1
|
Guo R, Kan YC, Xu Y, Han LY, Bu WH, Han LX, Qi YY, Chu JJ. Preparation and efficacy of antibacterial methacrylate monomer-based polymethyl methacrylate bone cement containing N-halamine compounds. Front Bioeng Biotechnol 2024; 12:1414005. [PMID: 38863494 PMCID: PMC11165117 DOI: 10.3389/fbioe.2024.1414005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Our objective in this study was to prepare a novel type of polymethyl methacrylate (PMMA) bone cement, analyze its material properties, and evaluate its safety and antibacterial efficacy. Methods A halamine compound methacrylate antibacterial PMMA bone cement containing an N-Cl bond structure was formulated, and its material characterization was determined with Fourier transform infrared spectroscopy (FT-IR) and 1H-NMR. The antibacterial properties of the material were studied using contact bacteriostasis and releasing-type bacteriostasis experiments. Finally, in vitro and in vivo biocompatibility experiments were performed to analyze the toxic effects of the material on mice and embryonic osteoblast precursor cells (MC3T3-E1). Results Incorporation of the antibacterial methacrylate monomer with the N-halamine compound in the new antibacterial PMMA bone cement significantly increased its contact and releasing-type bacteriostatic performance against Staphylococcus aureus. Notably, at 20% and 25% additions of N-halamine compound, the contact and releasing-type bacteriostasis rates of bone cement samples reached 100% (p < 0.001). Furthermore, the new antibacterial bone cement containing 5%, 10%, and 15% N-halamine compounds showed good biocompatibility in vitro and in vivo. Conclusion In this study, we found that the novel antibacterial PMMA bone cement with N-halamine compound methacrylate demonstrated good contact and releasing-type bacteriostatic properties against S. aureus. In particular, bone cement containing a 15% N-halamine monomer exhibited strong antibacterial properties and good in vitro and in vivo biocompatibility.
Collapse
Affiliation(s)
- Rui Guo
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Yu-Chen Kan
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Yang Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Lu-Yang Han
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Wen-Han Bu
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Long-Xu Han
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yin-Yu Qi
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Hussain Z, A. Ibrahim M, M. El-Gohary N, A. Gabr Y, A. Allimony H, Badran AS. Utility of 6-Aminouracils for Building Substituted and Heteroannulated Pyrimidines: A Comprehensive Review. HETEROCYCLES 2023. [DOI: 10.3987/rev-23-1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Kunduru KR, Kutner N, Nassar‐Marjiya E, Shaheen‐Mualim M, Rizik L, Farah S. Disinfectants role in the prevention of spreading the
COVID
‐19 and other infectious diseases: The need for functional polymers! POLYM ADVAN TECHNOL 2022; 33:3853-3861. [PMID: 35572096 PMCID: PMC9088588 DOI: 10.1002/pat.5689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
The spreading of coronavirus through droplets and aerosols of an infected person is a well‐known mechanism. The main protection methods from this virus are using disinfectants/sanitizers, face masks, keeping social distance, and vaccination. With the rapid mutations of the virus accompanied by its features and contagions changing, new advanced functional materials development is highly needed. The usage of disinfectants/sanitizers in excess generates poisonous effects among the general public. Effective and simultaneously, human‐friendly sanitizers or disinfectants are required to prevent the poisoning and the associated issues. They minimize the toxic effects of the currently available materials by rapid action, high potential, long‐term stability, and excellent biocompatible nature. Here, we summarize the available antiviral materials, their features, and their limitations. We highlight the need to develop an arsenal of advanced functional antiviral polymers with intrinsic bioactive functionalities or released bioactive moieties in a controlled manner for rapid and long‐term actions for current and future anticipated viral outbreaks.
Collapse
Affiliation(s)
- Konda Reddy Kunduru
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Neta Kutner
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Eid Nassar‐Marjiya
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Merna Shaheen‐Mualim
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Luna Rizik
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Shady Farah
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
- The Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
4
|
|
5
|
Geissler AGA, Riesterer JR, Breit B. Stereodivergent Palladium- and Rhodium-Catalyzed Intramolecular Addition of Tosylureas to Allenes: Diastereoselective Synthesis of Tetrahydropyrimidinones. Org Lett 2021; 23:9168-9172. [PMID: 34806888 DOI: 10.1021/acs.orglett.1c03482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intramolecular addition of tosylureas to allenes is highly syn-/anti-diastereoselective when employing a palladium or rhodium-based catalytic system and affords 1,3-cyclic ureas. Under palladium catalysis a range of thermodynamic anti-tetrahydropyrimidinones are accessible, while rhodium catalysis allows synthesis of the kinetic syn-tetrahydropyrimidinones. For a representative scope of substrates both cyclic ureas were obtained in excellent yields and diastereoselectivities. The obtained tetrahydropyrimidinones were shown to be easily deprotected and modified to demonstrate the synthetic value.
Collapse
Affiliation(s)
- Arne G A Geissler
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Jasmin R Riesterer
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Bernhard Breit
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Wang Y, Yin M, Ma Z, Wang Y, Li W, Hu H, Hong X. High antimicrobial and Rhodamine B absorption properties of N-halamine modified mesoporous silica via a thiol-ene ‘click’ reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Steinman NY, Hu T, Dombrovsky A, Reches M, Domb AJ. Antiviral Polymers Based on N-Halamine Polyurea. Biomacromolecules 2021; 22:4357-4364. [PMID: 34495642 DOI: 10.1021/acs.biomac.1c00920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N-halamines are a commonly applied class of antimicrobial agents used for a variety of applications relating to human health. Here, we present the modulation of the common polymers polyurea and polyguanidine with the N-halamine technology. The N-H bonds in either polymer were converted to N-Cl or N-Br bonds capable of releasing Cl+ or Br+ cations to aqueous media as antiviral agents. Controlled release of the oxidizing agents was monitored for a period of 4 weeks. Antiviral activity was evaluated against the T4 bacteriophage as well as against the highly stable plant virus belonging to the Tobamovirus genus, tomato brown rugose fruit virus. The incorporation of the N-halamine technology on commonly used polymers has effectively introduced antiviral functionality for a wide variety of potential applications.
Collapse
Affiliation(s)
- Noam Y Steinman
- The Alex Grass Center for Drug Design and Synthesis and Center for Cannabis Research and the Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.,Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Volcani Center, ARO, Rishon LeTsiyon 7505101, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Abraham J Domb
- The Alex Grass Center for Drug Design and Synthesis and Center for Cannabis Research and the Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
8
|
Misin VM, Zezin AA, Klimov DI, Sybachin AV, Yaroslavov AA. Biocidal Polymer Formulations and Coatings. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Tang X, Xu H, Shi Y, Wu M, Tian H, Liang J. Porous antimicrobial starch particles containing N-halamine functional groups. Carbohydr Polym 2020; 229:115546. [PMID: 31826415 DOI: 10.1016/j.carbpol.2019.115546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
Abstract
The porous antimicrobial starch particles containing N-Halamine functional groups (PST-MBA-Cl particles) were synthesized by a crosslinking polymerization between starch (ST) and N, N'-methylenebisacrylamide (MBA), and then a chlorination of amide groups of MBA. The synthetic process used only water as the solvent and was environmentally friendly. The results showed that under the optimal preparation conditions, the as-synthesized PST-MBA-Cl particles could have a Cl+% of 8.60 %. Antimicrobial tests showed that PST-MBA-Cl particles had very powerful antimicrobial efficacy against both Staphylococcus aureus and Escherichia coli and could completely kill Staphylococcus aureus with a concentration of 2.1 × 106 CFU/mL and Escherichia coli with a concentration of 5.6 × 106 CFU/mL within a contact time of one minute. Furthermore, the N-Halamine functional groups of PST-MBA-Cl particles also showed excellent stability under storage and reproducibility. Therefore, the as-synthesized PST-MBA-Cl particles will have potential applications in water disinfection.
Collapse
Affiliation(s)
- Xuan Tang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Haidong Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Yuqing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Mingwei Wu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Hongru Tian
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Jie Liang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China.
| |
Collapse
|
10
|
Gao Y, Song N, Liu W, Dong A, Wang YJ, Yang YW. Construction of Antibacterial N-Halamine Polymer Nanomaterials Capable of Bacterial Membrane Disruption for Efficient Anti-Infective Wound Therapy. Macromol Biosci 2019; 19:e1800453. [PMID: 30645044 DOI: 10.1002/mabi.201800453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Indexed: 01/31/2023]
Abstract
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N-halamine polymer nanomaterials based on a strategic copolymerization of 3-allyl-5,5-dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N-halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four-stage mechanism suggests that, with unique antibacterial NCl bonds, the N-halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N-halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.
Collapse
Affiliation(s)
- Yangyang Gao
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenxin Liu
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Alideertu Dong
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yan-Jie Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
11
|
Dong A, Wang YJ, Gao Y, Gao T, Gao G. Chemical Insights into Antibacterial N-Halamines. Chem Rev 2017; 117:4806-4862. [DOI: 10.1021/acs.chemrev.6b00687] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alideertu Dong
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Yan-Jie Wang
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
| | - Yangyang Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Tianyi Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Ge Gao
- College
of Chemistry, Jilin University, Changchun 130021, People’s Republic of China
| |
Collapse
|