1
|
Faber T, McConville JT, Lamprecht A. Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena. J Control Release 2024; 366:312-327. [PMID: 38161031 DOI: 10.1016/j.jconrel.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Scanning electron microscopy (SEM) has long been a standard tool for morphological analyses, providing sub micrometer resolution of pharmaceutical formulations. However, analysis of internal morphologies of such formulations can often be biased due to the introduction of artifacts that originate from sample preparation. A recent advancement in SEM, is the focused ion beam scanning electron microscopy (FIB-SEM). This technique uses a focused ion beam (FIB) to remove material with nanometer precision, to provide virtually sample-independent access to sub-surface structures. The FIB can be combined with SEM imaging capabilities within the same instrumentation. As a powerful analytical tool, electron microscopy and FIB-milling are performed sequentially to produce high-resolution 3D models of structural peculiarities of diverse drug delivery systems or their behavior in a biological environment, i.e. intracellular or -tissue distribution. This review paper briefly describes the technical background of the method, outlines a wide array of potential uses within the drug delivery field, and focuses on intracellular transport where high-resolution images are an essential tool for mechanistical insights.
Collapse
Affiliation(s)
- Thilo Faber
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Université de Franche-Comté, INSERM UMR1098 Right, Besançon, France.
| |
Collapse
|
2
|
Olsson M, Govender R, Diaz A, Holler M, Menzel A, Abrahmsén-Alami S, Sadd M, Larsson A, Matic A, Liebi M. Multiscale X-ray imaging and characterisation of pharmaceutical dosage forms. Int J Pharm 2023:123200. [PMID: 37414373 DOI: 10.1016/j.ijpharm.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
A correlative, multiscale imaging methodology for visualising and quantifying the morphology of solid dosage forms by combining ptychographic X-ray computed nanotomography (PXCT) and scanning small- and wide-angle X-ray scattering (S/WAXS) is presented. The methodology presents a workflow for multiscale analysis, where structures are characterised from the nanometre to millimetre regime. Here, the method is demonstrated by characterising a hot-melt extruded, partly crystalline, solid dispersion of carbamazepine in ethyl cellulose. Characterisation of the morphology and solid-state phase of the drug in solid dosage forms is central as this affects the performance of the final formulation. The 3D morphology was visualised at a resolution of 80 nm over an extended volume through PXCT, revealing an oriented structure of crystalline drug domains aligned in the direction of extrusion. Scanning S/WAXS, showed that the nanostructure is similar over the cross section of the extruded filament, with minor radial changes in domain sizes and degree of orientation. The polymorphic forms of carbamazepine were qualified with WAXS, showing a heterogeneous distribution of the metastable forms I and II. This demonstrates the methodology for multiscale structural characterization and imaging to enable a better understanding of the relationships between morphology, performance, and processing conditions of solid dosage forms.
Collapse
Affiliation(s)
- Martina Olsson
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Rydvikha Govender
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Ana Diaz
- Photon Science Division, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Mirko Holler
- Photon Science Division, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Andreas Menzel
- Photon Science Division, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Susanna Abrahmsén-Alami
- Innovation Strategies & External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Matthew Sadd
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; FibRe-Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Aleksandar Matic
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; FibRe-Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Photon Science Division, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland; Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| |
Collapse
|
3
|
Raghav N, Sharma MR, Kennedy JF. Nanocellulose: A mini-review on types and use in drug delivery systems. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2020.100031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
4
|
New Characterization Measures of Pore Shape and Connectivity Applied to Coatings used for Controlled Drug Release. J Pharm Sci 2021; 110:2753-2764. [PMID: 33711347 DOI: 10.1016/j.xphs.2021.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Pore geometry characterization-methods are important tools for understanding how pore structure influences properties such as transport through a porous material. Bottlenecks can have a large influence on transport and related properties. However, existing methods only catch certain types of bottleneck effects caused by variations in pore size. We here introduce a new measure, geodesic channel strength, which captures a different type of bottleneck effect caused by many paths coinciding in the same pore. We further develop new variants of pore size measures and propose a new way of visualizing 3-D characterization results using layered images. The new measures together with existing measures were used to characterize and visualize properties of 3-D FIB-SEM images of three leached ethyl-cellulose/hydroxypropyl-cellulose films. All films were shown to be anisotropic, and the strongest anisotropy was found in the film with lowest porosity. This film had very tortuous paths and strong geodesic channel-bottlenecks, while the paths through the other two films were relatively straight with well-connected pore networks. The geodesic channel strength was shown to give important new visual and quantitative insights about connectivity, and the new pore size measures provided useful information about anisotropies and inhomogeneities in the pore structures. The methods have been implemented in the freely available software MIST.
Collapse
|
5
|
Qureshi D, Behera KP, Mohanty D, Mahapatra SK, Verma S, Sukyai P, Banerjee I, Pal SK, Mohanty B, Kim D, Pal K. Synthesis of novel poly (vinyl alcohol)/tamarind gum/bentonite-based composite films for drug delivery applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Characterization of transport mechanisms for controlled release polymer membranes using focused ion beam scanning electron microscopy image-based modelling. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Stewart S, Domínguez-Robles J, McIlorum VJ, Gonzalez Z, Utomo E, Mancuso E, Lamprou DA, Donnelly RF, Larrañeta E. Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Mol Pharm 2020; 17:3487-3500. [PMID: 32672976 PMCID: PMC7482401 DOI: 10.1021/acs.molpharmaceut.0c00515] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/18/2023]
Abstract
Implantable devices are versatile and promising drug delivery systems, and their advantages are well established. Of these advantages, long-acting drug delivery is perhaps the most valuable. Hydrophilic compounds are particularly difficult to deliver for prolonged times. This work investigates the use of poly(caprolactone) (PCL)-based implant coatings as a novel strategy to prolong the delivery of hydrophilic compounds from implantable devices that have been prepared by additive manufacturing (AM). Hollow implants were prepared from poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) using fused filament fabrication (FFF) AM and subsequently coated in a PCL-based coating. Coatings were prepared by solution-casting mixtures of differing molecular weights of PCL and poly(ethylene glycol) (PEG). Increasing the proportion of low-molecular-weight PCL up to 60% in the formulations decreased the crystallinity by over 20%, melting temperature by over 4 °C, and water contact angle by over 40°, resulting in an increased degradation rate when compared to pure high-molecular-weight PCL. Addition of 30% PEG to the formulation increased the porosity of the formulation by over 50% when compared to an equivalent PCL-only formulation. These implants demonstrated in vitro release rates for hydrophilic model compounds (methylene blue and ibuprofen sodium) ranging from 0.01 to 34.09 mg/day, depending on the drug used. The versatility of the devices produced in this work and the range of release rates achievable show great potential. Implants could be specifically developed in order to match the specific release rate required for a number of drugs for a wide range of conditions.
Collapse
Affiliation(s)
- Sarah
A. Stewart
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Juan Domínguez-Robles
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Victoria J. McIlorum
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Zoilo Gonzalez
- Instituto
De Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049 Madrid, Spain
| | - Emilia Utomo
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Elena Mancuso
- Nanotechnology
and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown BT37 0QB, U.K.
| | - Dimitrios A. Lamprou
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Eneko Larrañeta
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
8
|
Controlled Drug Release by the Pore Structure in Polydimethylsiloxane Transdermal Patches. Polymers (Basel) 2020; 12:polym12071520. [PMID: 32650625 PMCID: PMC7407597 DOI: 10.3390/polym12071520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022] Open
Abstract
The use of polydimethylsiloxanes (PDMS) as a drug carrier in transdermal adhesive patches is limited and there is insufficient data on the polymer structure and diffusivity, especially when additives modify the matrix. PDMS films with liquid additives (10% w/w): silicone oil (SO), polyoxyethylene glycol (PEG) or propylene glycol (PG) were prepared and indomethacin (IND; 5% w/w) was incorporated as a model active substance. The microstructure of the PDMS matrix and its permeability to water was investigated and correlated to the kinetics of the in-vitro IND release from the film. Three microscopic techniques were used to characterize in detail the microstructure of PDMS films: scanning electron microscopy, fluorescent microscopy and atomic force microscopy. PDMS films with hydrophilic PEG or PG showed different two-phase structures. A two-fold increase in steady-state flux of IND and increased water transport in the presence of PEG was attributed to the pore-like channels created by this polar solvent in the PDMS matrix. This effect was not observed in the films with PG, where only discontinuous droplet-like structures were visible. All additives significantly changed the tensile parameters of the films but the effects were not very pronounced.
Collapse
|
9
|
Benzine Y, Siepmann F, Neut C, Danede F, Willart J, Siepmann J, Karrout Y. Hot melt extruded polysaccharide blends for controlled drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Wang W, Qiu X, Yang Y, Kim HS, Jia X, Yu H, Kwak SS. Sweetpotato bZIP Transcription Factor IbABF4 Confers Tolerance to Multiple Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:630. [PMID: 31156685 PMCID: PMC6531819 DOI: 10.3389/fpls.2019.00630] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/26/2019] [Indexed: 05/03/2023]
Abstract
The abscisic acid (ABA)-responsive element binding factors (ABFs) play important regulatory roles in multiple abiotic stresses responses. However, information on the stress tolerance functions of ABF genes in sweetpotato (Ipomoea batatas [L.] Lam) remains limited. In the present study, we isolated and functionally characterized the sweetpotato IbABF4 gene, which encodes an abiotic stress-inducible basic leucine zipper (bZIP) transcription factor. Sequence analysis showed that the IbABF4 protein contains a typical bZIP domain and five conserved Ser/Thr kinase phosphorylation sites (RXXS/T). The IbABF4 gene was constitutively expressed in leaf, petiole, stem, and root, with the highest expression in storage root body. Expression of IbABF4 was induced by ABA and several environmental stresses including drought, salt, and heat shock. The IbABF4 protein localized to the nucleus, exhibited transcriptional activation activity, and showed binding to the cis-acting ABA-responsive element (ABRE) in vitro. Overexpression of IbABF4 in Arabidopsis thaliana not only increased ABA sensitivity but also enhanced drought and salt stress tolerance. Furthermore, transgenic sweetpotato plants (hereafter referred to as SA plants) overexpressing IbABF4, generated in this study, exhibited increased tolerance to drought, salt, and oxidative stresses on the whole plant level. This phenotype was associated with higher photosynthetic efficiency and lower malondialdehyde and hydrogen peroxide content. Levels of endogenous ABA content and ABA/stress-responsive gene expression were significantly upregulated in transgenic Arabidopsis and sweetpotato plants compared with wild-type plants under drought stress. Our results suggest that the expression of IbABF4 in Arabidopsis and sweetpotato enhances tolerance to multiple abiotic stresses through the ABA signaling pathway.
Collapse
Affiliation(s)
- Wenbin Wang
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Xiangpo Qiu
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Yanxin Yang
- College of Arts and Science, Shanxi Agricultural University, Taigu, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Xiaoyun Jia
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Huan Yu
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
11
|
Tang B, Shan J, Yuan T, Xiao Y, Liang J, Fan Y, Zhang X. Hydroxypropylcellulose enhanced high viscosity endoscopic mucosal dissection intraoperative chitosan thermosensitive hydrogel. Carbohydr Polym 2019; 209:198-206. [DOI: 10.1016/j.carbpol.2018.12.103] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/27/2018] [Accepted: 12/31/2018] [Indexed: 01/15/2023]
|
12
|
Chen L, Yang G, Chu X, Gao C, Wang Y, Gong W, Li Z, Yang Y, Yang M, Gao C. Polymer Distribution and Mechanism Conversion in Multiple Media of Phase-Separated Controlled-Release Film-Coating. Pharmaceutics 2019; 11:pharmaceutics11020080. [PMID: 30769846 PMCID: PMC6410001 DOI: 10.3390/pharmaceutics11020080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 01/04/2023] Open
Abstract
Phase-separated films of water-insoluble ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC) can be utilized to tailor drug release from coated pellets. In the present study, the effects of HPC levels and the pH, type, ionic strength and osmolarity of the media on the release profiles of soluble metoprolol succinates from the EC/HPC-coated pellets were investigated, and the differences in drug-release kinetics in multiple media were further elucidated through the HPC leaching and swelling kinetics of the pellets, morphology (SEM) and water uptake of the free films and the interaction between the coating polymers and the media compositions. Interestingly, the drug release rate from the pellets in different media was not in agreement with the drug solubility which have a positive correlation with the drug dissolution rate based on Noyes–Whitney equation law. In particular, the drug release rate in acetate buffer at pH 4.5 was faster than that in other media despite the solubility of drug was relatively lower, regardless of the HPC levels. It may be attributed to the mutual effect between the EC and acetate buffer, which improved the permeability of the film. In contrast, the release of drug in HCl solution was dependent on the HPC levels. Increasing the levels of HPC increased the effects of hydrogen ions on the polymer of HPC, which resulted in a lower viscosity and strength of the gel, forming the larger size of pores in polymer films, thus increasing the drug diffused from the coating film. Further findings in phosphate buffer showed a reduction in the drug release compared to that in other media, which was only sensitive to the osmolarity rather than the HPC level and pH of the buffer. Additionally, a mathematical theory was used to better explain and understand the experimentally measured different drug release patterns. In summary, the study revealed that the effects of the media overcompensated that of the drug solubility to some extent for controlled-release of the coating polymers, and the drug release mechanism in multiple media depend on EC and HPC rather than on HPC alone, which may have a potential to facilitate the optimization of ideally film-coated formulations.
Collapse
Affiliation(s)
- Lu Chen
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Guobao Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xiaoyang Chu
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunhong Gao
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yuli Wang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Wei Gong
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Zhiping Li
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yang Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Meiyan Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunsheng Gao
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
13
|
Casati F, Briatico-Vangosa F, Baldi F, Melocchi A, Maroni A, Gazzaniga A, Zema L. Assessment of hot-processability and performance of ethylcellulose-based materials for injection-molded prolonged-release systems: An investigational approach. Int J Pharm 2018; 548:400-407. [DOI: 10.1016/j.ijpharm.2018.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
14
|
Gårdebjer S, Larsson M, Gebäck T, Skepö M, Larsson A. An overview of the transport of liquid molecules through structured polymer films, barriers and composites - Experiments correlated to structure-based simulations. Adv Colloid Interface Sci 2018; 256:48-64. [PMID: 29804691 DOI: 10.1016/j.cis.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
Abstract
Films engineered to control the transport of liquids are widely used through society. Examples include barriers in packaging, wound care products, and controlled release coatings in pharmaceutics. When observed at the macroscopic scale such films commonly appear homogeneous, however, a closer look reveals a complex nano- and microstructure that together with the chemical properties of the different domains control the transport properties. In this review we compare and discuss macroscopic transport properties, measured using the straightforward, yet highly powerful technique "modified Ussing chambers", also denoted side-by-side diffusion cells, for a wide range of structured polymer films and composites. We also discuss and compare the macroscopic observations and conclusions on materials properties with that of lattice Boltzmann simulations of transport properties based on underlying material structure and chemistry. The survey of the field: (i) highlights the use and power of modified Ussing Chambers for determining liquid transport properties of polymer films, (ii) demonstrates the predictability in both directions between macroscopic observations of transport using modified Ussing chambers and structure-based simulations, and (iii) provides experimental and theoretical insights regarding the transport-determining properties of structured polymer films and composites.
Collapse
|
15
|
Controlling Indomethacin Release through Vapor-Phase Deposited Hydrogel Films by Adjusting the Cross-linker Density. Sci Rep 2018; 8:7134. [PMID: 29739950 PMCID: PMC5940858 DOI: 10.1038/s41598-018-24238-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/29/2018] [Indexed: 01/19/2023] Open
Abstract
Vapor-phase deposited polymer coatings are applied on thin indomethacin films to modify the drug release. Hydrogel-forming co-polymers of 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate were prepared directly on top of solution cast indomethacin thin films by initiated Chemical Vapor Deposition (iCVD). This technique allows for solvent-free processing under mild conditions, thus minimizing a potential impact on the pharmaceutical. The drug release behavior, among other properties, was evaluated for polymers of different compositions and at different temperatures. The data show that the release kinetics can be tuned by several orders of magnitude as the cross-linker fraction is varied in the polymer coating. While uncoated indomethacin films were fully released within an hour, polymer coatings showed gradual liberation over several hours to days. Additional insight is gained from evaluating the experimental dissolution data in the framework of diffusive transport. The results of this study show that the iCVD technique has some promises for pharmaceutical technology, potentially allowing for tailored release behavior also for other drug systems.
Collapse
|
16
|
Moore HA, Marucci M, Härdelin L, Hjärtstam J, Stading M, von Corswant C, Larsson A. New insights on the influence of manufacturing conditions and molecular weight on phase-separated films intended for controlled release. Int J Pharm 2018; 536:261-271. [PMID: 29157964 DOI: 10.1016/j.ijpharm.2017.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
The aim of this work was to investigate how manufacturing conditions influence phase-separated films of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) with different molecular weights of HPC. Two HPC grades, SSL and M, with weight average molecular weights (Mw) of 30×103g/mol and 365×103g/mol, respectively, were combined with EC 10 cps (70:30w/w EC/HPC) and spray-coated from ethanol solutions onto a rotating drum under well-controlled process conditions. Generally, a low spray rate resulted in a more rapid film drying process and, consequently, in smaller HPC-rich domains in the phase-separated film structure. For EC/HPC films with the low Mw HPC (SSL) the most rapid drying process resulted in a shift from a HPC-discontinuous to a partly bicontinuous structure and an increase in the permeability for water. In contrast, films containing the high Mw HPC (M) all showed bicontinuous structures, which resulted in overall higher water permeabilities and polymer release compared to the low Mw films. Interestingly, a maximum in permeability was observed for the high Mw films at intermediate spray rates. Below this spray rate the permeability decreased due to a lower amount of polymer released and at higher spray rates, the permeability decreased due to a loss of pore connectivity (or increased tortuosity). To conclude, this study shows that different Mw systems of EC/HPC can respond differently to variations in manufacturing conditions.
Collapse
Affiliation(s)
- Helene Andersson Moore
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden; SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mariagrazia Marucci
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; AstraZeneca R&D Gothenburg, SE-431 83 Mölndal, Sweden
| | - Linda Härdelin
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden
| | - Johan Hjärtstam
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; AstraZeneca R&D Gothenburg, SE-431 83 Mölndal, Sweden
| | - Mats Stading
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden; SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Christian von Corswant
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; AstraZeneca R&D Gothenburg, SE-431 83 Mölndal, Sweden
| | - Anette Larsson
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
17
|
Markl D, Strobel A, Schlossnikl R, Bøtker J, Bawuah P, Ridgway C, Rantanen J, Rades T, Gane P, Peiponen KE, Zeitler JA. Characterisation of pore structures of pharmaceutical tablets: A review. Int J Pharm 2018; 538:188-214. [PMID: 29341913 DOI: 10.1016/j.ijpharm.2018.01.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Traditionally, the development of a new solid dosage form is formulation-driven and less focus is put on the design of a specific microstructure for the drug delivery system. However, the compaction process particularly impacts the microstructure, or more precisely, the pore architecture in a pharmaceutical tablet. Besides the formulation, the pore structure is a major contributor to the overall performance of oral solid dosage forms as it directly affects the liquid uptake rate, which is the very first step of the dissolution process. In future, additive manufacturing is a potential game changer to design the inner structures and realise a tailor-made pore structure. In pharmaceutical development the pore structure is most commonly only described by the total porosity of the tablet matrix. Yet it is of great importance to consider other parameters to fully resolve the interplay between microstructure and dosage form performance. Specifically, tortuosity, connectivity, as well as pore shape, size and orientation all impact the flow paths and play an important role in describing the fluid flow in a pharmaceutical tablet. This review presents the key properties of the pore structures in solid dosage forms and it discusses how to measure these properties. In particular, the principles, advantages and limitations of helium pycnometry, mercury porosimetry, terahertz time-domain spectroscopy, nuclear magnetic resonance and X-ray computed microtomography are discussed.
Collapse
Affiliation(s)
- Daniel Markl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK.
| | - Alexa Strobel
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - Rüdiger Schlossnikl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - Johan Bøtker
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Prince Bawuah
- School of Pharmacy, Promis Centre, University of Eastern Finland, P.O. Box 1617, FI-70211 Kuopio, Finland
| | - Cathy Ridgway
- Omya International AG, CH-4665 Oftringen, Switzerland
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Patrick Gane
- Omya International AG, CH-4665 Oftringen, Switzerland; School of Chemical Technology, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Helsinki, Finland
| | - Kai-Erik Peiponen
- Institute of Photonics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| |
Collapse
|
18
|
BARMAN S, BOLIN D. A three-dimensional statistical model for imaged microstructures of porous polymer films. J Microsc 2017; 269:247-258. [DOI: 10.1111/jmi.12623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/09/2017] [Indexed: 11/27/2022]
Affiliation(s)
- S. BARMAN
- Department of Mathematical Sciences; Chalmers University of Technology; Gothenburg Sweden
- Department of Mathematical Sciences; University of Gothenburg; Gothenburg Sweden
| | - D. BOLIN
- Department of Mathematical Sciences; Chalmers University of Technology; Gothenburg Sweden
- Department of Mathematical Sciences; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
19
|
Svagan AJ, Benjamins JW, Al-Ansari Z, Shalom DB, Müllertz A, Wågberg L, Löbmann K. Solid cellulose nanofiber based foams – Towards facile design of sustained drug delivery systems. J Control Release 2016; 244:74-82. [DOI: 10.1016/j.jconrel.2016.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/18/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
|
20
|
Importance of air bubbles in the core of coated pellets: Synchrotron X-ray microtomography allows for new insights. J Control Release 2016; 237:125-37. [PMID: 27374626 DOI: 10.1016/j.jconrel.2016.06.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022]
Abstract
High-resolution X-ray microtomography was used to get deeper insight into the underlying mass transport mechanisms controlling drug release from coated pellets. Sugar starter cores were layered with propranolol HCl and subsequently coated with Kollicoat SR, plasticized with 10% TEC. Importantly, synchrotron X-ray computed microtomography (SR-μCT) allowed direct, non-invasive monitoring of crack formation in the film coatings upon exposure to the release medium. Propranolol HCl, as well as very small sugar particles from the pellets' core, were expulsed through these cracks into the surrounding bulk fluid. Interestingly, SR-μCT also revealed the existence of numerous tiny, air-filled pores (varying in size and shape) in the pellet cores before exposure to the release medium. Upon water penetration into the system, the contents of the pellet cores became semi-solid/liquid. Consequently, the air-pockets became mobile and fused together. They steadily increased in size (and decreased in number). Importantly, "big" air bubbles were often located in close vicinity of a crack within the film coating. Thus, they play a potentially crucial role for the control of drug release from coated pellets.
Collapse
|
21
|
Andersson H, Häbel H, Olsson A, Sandhagen S, von Corswant C, Hjärtstam J, Persson M, Stading M, Larsson A. The influence of the molecular weight of the water-soluble polymer on phase-separated films for controlled release. Int J Pharm 2016; 511:223-235. [PMID: 27349793 DOI: 10.1016/j.ijpharm.2016.06.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022]
Abstract
Hydroxypropyl cellulose (HPC) and ethyl cellulose (EC) can be used for extended release coatings, where the water-soluble HPC may act as a pore former. The aim was to investigate the effect of the molecular weight of HPC on the microstructure and mass transport in phase-separated freestanding EC/HPC films with 30% w/w HPC. Four different HPC grades were used, with weight averaged molecular weights (Mw) of 30.0 (SSL), 55.0 (SL), 83.5 (L) and 365 (M) kg/mol. Results showed that the phase-separated structure changed from HPC-discontinuous to bicontinuous with increasing Mw of HPC. The film with the lowest Mw HPC (SSL) had unconnected oval-shaped HPC-rich domains, leaked almost no HPC and had the lowest water permeability. The remaining higher Mw films had connected complex-shaped pores, which resulted in higher permeabilities. The highest Mw film (M) had the smallest pores and very slow HPC leakage, which led to a slow increase in permeability. Films with grade L and SL released most of their HPC, yet the permeability of the L film was three times higher due to greater pore connectivity. It was concluded that the phase-separated microstructure, the level of pore percolation and the leakage rate of HPC will be affected by the choice of HPC Mw grade used in the film and this will in turn have strong impact on the film permeability.
Collapse
Affiliation(s)
- Helene Andersson
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden; SuMo BIOMATERIALS, VINN Excellent Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Henrike Häbel
- SuMo BIOMATERIALS, VINN Excellent Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Chalmers University of Technology, Department of Mathematical Statistics, SE-412 96 Gothenburg, Sweden
| | - Anna Olsson
- SuMo BIOMATERIALS, VINN Excellent Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Chalmers University of Technology, Department of Physics, SE-412 96 Gothenburg, Sweden
| | - Sofie Sandhagen
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden
| | | | | | - Michael Persson
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden; Akzo Nobel Pulp and Performance Chemicals AB, 445 80 Bohus, Sweden
| | - Mats Stading
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden
| | - Anette Larsson
- SuMo BIOMATERIALS, VINN Excellent Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
22
|
Dong Y, Mosquera-Giraldo LI, Troutman J, Skogstad B, Taylor LS, Edgar KJ. Amphiphilic hydroxyalkyl cellulose derivatives for amorphous solid dispersion prepared by olefin cross-metathesis. Polym Chem 2016. [DOI: 10.1039/c6py00960c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Olefin CM followed by transfer hydrogenation is an efficient method for synthesizing amphiphilic hydroxypropyl cellulose derivatives.
Collapse
Affiliation(s)
- Yifan Dong
- Department of Sustainable Biomaterials
- Virginia Tech
- Blacksburg
- USA
- Department of Chemistry
| | | | - Jacob Troutman
- Department of Chemistry and Physics
- Wingate University
- Wingate
- USA
| | | | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
- Purdue University
- West Lafayette
- USA
| | - Kevin J. Edgar
- Department of Sustainable Biomaterials
- Virginia Tech
- Blacksburg
- USA
- Macromolecules Innovation Institute
| |
Collapse
|