1
|
Jiang MC, Fang ZL, Zhang JY, Ma W, Liao LF, Yu CY, Wei H. A fully biodegradable spherical nucleic acid nanoplatform for self-codelivery of doxorubicin and miR122 for innate and adaptive immunity activation. Acta Biomater 2024; 180:407-422. [PMID: 38614414 DOI: 10.1016/j.actbio.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Facile construction of a fully biodegradable spherical nucleic acid (SNA) nanoplatform is highly desirable for clinical translations but remains rarely explored. We developed herein the first polycarbonate-based biodegradable SNA nanoplatform for self-codelivery of a chemotherapeutic drug, doxorubicin (DOX), and a human liver-specific miR122 for synergistic chemo-gene therapy of hepatocellular carcinoma (HCC). Ring-opening polymerization (ROP) of a carbonate monomer leads to a well-defined polycarbonate backbone for subsequent DOX conjugation to the pendant side chains via acidic pH-cleavage Schiff base links and miR122 incorporation to the chain termini via click coupling, affording an amphiphilic polycarbonate-DOX-miR122 conjugate, PBis-Mpa30-DOX-miR122 that can self-assemble into stabilized SNA. Besides the desired biodegradability, another notable merit of this nanoplatform is the use of miR122 not only for gene therapy but also for enhanced innate immune response. Together with the ICD-triggering effect of DOX, PBis-Mpa30-DOX-miR122 SNA-mediated DOX and miR122 codelivery leads to synergistic immunogenicity enhancement, resulting in tumor growth inhibition value (TGI) of 98.1 % significantly higher than those of the groups treated with only drug or gene in a Hepa1-6-tumor-bearing mice model. Overall, this study develops a useful strategy toward biodegradable SNA construction, and presents a drug and gene-based self-codelivery SNA with synergistic immunogenicity enhancement for efficient HCC therapy. STATEMENT OF SIGNIFICANCE: Facile construction of a fully biodegradable SNA nanoplatform is useful for in vivo applications but remains relatively unexplored likely due to the synthetic challenge. We report herein construction of a polycarbonate-based SNA nanoplatform for co-delivering a chemotherapeutic drug, DOX, and a human liver-specific miR-122 for synergistic HCC treatment. In addition to the desired biodegradability properties, this SNA nanoplatform integrates DOX-triggered ICD and miR-122-enhanced innate immunity for simultaneously activating adaptive and innate immunities, which leads to potent antitumor efficiency with a TGI value of 98.1 % in a Hepa1-6-tumor-bearing mice model.
Collapse
Affiliation(s)
- Ming-Chao Jiang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhou-Long Fang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jin-Yan Zhang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Wei Ma
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Luan-Feng Liao
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Affiliated Hospital of Hunan Academy of Chinese Medicine Hunan, Academy of Chinese Medicine, Changsha 410013, China; Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Bansal KK, Ali AA, Rahman M, Sjöholm E, Wilén CE, Rosenholm JM. Evaluation of solubilizing potential of functional poly(jasmine lactone) micelles for hydrophobic drugs: A comparison with commercially available polymers. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Kuldeep Kumar Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Aliaa A. Ali
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mijanur Rahman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Carl-Eric Wilén
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
3
|
Al-Natour MA, Yousif MD, Cavanagh R, Abouselo A, Apebende EA, Ghaemmaghami A, Kim DH, Aylott JW, Taresco V, Chauhan VM, Alexander C. Facile Dye-Initiated Polymerization of Lactide-Glycolide Generates Highly Fluorescent Poly(lactic- co-glycolic Acid) for Enhanced Characterization of Cellular Delivery. ACS Macro Lett 2020; 9:431-437. [PMID: 35648548 DOI: 10.1021/acsmacrolett.9b01014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a versatile synthetic copolymer that is widely used in pharmaceutical applications. This is because it is well-tolerated in the body, and copolymers of varying physicochemical properties are readily available via ring-opening polymerization. However, native PLGA polymers are hard to track as drug delivery carriers when delivered to subcellular spaces, due to the absence of an easily accessible "handle" for fluorescent labeling. Here we show a one-step, scalable, solvent-free, synthetic route to fluorescent blue (2-aminoanthracene), green (5-aminofluorescein), and red (rhodamine-6G) PLGA, in which every polymer chain in the sample is fluorescently labeled. The utility of initiator-labeled PLGA was demonstrated through the preparation of nanoparticles, capable of therapeutic subcellular delivery to T-helper-precursor-1 (THP-1) macrophages, a model cell line for determining in vitro biocompatibility and particle uptake. Super resolution confocal fluorescence microscopy imaging showed that dye-initiated PLGA nanoparticles were internalized to punctate regions and retained bright fluorescence over at least 24 h. In comparison, PLGA nanoparticles with 5-aminofluorescein introduced by conventional nanoprecipitation/encapsulation showed diffuse and much lower fluorescence intensity in the same cells and over the same time periods. The utility of this approach for in vitro drug delivery experiments was demonstrated through the concurrent imaging of the fluorescent drug doxorubicin (λex = 480 nm, λem = 590 nm) with carrier 5-aminofluorescein PLGA, also in THP-1 cells, in which the intracellular locations of the drug and the polymer could be clearly visualized. Finally, the dye-labeled particles were evaluated in an in vivo model, via delivery to the nematode Caenorhabditis elegans, with bright fluorescence again apparent in the internal tract after 3 h. The results presented in this manuscript highlight the ease of synthesis of highly fluorescent PLGA, which could be used to augment tracking of future therapeutics and accelerate in vitro and in vivo characterization of delivery systems prior to clinical translation.
Collapse
Affiliation(s)
- Mohammad A. Al-Natour
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
- The Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Mohamed D. Yousif
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Robert Cavanagh
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Amjad Abouselo
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Edward A. Apebende
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Amir Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Dong-Hyun Kim
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Jonathan W. Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Vincenzo Taresco
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Veeren M. Chauhan
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Cameron Alexander
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
4
|
Shan W, Cui Y, Liu M, Wu L, Xiang Y, Guo Q, Zhang Z, Huang Y. Systematic evaluation of the toxicity and biodistribution of virus mimicking mucus-penetrating DLPC-NPs as oral drug delivery system. Int J Pharm 2017; 530:89-98. [DOI: 10.1016/j.ijpharm.2017.07.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
|