1
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Randárová E, Kudláčová J, Etrych T. HPMA copolymer-antibody constructs in neoplastic treatment: an overview of therapeutics, targeted diagnostics, and drug-free systems. J Control Release 2020; 325:304-322. [DOI: 10.1016/j.jconrel.2020.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
|
3
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Li L, Wang J, Li Y, Radford DC, Yang J, Kopeček J. Broadening and Enhancing Functions of Antibodies by Self-Assembling Multimerization at Cell Surface. ACS NANO 2019; 13:11422-11432. [PMID: 31553883 PMCID: PMC6812323 DOI: 10.1021/acsnano.9b04868] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Monoclonal antibody therapy has offered treatment benefits. Nonetheless, a lack of efficacy still exists, partially because monovalent binding of antibodies to specific receptors fails to translate into an active response. Here, we report a pretargeting-postassembly approach that exploits the selective Watson-Crick base pairing properties of oligonucleotides and multivalently tethers receptor-prebound antibodies to albumin at the cell surface. We demonstrate that this two-step self-assembling strategy allows sequential actions of receptor binding and clustering that broadens and strengthens the functions of antibodies. We show that anti-CD20 obinutuzumab (OBN) modified with one morpholino oligonucleotide (OBN-MORF1) maintains the feature of naked OBN antibody upon CD20 binding, and results in actin redistribution, homotypic adhesion, and lysosome-mediated cell death. Consecutive treatment with albumin grafted with multiple copies of a complementary morpholino oligonucleotide (HSA-(MORF2)x) hybridizes with surface-attached OBN-MORF1, manipulates CD20 clustering, and engages additional signals to induce calcium influx and caspase-related apoptosis. With the two types of different mechanisms collaborating in one system, the simple design exerted a notable survival extension of mice bearing disseminated B-cell lymphomas.
Collapse
Affiliation(s)
- Lian Li
- Department
of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled
Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jiawei Wang
- Department
of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled
Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yachao Li
- Department
of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled
Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, United States
| | - D. Christopher Radford
- Department
of Biomedical Engineering, University of
Utah, Salt Lake City, Utah 84112, United
States
| | - Jiyuan Yang
- Department
of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled
Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, United States
- E-mail:
| | - Jindřich Kopeček
- Department
of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled
Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, United States
- Department
of Biomedical Engineering, University of
Utah, Salt Lake City, Utah 84112, United
States
- E-mail:
| |
Collapse
|
5
|
Li L, Yang J, Wang J, Kopeček J. Drug-free macromolecular therapeutics exhibit amplified apoptosis in G2/M phase arrested cells. J Drug Target 2018; 27:566-572. [PMID: 30198798 DOI: 10.1080/1061186x.2018.1521414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-free macromolecular therapeutics (DFMT) have been recently developed to treat non-Hodgkin lymphoma (NHL). It is a consecutive delivery of two nanoconjugates: (1) bispecific engager that pretargets surface CD20, and (2) multivalent effector polymer that hybridises with CD20-bound engagers. Without the need of low molecular weight drug, the hybridisation of morpholino oligonucleotide containing DFMT at NHL cell surface triggers CD20 crosslinking and subsequent apoptosis. We have previously determined various factors that affect the efficacy of DFMT regarding the synthetic structures. Here, we show that DFMT-mediated apoptosis is also influenced by the state of cells. Compared with other cell cycle states, cells arrested at G2/M phase exhibit enhanced CD20 expression, and have more sustainable CD20 binding by DFMT, resulting in a higher degree of DFMT-mediated CD20 crosslinking. Moreover, the anti-apoptotic Bcl-2 protein was phosphorylated in G2/M phase, thereby increasing the cell susceptibility to DFMT. As a result, DFMT mediated augmented apoptosis in G2/M phase cells. When DFMT was combined with a polymer-docetaxel conjugate that triggered G2/M blockage, a combinatorial apoptotic effect was achieved to induce programmed cell death. Our findings suggest the co-delivery of DFMT and G2/M inhibiting drug combinations may present a therapeutic advantage in NHL treatment.
Collapse
Affiliation(s)
- Lian Li
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA
| | - Jiyuan Yang
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA
| | - Jiawei Wang
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA
| | - Jindřich Kopeček
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA.,b Department of Biomedical Engineering , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
6
|
Zhang L, Fang Y, Li L, Yang J, Radford DC, Kopeček J. Human Serum Albumin-Based Drug-Free Macromolecular Therapeutics: Apoptosis Induction by Coiled-Coil-Mediated Cross-Linking of CD20 Antigens on Lymphoma B Cell Surface. Macromol Biosci 2018; 18:e1800224. [PMID: 30259654 PMCID: PMC6392022 DOI: 10.1002/mabi.201800224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/10/2018] [Indexed: 01/25/2023]
Abstract
A therapeutic platform-drug-free macromolecular therapeutics (DFMT)-that induces apoptosis in B cells by cross-linking of CD20 receptors, without the need for low molecular weight cytotoxic drug, is developed. In this report, a DFMT system is synthesized and evaluated based on human serum albumin (HSA) and two complementary coiled-coil forming peptides, CCE and CCK. Fab' fragment of anti-CD20 monoclonal antibody rituximab is attached to CCE (Fab'-CCE); multiple grafts of CCK are conjugated to HSA (HSA-(CCK)7 ). The colocalization of both nanoconjugates at the surface of non-Hodgkin's lymphoma (NHL) Raji cells is demonstrated by confocal fluorescence microscopy. The colocalization leads to coiled-coil formation, CD20 cross-linking, and apoptosis induction. The apoptotic levels are evaluated by Annexin V, Caspase 3, and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. Selective surface binding of DFMT to CD20+ cells is validated in experiments on a coculture of CD20+ (Raji) and CD20-(DG-75) cells. It is found that DFMT can trigger calcium influx only in Raji cells, but not in DG-75 cells. A highly specific treatment for NHL and other B cell malignancies with considerable translational potential is presented by HSA-based DFMT system.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yixin Fang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
7
|
Yang J, Li L, Kopeček J. Biorecognition: A key to drug-free macromolecular therapeutics. Biomaterials 2018; 190-191:11-23. [PMID: 30391799 DOI: 10.1016/j.biomaterials.2018.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
This review highlights a new paradigm in macromolecular nanomedicine - drug-free macromolecular therapeutics (DFMT). The effectiveness of the new system is based on biorecognition events without the participation of low molecular weight drugs. Apoptosis of cells can be initiated by the biorecognition of complementary peptide/oligonucleotide motifs at the cell surface resulting in the crosslinking of slowly internalizing receptors. B-cell CD20 receptors and Non-Hodgkin lymphoma (NHL) were chosen as the first target. Exposing cells to a conjugate of one motif with a targeting ligand decorates the cells with this motif. Further exposure of decorated cells to a macromolecule (synthetic polymer or human serum albumin) containing multiple copies of the complementary motif as grafts results in receptor crosslinking and apoptosis induction in vitro and in vivo. The review focuses on recent developments and explores the mechanism of action of DFMT. The altered molecular signaling pathways demonstrated the great potential of DFMT to overcome rituximab resistance resulting from either down-regulation of CD20 or endocytosis and trogocytosis of rituximab/CD20 complexes. The suitability of this approach for the treatment of blood borne cancers is confirmed. In addition, the widespread applicability of DFMT as a new concept in macromolecular therapeutics for numerous diseases is exposed.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA.
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Li L, Yang J, Wang J, Kopeček J. Drug-Free Macromolecular Therapeutics Induce Apoptosis via Calcium Influx and Mitochondrial Signaling Pathway. Macromol Biosci 2017; 18. [PMID: 28805013 DOI: 10.1002/mabi.201700196] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/10/2017] [Indexed: 12/13/2022]
Abstract
Recently, an innovative paradigm has been proposed in macromolecular therapeutics for treatment of B-cell lymphomas that can specifically kill cancer cells without a drug. The design rationale of this drug-free macromolecular therapeutic (DFMT) system is crosslinking the cell surface receptor to initiate apoptosis. However, how the apoptosis signal is triggered after receptor hyper-crosslinking remains to be elucidated. Here, two pathways, calcium influx dependent pathway and mitochondrial signal pathway, are identified to play major roles in triggering the programmed cell death. With the first step pretargeting and second step multiple binding, receptor hyper-crosslinking is achieved in a highly specific, time-dependent manner and largely mediated by multivalence. As a consequence, extracellular calcium influx is triggered, which subsequently decreases the mitochondrial membrane potential and induces apoptosis. The mitochondrial depolarization also stems from the Bcl-2 inhibition mediated by DFMT, followed by the cytochrome c release that activates caspase signaling. With the participation of the two-pronged mechanism, a programmed apoptosis is induced in response to DFMT treatment. The current findings can offer important implications to optimize the anti-CD20 strategies to treat B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA.,Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
9
|
Zhang L, Fang Y, Yang J, Kopeček J. Drug-free macromolecular therapeutics: Impact of structure on induction of apoptosis in Raji B cells. J Control Release 2016; 263:139-150. [PMID: 28024916 DOI: 10.1016/j.jconrel.2016.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/31/2023]
Abstract
Recently, we developed a new paradigm in macromolecular therapeutics that avoids the use of low molecular weight drugs. The activity of the "drug-free macromolecular therapeutics" is based on the biorecognition of complementary motifs at cell surface resulting in receptor crosslinking and apoptosis induction. The system is composed of two nanoconjugates: (1) a single-stranded morpholino oligonucleotide (MORF1) attached to an anti-CD20 Fab' fragment (Fab'-MORF1); (2) multiple copies of complementary oligonucleotide MORF2 grafted to a linear polymer of N-(2-hydroxypropyl)methacrylamide (HPMA) - P-(MORF2)x. The two conjugates crosslink CD20 antigens via MORF1-MORF2 hybridization at the surface of CD20+ malignant B-cells and induce apoptosis. Preclinical studies in a murine model of human non-Hodgkin's lymphoma showed cancer cells eradication and long-term survivors. The aim of this study was to determine the relationship between the detailed structure of the nanoconjugates and apoptosis induction in Raji cells to allow system optimization. The factors studied include the length of the MORF sequence, the valence of P-(MORF2)x (varying x), molecular weight of P-(MORF2)x, incorporation of a miniPEG spacer between Fab' and MORF1 and between polymer backbone and pendant MORF2, and comparison of two Fab' fragments, one from 1F5 antibody (Fab'1F5), the other from Rituximab (Fab'RTX). The results of apoptosis induction in human Burkitt's B-cell non-Hodgkin's lymphoma (NHL) Raji cells as determined using three apoptotic assays (Annexin V, Caspase 3, and TUNEL) indicated that: a) An improvement of apoptotic activity was observed for a 28 base pair MORF sequence when compared to MORFs composed of 20 and 25 base pairs. The differences depended on type of assay, concentration and exposure schedule (consecutive vs. premixed). b) The higher the valence of P-(MORF2)x the higher the levels of apoptosis. c) Higher molecular weight of P-(MORF2)x induced higher levels of apoptosis. d) A miniPEG8 spacer was effective in enhancing apoptotic levels in contrast to a miniPEG2 spacer. e) There was not a statistically significant difference when comparing Fab'1F5-MORF1 with Fab'RTX-MORF1.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Yixin Fang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|