1
|
Sun W, Han C, Ge R, Jiang X, Wang Y, Han Y, Wang N, Song Y, Yang M, Chen G, Deng Y. Sialic Acid Conjugate-Modified Cationic Liposomal Paclitaxel for Targeted Therapy of Lung Metastasis in Breast Cancer: What a Difference the Cation Content Makes. Mol Pharm 2024; 21:1625-1638. [PMID: 38403951 DOI: 10.1021/acs.molpharmaceut.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.
Collapse
Affiliation(s)
- Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chao Han
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruirui Ge
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaotong Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingchao Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Ning Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Sun W, Li Y, Sui D, Qi Z, Zhao X, Zhou W, Hu H, Liu X, Song Y, Deng Y. A potential platform of combining sialic acid derivative-modified paclitaxel cationic liposomes with antibody-drug conjugates inspires robust tumor-specific immunological memory in solid tumors. Biomater Sci 2023; 11:2787-2808. [PMID: 36825722 DOI: 10.1039/d2bm01769e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The recent approvals for antibody-drug conjugates (ADCs) in multiple malignancies in the past few years have fueled the ongoing development of this class of drug. However, the limitation of ADCs is selectivity toward cancer cells especially overexpressing the antigen of interest. To broaden the anti-cancer spectrum of ADCs, combinatorial strategies of ADCs with chemotherapy have become a central focus of the current preclinical and clinical research. Here, we used the microtubule stabilizer paclitaxel and enfortumab vedotin-ejfv (EV), an ADC carrying the microtubule inhibitor payload monomethyl auristatin E (MMAE), for co-administration under the consideration of their mechanism of action associated with microtubules. We designed a sialic acid-cholesterol (SA-CH) conjugate-modified cationic liposome platform loaded with PTX (PTX-SAL) for efficiently targeting tumor-associated immune cells. Compared with monotherapy, PTX-SAL-mediated combination therapy with ADCs significantly inhibited S180 tumor growth in mice, with complete tumor regression occurring. The formation of a durable tumor-specific immunological memory response in mice that experienced complete tumor regression was assessed by secondary tumor cell rechallenge, and the production of memory T cells in the spleen was detected as related to the increased CD4+T memory cells and the enhanced serum IFN-γ. All our preliminary results throw light on the tremendous application potential for the application of this combination therapy regimen capable of mounting a durable immune response and stimulating a robust T cell-mediated tumor-specific immunological memory.
Collapse
Affiliation(s)
- Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Zhaowei Qi
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Xinran Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Huiguo Hu
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
3
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
4
|
Bellefroid C, Reusch C, Lechanteur A, Evrard B, Debacq-Chainiaux F, Mottet D, Piel G. Systematic study of liposomes composition towards efficient delivery of plasmid DNA as potential application of dermal fibroblasts targeting. Int J Pharm 2020; 593:120122. [PMID: 33307161 DOI: 10.1016/j.ijpharm.2020.120122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/06/2023]
Abstract
The use of non-viral DNA vectors to topically treat skin diseases has demonstrated a high potential. However, vectors applied on the skin face extracellular barriers including the stratum corneum and intracellular barriers such as the endosomal escape and the nuclear targeting of the plasmid DNA. The aim of this study was to develop a formulation suitable for dermal application and effective for delivering plasmid DNA into cells. Different formulations were prepared using different cationic lipids (DOTAP, DC-Chol, DOTMA) and co-lipids (DOPE, DSPE). Lipoplexes were produced by complexing liposomes with plasmid DNA at different pDNA/CL (w/w) ratios. Our results showed that appropriate pDNA/CL ratios allowing total complexation of plasmid DNA differed depending on the structure of the lipid used. The transfection rates showed that (i) higher rates were obtained with DOTMA lipoplexes, (ii) DC-Chol lipoplexes provided a transfection twice as important as DOTAP lipoplexes and (iii) when DSPE was added, the cytotoxicity decreased while transfection rates were similar. We found that formulations composed of DC-Chol:DOPE:DSPE or DOTMA:DOPE were appropriate to complex plasmid DNA and to transfect human primary dermal fibroblasts with efficacy and limited cytotoxicity. Therefore, these formulations are highly promising in the context of gene therapy to treat skin diseases.
Collapse
Affiliation(s)
- C Bellefroid
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - C Reusch
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
| | - A Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - B Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - F Debacq-Chainiaux
- URBC, Namur Research Institute for Life Science (NARILIS), University of Namur, 5000 Namur, Belgium
| | - D Mottet
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
| | - G Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium.
| |
Collapse
|
5
|
Barkat MA, Harshita, Rizwanullah M, Pottoo FH, Beg S, Akhter S, Ahmad FJ. Therapeutic Nanoemulsion: Concept to Delivery. Curr Pharm Des 2020; 26:1145-1166. [PMID: 32183664 DOI: 10.2174/1381612826666200317140600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
Nanoemulsions (NEs) or nanometric-scaled emulsions are transparent or translucent, optically isotropic and kinetically stable heterogeneous system of two different immiscible liquids namely, water and oil stabilized with an amphiphilic surfactant having droplet size ranges up to 100 nm. They offer a variety of potential interests for certain applications: improved deep-rooted stability; excellent optical clarity; and, enhanced bioavailability due to its nanoscale of particles. Though there is still comparatively narrow insight apropos design, development, and optimization of NEs, which mainly stems from the fact that conventional characteristics of emulsion development and stabilization only partly apply to NEs. The contemporary article focuses on the nanoemulsion dosage form journey from concept to key application in drug delivery. In addition, industrial scalability of the nanoemulsion, as well as its presence in commercial and clinical practice, are also addressed.
Collapse
Affiliation(s)
- Md A Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md Rizwanullah
- Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), 31441, Dammam, Saudi Arabia
| | - Sarwar Beg
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sohail Akhter
- Le Studium research fellow for Centre de Biophysique Moléculaire (CBM)-CNRS, University of Orléans, UPR4301, Orléans, France
| | - Farhan J Ahmad
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
7
|
Habib S, Daniels A, Ariatti M, Singh M. Anti- c-myc cholesterol based lipoplexes as onco-nanotherapeutic agents in vitro. F1000Res 2020; 9:770. [PMID: 33391729 PMCID: PMC7745184 DOI: 10.12688/f1000research.25142.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Strategies aimed at inhibiting the expression of the c-myc oncogene could provide the basis for alternative cancer treatment. In this regard, silencing c-myc expression using small interfering RNA (siRNA) is an attractive option. However, the development of a clinically viable, siRNA-based, c-myc silencing system is largely dependent upon the design of an appropriate siRNA carrier that can be easily prepared. Nanostructures formed by the electrostatic association of siRNA and cationic lipid vesicles represent uncomplicated siRNA delivery systems. Methods: This study has focused on cationic liposomes prepared with equimolar quantities of the cytofectin, N,N-dimethylaminopropylamido-succinylcholesteryl-formylhydrazide (MS09), and cholesterol (Chol) for the development of a simple, but effective anti- c-myc onco-nanotherapeutic agent. Liposomes formulated with dioleoylphosphatidylethanolamine (DOPE) in place of Chol as the co-lipid were included for comparative purposes. Results: Liposomes successfully bound siRNA forming lipoplexes of less than 150 nm in size, which assumed bilamellar aggregrates. The liposome formulations were well tolerated in the human breast adenocarcinoma (MCF-7) and colon carcinoma (HT-29) cells, which overexpress c-myc. Lipoplexes directed against the c-myc transcript mediated a dramatic reduction in c-myc mRNA and protein levels. Moreover, oncogene knockdown and anti-cancer effects were superior to that of Lipofectamine™ 3000. Conclusion: This anti- c-myc MS09:Chol lipoplex exemplifies a simple anticancer agent with enhanced c-myc gene silencing potential in vitro.
Collapse
Affiliation(s)
- Saffiya Habib
- Department of Biochemistry, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| | - Aliscia Daniels
- Department of Biochemistry, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| | - Mario Ariatti
- Department of Biochemistry, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| | - Moganavelli Singh
- Department of Biochemistry, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| |
Collapse
|
8
|
Nazimek K, Bryniarski K. Approaches to inducing antigen-specific immune tolerance in allergy and autoimmunity: Focus on antigen-presenting cells and extracellular vesicles. Scand J Immunol 2020; 91:e12881. [PMID: 32243636 DOI: 10.1111/sji.12881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Increasing prevalence of allergic and autoimmune diseases urges clinicians and researchers to search for new and efficient treatments. Strategies that activate antigen-specific immune tolerance and simultaneously maintain immune reactivity to all other antigens deserve special attention. Accordingly, antigen-presenting cells (APCs) seem to be the best suited for orchestrating these mechanisms by directing T cell immune responses towards a tolerant subtype. Recent advances in understanding cell-to-cell communication via extracellular vesicles (EVs) make the latter promising candidates for reprogramming APCs towards a tolerant phenotype, and for mediating tolerogenic APC function. Thus, comprehensive studies have been undertaken to describe the interactions of APCs and EVs naturally occurring during immune tolerance induction, as well as to develop EV-based manoeuvres enabling the induction of immune tolerance in an antigen-specific manner. In this review, we summarize the findings of relevant studies, with a special emphasis on future perspectives on their translation to clinical practice.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| | - Krzysztof Bryniarski
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| |
Collapse
|
9
|
Lipid gene nanocarriers for the treatment of skin diseases: Current state-of-the-art. Eur J Pharm Biopharm 2019; 137:95-111. [DOI: 10.1016/j.ejpb.2019.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
|
10
|
Uvarova V, Nizamov T, Abakumov M, Vodopyanov S, Abakumova T, Saltykova I, Mogilnikov P, Shchetinin I, Majouga A. Lipidoid iron oxide nanoparticles are a platform for nucleic acid delivery to the liver. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2018.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Targeted delivery of antisense drugs is a promising technology which can provide a platform for the development of highly effective therapeuticals against a broad range of diseases. Insufficient stability of RNA in biological media coupled with hydrophilicity that prevents the molecule from penetrating cell membranes considerably limit RNA application in clinical practice. The aim of this work was to design a system for antisense drug delivery to liver hepatocytes using lipidoid magnetic nanoparticles (LNP). Nanocubes (NC) with average sizes of 16 and 27 nm were synthesized through decomposition of iron (III) oleate under high temperature conditions and functionalized with a cationic lipidoid С12-200. Magnetic NC demonstrated good MR-contrasting properties. Biodistribution of LNP was studied in vivo in BALB/c mice using the MR scanner. Additionally, liver sections obtained from the mice were subjected to histological examination. Nanoparticles of smaller size did not have a cytotoxic effect on HepG2 and Huh7 cell lines, whereas for larger NC, IC50 was 21.5 μg/ml and 126 μg/ml for HepG2 and Huh7 cells, respectively. Smaller particles tended to accumulate in hepatocytes. Bigger NC mainly accumulated in the spleen but also ended up in liver macrophages. This fact can be explained by a bigger hydrodynamic size of nanoparticles with a bigger magnetic core. Particles with smaller cores are a more effective platform for the delivery of antisense drugs to hepatocytes.
Collapse
Affiliation(s)
- V.I. Uvarova
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow; Laboratory of Tissue Specific Ligands Investigation, Lomonosov Moscow State University, Moscow
| | - T.R. Nizamov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow
| | - M.A. Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow
| | - S.S. Vodopyanov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow
| | - T.O. Abakumova
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow
| | - I.V. Saltykova
- Laboratory of Tissue Specific Ligands Investigation, Lomonosov Moscow State University, Moscow
| | - P.S. Mogilnikov
- Department of Physical Materials Science, National University of Science and Technology MISiS, Moscow
| | - I.V. Shchetinin
- Department of Physical Materials Science, National University of Science and Technology MISiS, Moscow
| | - A.M. Majouga
- Mendeleev University of Chemical Technology of Russia, Moscow
| |
Collapse
|
11
|
Shobaki N, Sato Y, Harashima H. Mixing lipids to manipulate the ionization status of lipid nanoparticles for specific tissue targeting. Int J Nanomedicine 2018; 13:8395-8410. [PMID: 30587967 PMCID: PMC6294068 DOI: 10.2147/ijn.s188016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction The development of targeted drug delivery systems is a rapidly growing area in the field of nanomedicine. Methods We report herein on optimizing the targeting efficiency of a lipid nanoparticle (LNP) by manipulating the acid dissociation constant (pKa) value of its membrane, which reflects its ionization status. Instead of changing the chemical structure of the lipids to achieve this, we used a mixture of two types of pH-sensitive cationic lipids that show different pKa values in a single LNP. We mixed various ratios of YSK05 and YSK12-C4 lipids, which have pKa values of 6.50 and 8.00, respectively, in one formulation (referred to as YSK05/12-LNP). Results The pKa of the YSK05/12-LNP was dependent not only on the molar ratio of each lipid but also on the individual contribution of each lipid to the final pKa (the YSK12-C4 lipid showed a higher contribution). Furthermore, we succeeded in targeting and delivering short interfering RNA to liver sinusoidal endothelial cells using one of the YSK05/12-LNPs which showed an optimum pKa value of 7.15 and an appropriate ionization status (~36% cationic charge) to permit the particles to be taken up by liver sinusoidal endothelial cells. Conclusion This strategy has the potential for preparing custom LNPs with endless varieties of structures and final pKa values, and would have poten tial applications in drug delivery and ionic-based tissue targeting.
Collapse
Affiliation(s)
- Nour Shobaki
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,
| | - Yusuke Sato
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,
| |
Collapse
|
12
|
Preparation of siRNA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1318-1325. [DOI: 10.1016/j.bbamem.2018.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 01/01/2023]
|
13
|
Wang B, Zhang J, Liu YH, Zhang W, Xiao YP, Zhao RM, Yu XQ. A reduction-responsive liposomal nanocarrier with self-reporting ability for efficient gene delivery. J Mater Chem B 2018; 6:2860-2868. [PMID: 32254239 DOI: 10.1039/c8tb00392k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past few decades, although various reduction-responsive nanocarriers have been designed and explored for gene delivery, it is difficult to directly detect or monitor the reduction capability of these carriers, especially under intracellular conditions. Taking advantage of the generated fluorescence signal in the reduction process of the naphthalimide-sulfonamide (NS) group, we developed a novel liposomal nanocarrier, FNSL, which showed reduction-sensitive property and self-reporting character. As a new reduction-responsive site in a gene delivery system, the NS group in FNSL is capable of responding to glutathione (GSH) and simultaneously emitting green fluorescence at 500 nm in both extra- and intracellular circumstances. Hence, it will be very convenient to assess the reducibility of this carrier and monitor the stimuli-responsive gene release via fluorescence signal. FNSL has high affinity for DNA and can condense it into nanoparticles with a proper nano-size and zeta potential. Compared with the non-reducible FNAL, FNSL showed enhanced gene release capability, higher transfection efficiency (TE), and lower cytotoxicity. Furthermore, treatment of FNSL-mediated transfection with slightly exogenous GSH greatly improved the TE of FNSL in HepG2 cells, and its TE was even higher than that of Lipofectamine 2000. These results demonstrate that FNSL possesses great potential for efficient and low-toxicity gene delivery, and this study on a bioreducible liposome with self-reporting ability would be a guide for further research on the development of biodegradable gene carriers.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Jia Z, Gong Y, Pi Y, Liu X, Gao L, Kang L, Wang J, Yang F, Tang J, Lu W, Li Q, Zhang W, Yan Z, Yu L. pPB Peptide-Mediated siRNA-Loaded Stable Nucleic Acid Lipid Nanoparticles on Targeting Therapy of Hepatic Fibrosis. Mol Pharm 2017; 15:53-62. [PMID: 29148802 DOI: 10.1021/acs.molpharmaceut.7b00709] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatic fibrosis is a necessary process in the development of liver diseases such as hepatic cirrhosis and its complications, which has become a serious threat to human health. Currently, antifibrotic drug treatment is ineffective, and one reason should be the lack of liver targeting ability. In this report, polypeptide pPB-modified stable nucleic acid lipid nanoparticles (pPB-SNALPs) were prepared to selectively deliver siRNAs against heat shock protein 47 to the liver for targeted therapy of hepatic fibrosis. First, siRNA sequences with high silencing efficiency were screened based on siRNA transfection efficacy. Then, pPB-SNALPs were prepared, which showed a narrow size distribution with a diameter in the range of 110-130 nm and a neutral z-potential of 0 mV. As evidenced by the in vitro and in vivo targeting study, compared with unmodified SNALP, pPB-SNALP showed increased uptake by LX-2 cells and primary hepatic stellate cells (HSC) of mice in vitro and showed increased liver distribution and HSC uptake in vivo. In addition, pPB-SNALP also exhibited an enhanced inhibitory effect on TAA-induced hepatic fibrosis mice with high gp46 mRNA expression in vivo. In summary, our results demonstrated that pPB-SNALP is an effective liver-targeted delivery system. This study could lay a good foundation for the targeted gene therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Zongxiang Jia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Yan Gong
- Department of Geriatrics, Huashan Hospital, Fudan University , Shanghai 200040, P.R. China
| | - Yufang Pi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Xueying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Lipeng Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Liqing Kang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Jing Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education , Shanghai 201203, P.R. China
| | - Qinghua Li
- Department of Hepatology and Pancreatology, Shanghai East Hospital, Tongji University , Shanghai 200120, P.R. China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University , Shanghai 200062, P.R. China
| | - Zhiqiang Yan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| | - Lei Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P.R. China
| |
Collapse
|
15
|
Ross K. Towards topical microRNA-directed therapy for epidermal disorders. J Control Release 2017; 269:136-147. [PMID: 29133119 DOI: 10.1016/j.jconrel.2017.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023]
Abstract
There remains an unmet dermatological need for innovative topical agents that achieve better longterm outcomes with fewer side effects. Modulation of the expression and activity of microRNA (miRNAs) represents an emerging translational framework for the development of such innovative therapies because changes in the expression of one miRNA can have wide-ranging effects on diverse cellular processes associated with disease. In this short review, the roles of miRNA in epidermal development, psoriasis, cutaneous squamous cell carcinoma and re-epithelisation are highlighted. Consideration is given to the delivery of oligonucleotides that mimic or inhibit miRNA function using vehicles such as cell penetrating peptides, spherical nucleic acids, deformable liposomes and liquid crystalline nanodispersions. Formulation of miRNA-directed oligonucleotides with such skin-penetrating epidermal agents will drive the development of RNA-based cutaneous therapeutics for deployment as primary or adjuvant therapies for epidermal disorders.
Collapse
Affiliation(s)
- Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
16
|
Singh Y, Durga Rao Viswanadham KK, Kumar Jajoriya A, Meher JG, Raval K, Jaiswal S, Dewangan J, Bora HK, Rath SK, Lal J, Mishra DP, Chourasia MK. Click Biotinylation of PLGA Template for Biotin Receptor Oriented Delivery of Doxorubicin Hydrochloride in 4T1 Cell-Induced Breast Cancer. Mol Pharm 2017. [PMID: 28636400 DOI: 10.1021/acs.molpharmaceut.7b00310] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PLGA was functionalized with PEG and biotin using click chemistry to generate a biotin receptor targeted copolymer (biotinylated-PEG-PLGA) which in turn was used to fabricate ultrafine nanoparticles (BPNP) of doxorubicin hydrochloride (DOX) for effective delivery in 4T1 cell induced breast cancer. However, adequate entrapment of a hydrophilic bioactive like DOX in a hydrophobic polymer system made of PLGA is not usually possible. We therefore modified a conventional W/O/W emulsion method by utilizing NH4Cl in the external phase to constrain DOX in dissolved polymer phase by suppressing DOX's inherent aqueous solubility as per common ion effect. This resulted in over 8-fold enhancement in entrapment efficiency of DOX inside BPNP, which otherwise is highly susceptible to leakage due to its relatively high aqueous solubility. TEM and DLS established BPNP to be sized below 100 nm, storage stability studies showed that BPNP were stable for one month at 4 °C, and in vitro release suggested significant control in drug release. Extensive in vitro and in vivo studies were conducted to propound anticancer and antiproliferative activity of BPNP. Plasma and tissue distribution study supplemented by pertinent in vivo fluorescence imaging mapped the exact fate of DOX contained inside BPNP once it was administered intravenously. A comparative safety profile via acute toxicity studies in mice was also generated to out rightly establish usefulness of BPNP. Results suggest that BPNP substantially enhance anticancer activity of DOX while simultaneously mitigating its toxic potential due to altered spatial and temporal presentation of drug and consequently deserve further allometric iteration.
Collapse
Affiliation(s)
- Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | | | - Arun Kumar Jajoriya
- Endocrinology Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Swati Jaiswal
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Jayant Dewangan
- Division of Toxicology, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - H K Bora
- Laboratory animals facility, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Jawahar Lal
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Durga Prasad Mishra
- Endocrinology Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| |
Collapse
|
17
|
Sustained delivery of siRNA poly- and lipopolyplexes from porous macromer-crosslinked gelatin gels. Int J Pharm 2017; 526:178-187. [DOI: 10.1016/j.ijpharm.2017.04.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/15/2023]
|
18
|
Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R, Bhadauria S, Chourasia MK. Targeting tumor associated macrophages (TAMs) via nanocarriers. J Control Release 2017; 254:92-106. [DOI: 10.1016/j.jconrel.2017.03.395] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
19
|
Nanosized complexation assemblies housed inside reverse micelles churn out monocytic delivery cores for bendamustine hydrochloride. Eur J Pharm Biopharm 2017; 113:198-210. [DOI: 10.1016/j.ejpb.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023]
|
20
|
Xiang B, Jia XL, Qi JL, Yang LP, Sun WH, Yan X, Yang SK, Cao DY, Du Q, Qi XR. Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. Int J Nanomedicine 2017; 12:2385-2405. [PMID: 28405163 PMCID: PMC5378471 DOI: 10.2147/ijn.s129574] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As a potent therapeutic agent, small interfering RNA (siRNA) has been exploited to silence critical genes involved in tumor initiation and progression. However, development of a desirable delivery system is required to overcome the unfavorable properties of siRNA such as its high degradability, molecular size, and negative charge to help increase its accumulation in tumor tissues and promote efficient cellular uptake and endosomal/lysosomal escape of the nucleic acids. In this study, we developed a new activatable cell-penetrating peptide (ACPP) that is responsive to an acidic tumor microenvironment, which was then used to modify the surfaces of siRNA-loaded liposomes. The ACPP is composed of a cell-penetrating peptide (CPP), an acid-labile linker (hydrazone), and a polyanionic domain, including glutamic acid and histidine. In the systemic circulation (pH 7.4), the surface polycationic moieties of the CPP (polyarginine) are "shielded" by the intramolecular electrostatic interaction of the inhibitory domain. When exposed to a lower pH, a common property of solid tumors, the ACPP undergoes acid-catalyzed breakage at the hydrazone site, and the consequent protonation of histidine residues promotes detachment of the inhibitory peptide. Subsequently, the unshielded CPP would facilitate the cellular membrane penetration and efficient endosomal/lysosomal evasion of liposomal siRNA. A series of investigations demonstrated that once exposed to an acidic pH, the ACPP-modified liposomes showed elevated cellular uptake, downregulated expression of polo-like kinase 1, and augmented cell apoptosis. In addition, favorable siRNA avoidance of the endosome/lysosome was observed in both MCF-7 and A549 cells, followed by effective cytoplasmic release. In view of its acid sensitivity and therapeutic potency, this newly developed pH-responsive and ACPP-mediated liposome system represents a potential platform for siRNA-based cancer treatment.
Collapse
Affiliation(s)
- Bai Xiang
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Xue-Li Jia
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Jin-Long Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei
| | - Li-Ping Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Wei-Hong Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Xiao Yan
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Shao-Kun Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - De-Ying Cao
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Qing Du
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Xian-Rong Qi
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
21
|
Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252:28-49. [PMID: 28279798 DOI: 10.1016/j.jconrel.2017.03.008] [Citation(s) in RCA: 622] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 01/07/2023]
Abstract
Nanoemulsions are biphasic dispersion of two immiscible liquids: either water in oil (W/O) or oil in water (O/W) droplets stabilized by an amphiphilic surfactant. These come across as ultrafine dispersions whose differential drug loading; viscoelastic as well as visual properties can cater to a wide range of functionalities including drug delivery. However there is still relatively narrow insight regarding development, manufacturing, fabrication and manipulation of nanoemulsions which primarily stems from the fact that conventional aspects of emulsion formation and stabilization only partially apply to nanoemulsions. This general deficiency sets up the premise for current review. We attempt to explore varying intricacies, excipients, manufacturing techniques and their underlying principles, production conditions, structural dynamics, prevalent destabilization mechanisms, and drug delivery applications of nanoemulsions to spike interest of those contemplating a foray in this field.
Collapse
|
22
|
Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017; 525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.
Collapse
Affiliation(s)
- Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| |
Collapse
|
23
|
Zatsepin TS, Kotelevtsev YV, Koteliansky V. Lipid nanoparticles for targeted siRNA delivery - going from bench to bedside. Int J Nanomedicine 2016; 11:3077-86. [PMID: 27462152 PMCID: PMC4939975 DOI: 10.2147/ijn.s106625] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This review covers the basic aspects of small interfering RNA delivery by lipid nano-particles (LNPs) and elaborates on the current status of clinical trials for these systems. We briefly describe the roles of all LNP components and possible strategies for their improvement. We also focus on the current clinical trials using LNP-formulated RNA and the possible outcomes for therapy in the near future. Also, we present a critical analysis of selected clinical trials that reveals the common logic behind target selection. We address this review to a wide audience, especially to medical doctors who are interested in the application of RNA interference-based treatment platforms. We anticipate that this review may spark interest in this particular audience and generate new ideas in target selection for the disorders they are dealing with.
Collapse
Affiliation(s)
- Timofei S Zatsepin
- Center of Functional Genomics, Skolkovo Institute of Science and Technology; Department of Chemistry, Lomonosov Moscow State University; Production Department, Central Research Institute of Epidemiology, Moscow, Russia
| | - Yuri V Kotelevtsev
- Center of Functional Genomics, Skolkovo Institute of Science and Technology
| | - Victor Koteliansky
- Center of Functional Genomics, Skolkovo Institute of Science and Technology; Department of Chemistry, Lomonosov Moscow State University
| |
Collapse
|
24
|
Sato Y, Nakamura T, Yamada Y, Harashima H. Development of a multifunctional envelope-type nano device and its application to nanomedicine. J Control Release 2016; 244:194-204. [PMID: 27374187 DOI: 10.1016/j.jconrel.2016.06.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
Successful nanomedicines should be based on sound drug delivery systems (DDS) the permit intracellular trafficking as well as the biodistribution of cargos to be controlled. We have been developing new types of DDS that are multifunctional envelope-type nano devices referred to as MENDs. First, we will focus the in vivo delivery of siRNA to hepatocytes using a YSK-MEND which is composed of pH-responsive cationic lipids. The YSK-MEND is capable of inducing efficient silencing activity in hepatocytes and can be used to cure mice that are infected with hepatitis C or B. The YSK-MEND can also be applied to cancer immunotherapy through the activation of immune cells by delivering different compounds such as cyclic-di-GMP, siRNA or alpha-galactosylceramide as a lipid antigen. The findings indicate that, as predicted, these compounds, when encapsulated in the YSK-MEND, can be delivered to the site of action and induced immune activation through different mechanisms. Finally, a MITO-Porter, a membrane fusion-based delivery system to mitochondria, is introduced as an organelle targeting DDS and a new strategy for cancer therapy is proposed by delivering gentamicin to mitochondria of cancer cells. These new technologies are expected to extend the therapeutic area of Nanomedicine by increasing the power of DDS, especially from the view point of controlled intracellular trafficking.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
25
|
Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J Control Release 2015; 240:165-190. [PMID: 26686079 DOI: 10.1016/j.jconrel.2015.12.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Gene therapy is becoming an influential part of the rapidly increasing armamentarium of biopharmaceuticals for improving health and combating diseases. Currently, three gene therapy treatments are approved by regulatory agencies. While these treatments utilize viral vectors, non-viral alternative technologies are also being developed to improve the safety profile and manufacturability of gene carrier formulations. We present an overview of gene-based therapies focusing on non-viral gene delivery systems and the genetic therapeutic tools that will further revolutionize medical treatment with primary focus on the range and development of non-invasive delivery systems for dermal, transdermal, ocular and pulmonary administrations and perspectives on other administration methods such as intranasal, oral, buccal, vaginal, rectal and otic delivery.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nafiseh Nafissi
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Daniella Calderon
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lokesh Narsineni
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amirreza Rafiee
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|