20
|
Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, Kuca K, Tripathi V. Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. Int J Mol Sci 2021; 22:3327. [PMID: 33805113 PMCID: PMC8036902 DOI: 10.3390/ijms22073327] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.
Collapse
Affiliation(s)
- Sweta Nidhi
- Department of Genomics and Bioinformatics, Aix-Marseille University, 13007 Marseille, France;
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India;
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - George Thomas
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| |
Collapse
|
21
|
Xu CF, Chen GJ, Luo YL, Zhang Y, Zhao G, Lu ZD, Czarna A, Gu Z, Wang J. Rational designs of in vivo CRISPR-Cas delivery systems. Adv Drug Deliv Rev 2021; 168:3-29. [PMID: 31759123 DOI: 10.1016/j.addr.2019.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The CRISPR-Cas system initiated a revolution in genome editing when it was, for the first time, demonstrated success in the mammalian cells. Today, scientists are able to readily edit genomes, regulate gene transcription, engineer posttranscriptional events, and image nucleic acids using CRISPR-Cas-based tools. However, to efficiently transport CRISPR-Cas into target tissues/cells remains challenging due to many extra- and intra-cellular barriers, therefore largely limiting the applications of CRISPR-based therapeutics in vivo. In this review, we summarize the features of plasmid-, RNA- and ribonucleoprotein (RNP)-based CRISPR-Cas therapeutics. Then, we survey the current in vivo delivery systems. We specify the requirements for efficient in vivo delivery in clinical settings, and highlight both efficiency and safety for different CRISPR-Cas tools.
Collapse
|
22
|
The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. CHEMTEXTS 2020. [DOI: 10.1007/s40828-020-00126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe huge progress in whole genome sequencing (genomic revolution) methods including next generation sequencing (NGS) techniques allows one to obtain data on genome sequences of all organisms, ranging from bacteria to plants to mammals, within hours to days (era of whole genome/exome sequencing) (Goodwin et al. in Nat Rev Genet 17:333–351, 2016; Levy and Myers in Annu Rev Genomics Hum Genet 17:95–115, 2016; Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). Today, within the era of functional genomics the highest goal is to transfer this huge amount of sequencing data into information of functional and clinical relevance (genome annotation project). The World Health Organization (WHO) estimates that more than 10,000 diseases in humans are monogenic, i.e., that these diseases are caused by mutations within single genes (Jackson et al. in Essays Biochem 62:643–723, 2018). NGS technologies are continuously improving while our knowledge on genetic mutations driving the development of diseases is also still emerging (Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). It would be desirable to have tools that allow one to correct these genetic mutations, so-called genome editing tools. Apart from applications in biotechnology, medicine, and agriculture, it is still not concisely understood in basic science how genotype influences phenotype. Firstly, the Cre/loxP system and RNA-based technologies for gene knockout or knockdown are explained. Secondly, zinc-finger (ZnF) nucleases and transcription activator-like effector nucleases (TALENs) are discussed as targeted genome editing systems. Thirdly, CRISPR/Cas is presented including outline of the discovery and mechanisms of this adaptive immune system in bacteria and archaea, structure and function of CRISPR/Cas9 and its application as a tool for genomic editing. Current developments and applications of CRISPR/Cas9 are discussed. Moreover, limitations and drawbacks of the CRISPR/Cas system are presented and questions on ethical concerns connected to application of genome editing tools are discussed.
Collapse
|
23
|
Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, Fehse B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020; 258:120282. [DOI: 10.1016/j.biomaterials.2020.120282] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
24
|
Sandhya D, Jogam P, Allini VR, Abbagani S, Alok A. The present and potential future methods for delivering CRISPR/Cas9 components in plants. J Genet Eng Biotechnol 2020; 18:25. [PMID: 32638190 PMCID: PMC7340682 DOI: 10.1186/s43141-020-00036-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/04/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND CRISPR/Cas9 genome editing technology is a DNA manipulation tool for trait improvement. This technology has been demonstrated and successfully applied to edit the genome in various species of plants. The delivery of CRISPR/Cas9 components within rigid plant cells is very crucial for high editing efficiency. Here, we insight the strengths and weaknesses of each method of delivery. MAIN TEXT The mutation efficiency of genome editing may vary and affected by different factors. Out of various factors, the delivery of CRISPR/Cas9 components into cells and genome is vital. The way of delivery defines whether the edited plant is transgenic or transgene-free. In many countries, the transgenic approach of improvement is a significant limitation in the regulatory approval of genetically modified crops. Gene editing provides an opportunity for generating transgene-free edited genome of the plant. Nevertheless, the mode of delivery of the CRISPR/Cas9 component is of crucial importance for genome modification in plants. Different delivery methods such as Agrobacterium-mediated, bombardment or biolistic method, floral-dip, and PEG-mediated protoplast are frequently applied to crops for efficient genome editing. CONCLUSION We have reviewed different delivery methods with prons and cons for genome editing in plants. A novel nanoparticle and pollen magnetofection-mediated delivery systems which would be very useful in the near future. Further, the factors affecting editing efficiency, such as the promoter, transformation method, and selection pressure, are discussed in the present review.
Collapse
Affiliation(s)
- Dulam Sandhya
- Department of Biotechnology, Kakatiya University, Warangal, Telangana India
| | - Phanikanth Jogam
- Department of Biotechnology, Kakatiya University, Warangal, Telangana India
| | | | | | - Anshu Alok
- Department of Biotechnology, UIET, Panjab University, Chandigarh, India
| |
Collapse
|
25
|
Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 2020; 40:833-851. [DOI: 10.1080/07388551.2020.1768043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kajan Srirangan
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Martin Loignon
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
26
|
Chen M, Ren YX, Xie Y, Lu WL. Gene regulations and delivery vectors for
treatment of cancer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Affiliation(s)
- Luisa Natalia Pimentel Vera
- Centro de Pesquisa Experimental, Centro De Terapia Gênica- Hospital De Clínicas De Porto Alegre, Porto Alegre, Brazil
| | - Guilherme Baldo
- Centro de Pesquisa Experimental, Centro De Terapia Gênica- Hospital De Clínicas De Porto Alegre, Porto Alegre, Brazil
- Centro de Pesquisa Experimental, Programa De Pós-Graduação Em Genética E Biologia Molecular-UFRGS, Porto Alegre, Brazil
| |
Collapse
|
28
|
Gong Y, Tian S, Xuan Y, Zhang S. Lipid and polymer mediated CRISPR/Cas9 gene editing. J Mater Chem B 2020; 8:4369-4386. [DOI: 10.1039/d0tb00207k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) system is the most widely used tool for gene editing.
Collapse
Affiliation(s)
- Yan Gong
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Siyu Tian
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| |
Collapse
|
29
|
Amann T, Schmieder V, Faustrup Kildegaard H, Borth N, Andersen MR. Genetic engineering approaches to improve posttranslational modification of biopharmaceuticals in different production platforms. Biotechnol Bioeng 2019; 116:2778-2796. [PMID: 31237682 DOI: 10.1002/bit.27101] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
The number of approved biopharmaceuticals, where product quality attributes remain of major importance, is increasing steadily. Within the available variety of expression hosts, the production of biopharmaceuticals faces diverse limitations with respect to posttranslational modifications (PTM), while different biopharmaceuticals demand different forms and specifications of PTMs for proper functionality. With the growing toolbox of genetic engineering technologies, it is now possible to address general as well as host- or biopharmaceutical-specific product quality obstacles. In this review, we present diverse expression systems derived from mammalians, bacteria, yeast, plants, and insects as well as available genetic engineering tools. We focus on genes for knockout/knockdown and overexpression for meaningful approaches to improve biopharmaceutical PTMs and discuss their applicability as well as future trends in the field.
Collapse
Affiliation(s)
- Thomas Amann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valerie Schmieder
- acib GmbH-Austrian Centre of Industrial Biotechnology, Graz, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
30
|
Improved Delivery of CRISPR/Cas9 System Using Magnetic Nanoparticles into Porcine Fibroblast. Mol Biotechnol 2019; 61:173-180. [PMID: 30560399 DOI: 10.1007/s12033-018-0145-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically modified pigs play an important role in agriculture and biomedical research; hence, new efficient methods are needed to obtain genetically engineered cells and animals. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated) system represents an effective genome editing tool. It consists of two key molecules: single guide RNA (sgRNA) and the Cas9 endonuclease that can be introduced into the cells as one plasmid. Typical delivery methods for CRISPR/Cas9 components are limited by low transfection efficiency or toxic effects on cells. Here, we describe the use of magnetic nanoparticles and gradient magnetic field to improve delivery of CRISPR/Cas9 constructs into porcine fetal fibroblasts. Polyethylenimine-coated nanoparticles with magnetic iron oxide core were used to form magnetic plasmid DNA lipoplexes. CRISPR/Cas9 construct was prepared to induce site-specific cutting at the porcine H11 locus. Quantitative assessment of genomic cleavage by sequence trace decomposition demonstrated that the magnetofection efficiency was more than 3.5 times higher compared to the classic lipofection method. The Tracking of Indels by Decomposition web tool precisely determined the spectrum of indels that occurred. Simultaneously, no additional cytotoxicity associated with the utilization of magnetic nanoparticles was observed. Our results indicate that magnetofection enables effective delivery of the CRISPR/Cas9 construct into porcine fetal fibroblasts with low cell toxicity.
Collapse
|
31
|
Babačić H, Mehta A, Merkel O, Schoser B. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One 2019; 14:e0212198. [PMID: 30794581 PMCID: PMC6386526 DOI: 10.1371/journal.pone.0212198] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (cas) is a new technology that allows easier manipulation of the genome. Its potential to edit genes opened a new door in treatment development for incurable neurological monogenic diseases (NMGDs). The aim of this systematic review was to summarise the findings on the current development of CRISPR-cas for therapeutic purposes in the most frequent NMGDs and provide critical assessment. METHODS AND DATA ACQUISITION We searched the MEDLINE and EMBASE databases, looking for original studies on the use of CRISPR-cas to edit pathogenic variants in models of the most frequent NMGDs, until end of 2017. We included all the studies that met the following criteria: 1. Peer-reviewed study report with explicitly described experimental designs; 2. In vitro, ex vivo, or in vivo study using human or other animal biological systems (including cells, tissues, organs, organisms); 3. focusing on CRISPR as the gene-editing method of choice; and 5. featured at least one NMGD. RESULTS We obtained 404 papers from MEDLINE and 513 from EMBASE. After removing the duplicates, we screened 490 papers by title and abstract and assessed them for eligibility. After reading 50 full-text papers, we finally selected 42 for the review. DISCUSSION Here we give a systematic summary on the preclinical development of CRISPR-cas for therapeutic purposes in NMGDs. Furthermore, we address the clinical interpretability of the findings, giving a comprehensive overview of the current state of the art. Duchenne's muscular dystrophy (DMD) paves the way forward, with 26 out of 42 studies reporting different strategies on DMD gene editing in different models of the disease. Most of the strategies aimed for permanent exon skipping by deletion with CRISPR-cas. Successful silencing of the mHTT gene with CRISPR-cas led to successful reversal of the neurotoxic effects in the striatum of mouse models of Huntington's disease. Many other strategies have been explored, including epigenetic regulation of gene expression, in cellular and animal models of: myotonic dystrophy, Fraxile X syndrome, ataxias, and other less frequent dystrophies. Still, before even considering the clinical application of CRISPR-cas, three major bottlenecks need to be addressed: efficacy, safety, and delivery of the systems. This requires a collaborative approach in the research community, while having ethical considerations in mind.
Collapse
Affiliation(s)
- Haris Babačić
- Friedrich Baur Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail: (BS); (HB)
| | - Aditi Mehta
- Faculty of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivia Merkel
- Faculty of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich Baur Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail: (BS); (HB)
| |
Collapse
|
32
|
Lee SH, Kim S, Hur JK. CRISPR and Target-Specific DNA Endonucleases for Efficient DNA Knock-in in Eukaryotic Genomes. Mol Cells 2018; 41:943-952. [PMID: 30486613 PMCID: PMC6277560 DOI: 10.14348/molcells.2018.0408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/23/2023] Open
Abstract
The discovery and mechanistic understanding of target-specific genome engineering technologies has led to extremely effective and specific genome editing in higher organisms. Target-specific genetic modification technology is expected to have a leading position in future gene therapy development, and has a ripple effect on various basic and applied studies. However, several problems remain and hinder efficient and specific editing of target genomic loci. The issues are particularly critical in precise targeted insertion of external DNA sequences into genomes. Here, we discuss some recent efforts to overcome such problems and present a perspective of future genome editing technologies.
Collapse
Affiliation(s)
- Seung Hwan Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116,
Korea
| | - Sunghyun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447,
Korea
| | - Junho K Hur
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
33
|
Luke GA, Ryan MD. "Therapeutic applications of the 'NPGP' family of viral 2As". Rev Med Virol 2018; 28:e2001. [PMID: 30094875 DOI: 10.1002/rmv.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Oligopeptide "2A" and "2A-like" sequences ("2As"; 18-25aa) are found in a range of RNA virus genomes controlling protein biogenesis through "recoding" of the host-cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote-specific, self-"cleaving" event, termed "ribosome skipping" with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady-state levels depend upon other factors-notably protein stability. By contrast, the use of internal ribosome entry site elements for co-expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy-chain and light-chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these "artificial polyprotein" systems can be independently targeted to different sub-cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF-a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β-carotene (four gene sequences) were concatenated into a single cistron such that all components were co-expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co-expression technology in basic research, biotechnology, and clinical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
34
|
Zhu D, Shen H, Tan S, Hu Z, Wang L, Yu L, Tian X, Ding W, Ren C, Gao C, Cheng J, Deng M, Liu R, Hu J, Xi L, Wu P, Zhang Z, Ma D, Wang H. Nanoparticles Based on Poly (β-Amino Ester) and HPV16-Targeting CRISPR/shRNA as Potential Drugs for HPV16-Related Cervical Malignancy. Mol Ther 2018; 26:2443-2455. [PMID: 30241742 DOI: 10.1016/j.ymthe.2018.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/24/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022] Open
Abstract
Persistent high-risk HPV infection is the main cause of cervical cancer. The HPV oncogene E7 plays an important role in HPV carcinogenesis. Currently, HPV vaccines do not offer an effective treatment for women who already present with cervical disease, and recommended periodical cervical screenings are difficult to perform in countries and areas lacking medical resources. Our aim was to develop nanoparticles (NPs) based on poly (β-amino ester) (PBAE) and HPV16 E7-targeting CRISPR/short hairpin RNA (shRNA) to reduce the levels of HPV16 E7 as a preliminary form of a drug to treat HPV infection and its related cervical malignancy. Our NPs showed low toxicity in cells and mouse organs. By reducing the expression of HPV16 E7, our NPs could inhibit the growth of cervical cancer cells and xenograft tumors in nude mice, and they could reverse the malignant cervical epithelium phenotype in HPV16 transgenic mice. The performance of NPs containing shRNA is better than that of NPs containing CRISPR. HPV-targeting NPs consisting of PBAE and CRISPR/shRNA could potentially be developed as drugs to treat HPV infection and HPV-related cervical malignancy.
Collapse
Affiliation(s)
- Da Zhu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Shen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Gynecological Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liming Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lan Yu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xun Tian
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ci Ren
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chun Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Rong Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junbo Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hui Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
35
|
Kropp J, Di Marzo A, Golos T. Assisted reproductive technologies in the common marmoset: an integral species for developing nonhuman primate models of human diseases. Biol Reprod 2018; 96:277-287. [PMID: 28203717 DOI: 10.1095/biolreprod.116.146514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Generation of nonhuman primate models of human disease conditions will foster the development of novel therapeutic strategies. Callithrix jacchus, or the common marmoset, is a New World, nonhuman primate species that exhibits great reproductive fitness in captivity with an ovarian cycle that can be easily managed with pharmacological agents. This characteristic, among others, provides an opportunity to employ assisted reproductive technologies to generate embryos that can be genetically manipulated to create a variety of nonhuman primate models for human disease. Here, we review methods to synchronize the marmoset ovarian cycle and stimulate oocyte donors, and compare various protocols for in vitro production of embryos. In light of advances in genomic editing, recent approaches used to generate transgenic or genetically edited embryos in the marmoset and also future perspective are reviewed.
Collapse
Affiliation(s)
- Jenna Kropp
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea Di Marzo
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thaddeus Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett 2018; 423:95-104. [DOI: 10.1016/j.canlet.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
|
37
|
Bošnjak B, Permanyer M, Sethi MK, Galla M, Maetzig T, Heinemann D, Willenzon S, Förster R, Heisterkamp A, Kalies S. CRISPR/Cas9 Genome Editing Using Gold-Nanoparticle-Mediated Laserporation. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Marc Permanyer
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Maya K. Sethi
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Melanie Galla
- Institute of Experimental Hematology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Dag Heinemann
- Industrial and Biomedical Optics Department; Laser Zentrum Hannover e.V.; Hollerithallee 8 30419 Hannover Germany
- Lower Saxony Centre for Biomedical Engineering; Implant Research and Development; Stadtfelddamm 34 30625 Hannover Germany
| | - Stefani Willenzon
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Reinhold Förster
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Lower Saxony Centre for Biomedical Engineering; Implant Research and Development; Stadtfelddamm 34 30625 Hannover Germany
| | - Alexander Heisterkamp
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Lower Saxony Centre for Biomedical Engineering; Implant Research and Development; Stadtfelddamm 34 30625 Hannover Germany
- Institut für Quantenoptik; Gottfried Wilhelm Leibniz Universität Hannover; Welfengarten 1 30167 Hannover Germany
| | - Stefan Kalies
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Lower Saxony Centre for Biomedical Engineering; Implant Research and Development; Stadtfelddamm 34 30625 Hannover Germany
- Institut für Quantenoptik; Gottfried Wilhelm Leibniz Universität Hannover; Welfengarten 1 30167 Hannover Germany
| |
Collapse
|
38
|
Poyedinok NL, Blume YB. Advances, Problems, and Prospects of Genetic Transformation of Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271802007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Lin Y, Wu J, Gu W, Huang Y, Tong Z, Huang L, Tan J. Exosome-Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700611. [PMID: 29721412 PMCID: PMC5908366 DOI: 10.1002/advs.201700611] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/03/2017] [Indexed: 05/17/2023]
Abstract
Targeted delivery of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system to the receptor cells is essential for in vivo gene editing. Exosomes are intensively studied as a promising targeted drug delivery carrier recently, while limited by their low efficiency in encapsulating of large nucleic acids. Here, a kind of hybrid exosomes with liposomes is developed via simple incubation. Different from the original exosomes, the resultant hybrid nanoparticles efficiently encapsulate large plasmids, including the CRISPR-Cas9 expression vectors, similarly as the liposomes. Moreover, the resultant hybrid nanoparticles can be endocytosed by and express the encapsulated genes in the mesenchymal stem cells (MSCs), which cannot be transfected by the liposome alone. Taken together, the exosome-liposome hybrid nanoparticles can deliver CRISPR-Cas9 system in MSCs and thus be promising in in vivo gene manipulation.
Collapse
Affiliation(s)
- Yao Lin
- Department of OrthodonticsGuanghua School of StomatologyHospital of StomatologySun Yat‐sen UniversityGuangdong Provincial Key Laboratory of StomatologyGuangzhou510055P. R. China
| | - Jiahua Wu
- Department of OrthodonticsGuanghua School of StomatologyHospital of StomatologySun Yat‐sen UniversityGuangdong Provincial Key Laboratory of StomatologyGuangzhou510055P. R. China
| | - Weihuai Gu
- Department of OrthodonticsGuanghua School of StomatologyHospital of StomatologySun Yat‐sen UniversityGuangdong Provincial Key Laboratory of StomatologyGuangzhou510055P. R. China
| | - Yulei Huang
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of StomatologyHospital of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Zhongchun Tong
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of StomatologyHospital of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Lijia Huang
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of StomatologyHospital of StomatologySun Yat‐sen UniversityGuangzhou510055P. R. China
| | - Jiali Tan
- Department of OrthodonticsGuanghua School of StomatologyHospital of StomatologySun Yat‐sen UniversityGuangdong Provincial Key Laboratory of StomatologyGuangzhou510055P. R. China
| |
Collapse
|
40
|
Chaudhary K, Chattopadhyay A, Pratap D. The evolution of CRISPR/Cas9 and their cousins: hope or hype? Biotechnol Lett 2018; 40:465-477. [PMID: 29344851 DOI: 10.1007/s10529-018-2506-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system allows biologists to edit genomic DNA of any cell in precise and specific way, entailing great potential for crop improvement, drug development and gene therapy. The system involves a nuclease (Cas9) and a designed guide RNA that are involved in wide range of applications such as genome modification, transcriptional modulation, genomic loci marking and RNA tracking. The limitation of the technique, in view of resistance of thymidine-rich genome to Cas9 cleavage, has now been overcome by the use of Cpf1 nuclease. In this review, we present an overview of CRISPR nucleases (Cas9 or Cpf1) with particular emphasis on human genome modification and compare their advantages and limitations. Furthermore, we summarize some of the pros and cons of CRISPR technology particularly in human therapeutics.
Collapse
Affiliation(s)
- Kulbhushan Chaudhary
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Anirudha Chattopadhyay
- Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, Gujrat, India
| | - Dharmendra Pratap
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India.
| |
Collapse
|
41
|
Luke GA, Ryan MD. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins. Methods Mol Biol 2018; 1755:31-48. [PMID: 29671261 DOI: 10.1007/978-1-4939-7724-6_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.
Collapse
Affiliation(s)
- Garry A Luke
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife, Scotland, UK.
| | - Martin D Ryan
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife, Scotland, UK
| |
Collapse
|
42
|
de la Fuente-Núñez C, Lu TK. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr Biol (Camb) 2017; 9:109-122. [PMID: 28045163 DOI: 10.1039/c6ib00140h] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of CRISPR-Cas9 technology has revolutionized our ability to edit DNA and to modulate expression levels of genes of interest, thus providing powerful tools to accelerate the precise engineering of a wide range of organisms. In addition, the CRISPR-Cas system can be harnessed to design "precision" antimicrobials that target bacterial pathogens in a DNA sequence-specific manner. This capability will enable killing of drug-resistant microbes by selectively targeting genes involved in antibiotic resistance, biofilm formation and virulence. Here, we review the origins and mechanistic basis of CRISPR-Cas systems, discuss how this technology can be leveraged to provide a range of applications in both eukaryotic and prokaryotic systems, and finish by outlining limitations and future prospects.
Collapse
Affiliation(s)
- César de la Fuente-Núñez
- Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Biological Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. and Harvard Biophysics Program, Harvard University, Boston, Massachusetts, USA and Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA and The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts, USA
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Biological Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. and Harvard Biophysics Program, Harvard University, Boston, Massachusetts, USA and Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA and The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
An C, Zhu G, Martos SN, Feng X, Zhang H, Jia Y, Wang Z. TALEN-Mediated FLAG-Tagging of Endogenous Histone Methyltransferase DOT1L. ADVANCES IN BIOSCIENCE AND BIOTECHNOLOGY (PRINT) 2017; 8:311-323. [PMID: 29796335 PMCID: PMC5963693 DOI: 10.4236/abb.2017.89023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histone modification including H3 lysine 79 methylation (H3K79me) plays a key role during gene transcription and DNA damage repair. DOT1L, the sole methyltransferase for three states of H3K79me, is implicated in leukemia, co-lorectal cancer, and dilated cardiomyopathy. However, understanding of DOT1L and H3K79me in these pathways and disease pathogenesis has been limited due to the difficulty of working with DOT1L protein. For instance, locus-specific or genome-wide binding sites of DOT1L revealed by chromatin immunoprecipitation (ChIP)-based methods are necessary for inferring its functions, but high-quality ChIP-grade antibodies are currently not available. Herein we have developed a knock-in approach to tag endogenous DOT1L with 3 × Flag at its C-terminal domain to follow functional analyses. The knock-in was facilitated by using TALENs to induce a targeted double-strand break at the endogenous DOTIL to stimulate local homologous recombination at that site. The single cell colonies with successful knock-in were isolated and verified by different methods. We also demonstrated that tagged DOT1L maintains its normal function in terms of methylation and that the engineered cells would be very useful for further studies.
Collapse
Affiliation(s)
- Cheng An
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Guangjing Zhu
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Suzanne N. Martos
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Xue Feng
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haimou Zhang
- School of Life Sciences, Hubei University, Wuhan, China
| | | | - Zhibin Wang
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- School of Life Sciences, Hubei University, Wuhan, China
- Fenxian Central Hospital, Shanghai, China
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
44
|
Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, Leong KW. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chem Rev 2017. [PMID: 28640612 DOI: 10.1021/acs.chemrev.6b00799] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome editing offers promising solutions to genetic disorders by editing DNA sequences or modulating gene expression. The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) technology can be used to edit single or multiple genes in a wide variety of cell types and organisms in vitro and in vivo. Herein, we review the rapidly developing CRISPR/Cas9-based technologies for disease modeling and gene correction and recent progress toward Cas9/guide RNA (gRNA) delivery based on viral and nonviral vectors. We discuss the relative merits of delivering the genome editing elements in the form of DNA, mRNA, or protein, and the opportunities of combining viral delivery of a transgene encoding Cas9 with nonviral delivery of gRNA. We highlight the lessons learned from nonviral gene delivery in the past three decades and consider their applicability for CRISPR/Cas9 delivery. We also include a discussion of bioinformatics tools for gRNA design and chemical modifications of gRNA. Finally, we consider the extracellular and intracellular barriers to nonviral CRISPR/Cas9 delivery and propose strategies that may overcome these barriers to realize the clinical potential of CRISPR/Cas9-based genome editing.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Ciaran M Lee
- Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Syandan Chakraborty
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) and Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 31116, Korea
| | - Gang Bao
- Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| |
Collapse
|
45
|
Zahur M, Tolö J, Bähr M, Kügler S. Long-Term Assessment of AAV-Mediated Zinc Finger Nuclease Expression in the Mouse Brain. Front Mol Neurosci 2017; 10:142. [PMID: 28588449 PMCID: PMC5440507 DOI: 10.3389/fnmol.2017.00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
Gene editing tools like TALENs, ZFNs and Crispr/Cas now offer unprecedented opportunities for targeted genetic manipulations in virtually all species. Most of the recent research in this area has concentrated on manipulation of the genome in isolated cells, which then give rise to transgenic animals or modified stem cell lines. Much less is known about applicability of genetic scissors in terminally differentiated, non-dividing cells like neurons of the adult brain. We addressed this question by expression of a pair of ZFNs targeting the murine cathepsin D gene in CNS neurons by means of an optimized AAV viral vector. We show that ZFN expression resulted in substantial depletion of cathepsin D from neuronal lysosomes, demonstrating a robust gene deletion. Importantly, long-term ZFN expression in CNS neurons did not impair essential neuronal functionality and did not cause inflammation or neurodegeneration, suggesting that potent genetic scissors can be expressed safely in the mouse brain. This finding opens up new venues to create novel research models for neurodegenerative disorders.
Collapse
Affiliation(s)
- Muzna Zahur
- Department of Neurology, University Medical Center GöttingenGöttingen, Germany
| | - Johan Tolö
- Department of Neurology, University Medical Center GöttingenGöttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain at Department of Neurology, University Medical Center GöttingenGöttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center GöttingenGöttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain at Department of Neurology, University Medical Center GöttingenGöttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medical Center GöttingenGöttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain at Department of Neurology, University Medical Center GöttingenGöttingen, Germany
| |
Collapse
|
46
|
Abstract
The CRISPR/Cas (clustered regularly interspaced short
palindromic repeats/CRISPR-associated proteins) system was first identified in
bacteria and archaea and can degrade exogenous substrates. It was developed as a gene
editing technology in 2013. Over the subsequent years, it has received extensive
attention owing to its easy manipulation, high efficiency, and wide application in
gene mutation and transcriptional regulation in mammals and plants. The process of
CRISPR/Cas is optimized constantly and its application has also expanded
dramatically. Therefore, CRISPR/Cas is considered a revolutionary technology in plant
biology. Here, we introduce the mechanism of the type II CRISPR/Cas called
CRISPR/Cas9, update its recent advances in various applications in plants, and
discuss its future prospects to provide an argument for its use in the study of
medicinal plants.
Collapse
Affiliation(s)
| | | | | | - Chun Sui
- Corresponding author. Tel.: +86 10 57863016.
| | | |
Collapse
|
47
|
Crauciuc A, Tripon F, Gheorghiu A, Nemes G, Boglis A, Banescu C. Review. Development, Applications, Benefits, Challenges and Limitations of the New Genome Engineering Technique. An Update Study. ACTA MEDICA MARISIENSIS 2017. [DOI: 10.1515/amma-2017-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
We assume that the CRISPR Cas9 theory must be delimited by applicability, because the consequences of long term DNA manipulation remain unknown. Moreover, the irreversibility of this procedure should instigate researchers to reserved opinions.
Usefulness as well as benefits of CRISPR Cas9 made it one of the most popular and used genome editing technique. But with its huge potential, ethical and safety concerns emerge. Therefore, before continuing research in this direction we should have a well organized system that is able to make that differentiation between research and reproduction. However we truly believe in the future of genetic engineering and with the CRISPR-Cas9 system we expect that the opportunity of treating now so called incurable diseases arises. Time is all we need.
Collapse
Affiliation(s)
| | - Florin Tripon
- University of Medicine and Pharmacy Tirgu Mures, Romania
| | | | | | - Alina Boglis
- University of Medicine and Pharmacy Tirgu Mures, Romania
| | - Claudia Banescu
- University of Medicine and Pharmacy Tirgu Mures, Romania Romania
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine and Pharmacy Tirgu Mureș, Romania
| |
Collapse
|
48
|
Nakamura H, Katayama T, Okabe T, Iwashita K, Fujii W, Kitamoto K, Maruyama JI. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: Strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation. J GEN APPL MICROBIOL 2017; 63:172-178. [DOI: 10.2323/jgam.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | - Tomoya Okabe
- Department of Biotechnology, The University of Tokyo
| | - Kazuhiro Iwashita
- Division of Fundamental Research, National Research Institute of Brewing (NRIB)
| | - Wataru Fujii
- Department of Animal Resource Sciences, The University of Tokyo
| | | | | |
Collapse
|
49
|
Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs 2016; 30:49-74. [PMID: 26886021 DOI: 10.1007/s40259-016-0157-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12% of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.
Collapse
|
50
|
Wang M, Glass ZA, Xu Q. Non-viral delivery of genome-editing nucleases for gene therapy. Gene Ther 2016; 24:144-150. [PMID: 27797355 DOI: 10.1038/gt.2016.72] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 01/02/2023]
Abstract
Manipulating the genetic makeup of mammalian cells using programmable nuclease-based genome-editing technology has recently evolved into a powerful avenue that holds great potential for treating genetic disorders. There are four types of genome-editing nucleases, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered, regularly interspaced, short palindromic repeat-associated nucleases such as Cas9. These nucleases have been harnessed to introduce precise and specific changes of the genome sequence at virtually any genome locus of interest. The therapeutic relevance of these genome-editing technologies, however, is challenged by the safe and efficient delivery of nuclease into targeted cells. Herein, we summarize recent advances that have been made on non-viral delivery of genome-editing nucleases. In particular, we focus on non-viral delivery of Cas9/sgRNA ribonucleoproteins for genome editing. In addition, the future direction for developing non-viral delivery of programmable nucleases for genome editing is discussed.
Collapse
Affiliation(s)
- M Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Z A Glass
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Q Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|