2
|
Bicker J, Alves G, Falcão A, Fortuna A. Timing in drug absorption and disposition: The past, present, and future of chronopharmacokinetics. Br J Pharmacol 2020; 177:2215-2239. [PMID: 32056195 DOI: 10.1111/bph.15017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
The importance of drug dosing time in pharmacokinetics, pharmacodynamics, and toxicity is receiving increasing attention from the scientific community. In spite of mounting evidence that circadian oscillations affect drug absorption, distribution, metabolism, and excretion (ADME), there remain many unanswered questions in this field and, occasionally, conflicting experimental results. Such data arise not only from translational difficulties caused by interspecies differences but also from variability in study design and a lack of understanding of how the circadian clock affects physiological factors that strongly influence ADME, namely, the expression and activity of drug transporters. Hence, the main goal of this review is to provide an updated analysis of the role of the circadian rhythm in drug absorption, distribution across blood-tissue barriers, metabolism in hepatic and extra-hepatic tissues, and hepatobiliary and renal excretion. It is expected that the research suggestions proposed here will contribute to a tissue-targeted and time-targeted pharmacotherapy.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Amjadi M, Sheykhansari S, Nelson BJ, Sitti M. Recent Advances in Wearable Transdermal Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704530. [PMID: 29315905 DOI: 10.1002/adma.201704530] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Indexed: 05/19/2023]
Abstract
Wearable transdermal delivery systems have recently received tremendous attention due to their noninvasive, convenient, and prolonged administration of pharmacological agents. Here, the material prospects, fabrication processes, and drug-release mechanisms of these types of therapeutic delivery systems are critically reviewed. The latest progress in the development of multifunctional wearable devices capable of closed-loop sensation and drug delivery is also discussed. This survey reveals that wearable transdermal delivery has already made an impact in diverse healthcare applications, while several grand challenges remain.
Collapse
Affiliation(s)
- Morteza Amjadi
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Sahar Sheykhansari
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Bradley J Nelson
- Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| |
Collapse
|
6
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|
7
|
Wang Y, Zhu L, Wang Y, Li L, Lu Y, Shen L, Zhang LW. Ultrasensitive GSH-Responsive Ditelluride-Containing Poly(ether-urethane) Nanoparticles for Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35106-35113. [PMID: 27966861 DOI: 10.1021/acsami.6b14639] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel ultrasensitive redox-responsive system for the controlled release of doxorubicin (DOX) was fabricated by ditelluride-containing poly(ether-urethane) copolymers. In this study, the ditelluride group was introduced for the first time into water-soluble copolymers used for drug delivery. Doxorubicin loaded in the copolymer nanoparticles can be released in a controlled manner through the cleavage of ditelluride bonds by glutathione (GSH). The ditelluride-containing poly(ether-urethane) nanoparticles were demonstrated to be biocompatible as drug delivery vehicles, therefore opening a new avenue in drug delivery systems for chemotherapy. Furthermore, the in vitro and in vivo studies revealed that the DOX-loaded ditelluride-containing poly(ether-urethane) nanoparticles exhibited efficient uptake in cancer cells, specific tumor targeting and antitumor activity, indicating their excellent potential as novel nanocarriers for drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Yangyun Wang
- School for Radiological & Interdisciplinary sciences (RAD-X) and School of Radiation Medicine and Protection, Soochow University , Suzhou, 215123 Jiangsu, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123 Jiangsu, China
| | - Lina Zhu
- The Second Affiliated Hospital of Soochow University , 1055 Sanxiang Road, Suzhou, 215004 Jiangsu, China
| | - Yong Wang
- School for Radiological & Interdisciplinary sciences (RAD-X) and School of Radiation Medicine and Protection, Soochow University , Suzhou, 215123 Jiangsu, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123 Jiangsu, China
| | - Liubing Li
- The Second Affiliated Hospital of Soochow University , 1055 Sanxiang Road, Suzhou, 215004 Jiangsu, China
| | - Yufeng Lu
- The Second Affiliated Hospital of Soochow University , 1055 Sanxiang Road, Suzhou, 215004 Jiangsu, China
| | - Liqin Shen
- The Second Affiliated Hospital of Soochow University , 1055 Sanxiang Road, Suzhou, 215004 Jiangsu, China
| | - Leshuai W Zhang
- School for Radiological & Interdisciplinary sciences (RAD-X) and School of Radiation Medicine and Protection, Soochow University , Suzhou, 215123 Jiangsu, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123 Jiangsu, China
| |
Collapse
|