1
|
Wang X, Liu F, Wang T, He Y, Guo Y. Applications of hydrogels in tissue-engineered repairing of temporomandibular joint diseases. Biomater Sci 2024; 12:2579-2598. [PMID: 38679944 DOI: 10.1039/d3bm01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Barry F, Chai F, Chijcheapaza-Flores H, Garcia-Fernandez MJ, Blanchemain N, Nicot R. Comparison of chemical-induced temporomandibular osteoarthritis rat models (monosodium iodoacetate versus collagenase type II) for the study of prolonged drug delivery systems. PLoS One 2023; 18:e0281135. [PMID: 36719872 PMCID: PMC9888674 DOI: 10.1371/journal.pone.0281135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To compare two agents that can induce a rat model of temporomandibular joint osteoarthritis (TMJOA) by chemical induction: monosodium iodoacetate (MIA) and collagenase type 2 (Col-2). We wished to ascertain the best agent for assessing drug-delivery systems (DDSs). METHOD Male Wistar rats underwent intra-articular injection with MIA or Col-2. They were manipulated for 30 days. The head withdrawal threshold (HWT), immunohistological assessment, and positron emission tomography (PET) were used to evaluate the relevance of our models. RESULTS For both the MIA and Col-2 groups, pain persisted for 30 days after injection. Change in the HWT showed that Col-2 elicited a strong action initially that decreased progressively. MIA had a constant action upon pain behavior. Histology of TMJ tissue from both groups showed progressive degradation of TMJ components. CONCLUSIONS MIA and Col-2 induced orofacial pain by their local chemical action on TMJs. However, based on a prolonged and greater sustained effect on the pain threshold, persistent histological changes, and imaging results, MIA appeared to be more suitable for creation of a rat model of TMJOA for the study of DDSs.
Collapse
Affiliation(s)
- Florent Barry
- INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, University of Lille, Lille, France
- * E-mail:
| | - Feng Chai
- INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, University of Lille, Lille, France
| | - Henry Chijcheapaza-Flores
- INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, University of Lille, Lille, France
| | - Maria José Garcia-Fernandez
- INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, University of Lille, Lille, France
| | - Nicolas Blanchemain
- INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, University of Lille, Lille, France
| | - Romain Nicot
- INSERM, CHU Lille, Department of Oral and Maxillofacial Surgery, University of Lille, Lille, France
| |
Collapse
|
3
|
Yuan W, Wu Y, Huang M, Zhou X, Liu J, Yi Y, Wang J, Liu J. A new frontier in temporomandibular joint osteoarthritis treatment: Exosome-based therapeutic strategy. Front Bioeng Biotechnol 2022; 10:1074536. [PMID: 36507254 PMCID: PMC9732036 DOI: 10.3389/fbioe.2022.1074536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a debilitating degenerative disease with high incidence, deteriorating quality of patient life. Currently, due to ambiguous etiology, the traditional clinical strategies of TMJOA emphasize on symptomatic treatments such as pain relief and inflammation alleviation, which are unable to halt or reverse the destruction of cartilage or subchondral bone. A number of studies have suggested the potential application prospect of mesenchymal stem cells (MSCs)-based therapy in TMJOA and other cartilage injury. Worthy of note, exosomes are increasingly being considered the principal efficacious agent of MSC secretions for TMJOA management. The extensive study of exosomes (derived from MSCs, synoviocytes, chondrocytes or adipose tissue et al.) on arthritis recently, has indicated exosomes and their specific miRNA components to be potential therapeutic agents for TMJOA. In this review, we aim to systematically summarize therapeutic properties and underlying mechanisms of MSCs and exosomes from different sources in TMJOA, also analyze and discuss the approaches to optimization, challenges, and prospects of exosome-based therapeutic strategy.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yange Wu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xueman Zhou
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yating Yi
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| | - Jin Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| |
Collapse
|
4
|
Huang X, Pan X, Xiong X, Zhao Z, Cen X. Drug delivery systems for treatment of temporomandibular joint osteoarthritis. Front Pharmacol 2022; 13:1054703. [DOI: 10.3389/fphar.2022.1054703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
The number of people suffering from temporomandibular joint osteoarthritis (TMJOA) has been increasing. TMJOA cause joint noise, pain on TMJ and/or masticatory muscles, and restricted mandibular movement, which disturb eating, laughing and conversation, and impose serious lifestyle impediments. Chondrocyte apoptosis, extracellular matrix degradation, synovitis, and subchondral bone remodeling are the main pathological features of TMJOA. Various drug delivery systems are developed to controlled release at specific activation sites with high bioactivity and inhibit rapid dilution to enable long-term therapeutic response, which present great potential for the treatment of TMJOA. This review focuses on recently developed drug delivery systems by different administration in the TMJOA treatment, and summarizes their effects, duration, safety, and limitations, which would pave the way for development of TMJOA therapy.
Collapse
|
5
|
Topical Administration of 15-Deoxy- Δ 12,14-Prostaglandin J 2 Using a Nonionic Cream: Effect on UVB-Induced Skin Oxidative, Inflammatory, and Histopathological Modifications in Mice. Mediators Inflamm 2021; 2021:9330596. [PMID: 34764817 PMCID: PMC8577928 DOI: 10.1155/2021/9330596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022] Open
Abstract
UVB radiation is certainly one of the most important environmental threats to which we are subjected to. This fact highlights the crucial protective role of the skin. However, the skin itself may not be capable of protecting against UVB depending on irradiation intensity and time of exposition. Sun blockers are used to protect our skin, but they fail to fully protect it against oxidative and inflammatory injuries initiated by UVB. To solve this issue, topical administration of active molecules is an option. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an arachidonic acid-derived lipid with proresolution and anti-inflammatory actions. However, as far as we are aware, there is no evidence of its therapeutic use in a topical formulation to treat the deleterious events initiated by UVB, which was the aim of the present study. We used a nonionic cream to vehiculate 15d-PGJ2 (30, 90, and 300 ng/mouse) (TFcPGJ2) in the skin of hairless mice. UVB increased skin edema, myeloperoxidase activity, metalloproteinase-9 activity, lipid peroxidation, superoxide anion production, gp91phox and COX-2 mRNA expression, cytokine production, sunburn and mast cells, thickening of the epidermis, and collagen degradation. UVB also diminished skin ability to reduce iron and scavenge free radicals, reduced glutathione (GSH), sulfhydryl proteins, and catalase activity. TFcPGJ2 inhibited all these pathological alterations in the skin caused by UVB. No activity was observed with the unloaded topical formulation. The protective outcome of TFcPGJ2 indicates it is a promising therapeutic approach against cutaneous inflammatory and oxidative pathological alterations.
Collapse
|
6
|
Systematic review of studies on drug-delivery systems for management of temporomandibular-joint osteoarthritis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2021; 123:e336-e341. [PMID: 34400376 DOI: 10.1016/j.jormas.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Temporomandibular-joint osteoarthritis (TMJOA) management is a major challenge. Minimally invasive therapies (based mainly on injections) have been developed to increase local efficacy and limit adverse systemic effects. However, the requirement for repeat injections due to a short duration of action and expensive healthcare costs have pushed researchers to develop, via tissue engineering, drug-delivery systems (DDSs). In this literature systematic review, we aim to provide an overview of studies that tested DDSs on a TMJOA model. MATERIAL AND METHODS We searched on PubMed for articles published from November 1965 to March 2021 on DDSs using a TMJOA model. We highlighted the different DDSs and the active molecule employed. Route of drug administration, model type, test duration, and efficacy duration were assessed. To evaluate the quality of each study, a protocol bias was tested using QUADAS-2™. RESULTS Of the 10 studies that were full text-screened, four used a poly(lactic-co-glycolic acid)-based delivery system. The other DDSs employed chitosan-based hydrogels, microneedles patches, nanostructured lipid carriers, or poloxamer micelles. Hyaluronic acid, nonsteroidal anti-inflammatory drugs, and analgesics were used as active molecules in five studies. The main way to administer DDSs was intra-articular injection and the most used model was the rat. DISCUSSION Various DDSs and active molecules have been studied on a TMJOA model that could aid TMJOA management. Further works using longer test durations are necessary to validate these advances.
Collapse
|
7
|
Moniz T, Costa Lima SA, Reis S. Marine polymeric microneedles for transdermal drug delivery. Carbohydr Polym 2021; 266:118098. [PMID: 34044917 DOI: 10.1016/j.carbpol.2021.118098] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Transdermal drug delivery is considered one of the most attractive routes for administration of pharmaceutic and cosmetic active ingredients due to the numerous advantages, especially over oral and intravenous methodologies. However, some limitations still exist mainly regarding the need to improve the drugs permeation across the skin. For this, several strategies have been described, considering the application of chemical permeation enhancers, drugs' nanoformulations and physical methods. Of these, microneedles have been proposed in the last years as promising strategies to enhance transdermal drug delivery. In this review, different types of microneedles are described, and the most commonly used methods of fabrication systematized, as well as the materials typically used and their main therapeutical applications. A special attention is paid to polymeric microneedles, particularly those made from sustainable marine polysaccharides like chitosan, alginate and hyaluronic acid. The applications of marine based polymeric microneedle devices for transdermal drug delivery are examined in detail and the perspectives of translation from the clinical trials to the market demonstrated.
Collapse
Affiliation(s)
- Tânia Moniz
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Abdalla HB, Napimoga MH, Macedo CG, Bonfante R, De Araujo D, de Mello NF, Carvalho LB, Fraceto LF, Clemente-Napimoga JT. Poloxamer micellar system for intra-articular injection of 15-deoxy-Δ12,14-prostaglandin J2 with improved bioavailability and anti-inflammatory properties in the temporomandibular joint of rats. Int J Pharm 2020; 583:119383. [DOI: 10.1016/j.ijpharm.2020.119383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
|
9
|
Expression of Dickkopf-related Protein 1 in Patients with Temporomandibular Osteoarthritis after Treatment with Hyaluronic Acid. Curr Med Sci 2020; 40:574-579. [DOI: 10.1007/s11596-020-2215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/10/2019] [Indexed: 10/23/2022]
|
10
|
Singh P, Carrier A, Chen Y, Lin S, Wang J, Cui S, Zhang X. Polymeric microneedles for controlled transdermal drug delivery. J Control Release 2019; 315:97-113. [DOI: 10.1016/j.jconrel.2019.10.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/03/2023]
|
11
|
Abdalla HB, Jain AK, Napimoga MH, Clemente-Napimoga JT, Gill HS. Microneedles Coated with Tramadol Exhibit Antinociceptive Effect in a Rat Model of Temporomandibular Hypernociception. J Pharmacol Exp Ther 2019; 370:834-842. [PMID: 30872390 DOI: 10.1124/jpet.119.256750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
Coated microneedles have emerged as a promising drug delivery system for inflammatory pain treatment. We have previously shown that tramadol injection into the rat temporomandibular joint (TMJ) induces an antinociceptive and anti-inflammatory effect. In this study, microneedles coated with tramadol were investigated as a platform to treat TMJ pain. Male Wistar rats were administered tramadol using an intra-TMJ injection or with microneedles coated with tramadol, followed by 1.5% formalin nociceptive challenge administered 15 minutes later. The nociceptive behavior of rats was evaluated, and their periarticular tissues were removed after euthanasia for analysis. The duration of antinociceptive effect was determined by performing the formalin challenge at different time points extending up to 6 days post tramadol administration. Microneedles coated with tramadol produced an antinociceptive effect similar to injection of tramadol into the rat TMJ. Surprisingly, tramadol delivery using coated microneedles produced a more durable antinociceptive effect lasting as much as 2 days post tramadol delivery as compared with an antinociceptive effect lasting under 2 hours from intra-TMJ injection of tramadol. The proinflammatory cytokines tumor necrosis factor-α and interleukin-1β (IL-1β) were found to be reduced, whereas the anti-inflammatory cytokine IL-10 was found to be elevated in tramadol-treated groups. In conclusion, microneedles coated with tramadol can offer a therapeutic option for pain control of inflammatory disorders in the TMJ.
Collapse
Affiliation(s)
- Henrique Ballassini Abdalla
- Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil (H.B.A.); Department of Chemical Engineering, Texas Tech University, Lubbock, Texas (A.K.J., H.S.G.); and Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil (M.H.N., J.T.C.-N.)
| | - Amit K Jain
- Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil (H.B.A.); Department of Chemical Engineering, Texas Tech University, Lubbock, Texas (A.K.J., H.S.G.); and Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil (M.H.N., J.T.C.-N.)
| | - Marcelo Henrique Napimoga
- Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil (H.B.A.); Department of Chemical Engineering, Texas Tech University, Lubbock, Texas (A.K.J., H.S.G.); and Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil (M.H.N., J.T.C.-N.)
| | - Juliana Trindade Clemente-Napimoga
- Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil (H.B.A.); Department of Chemical Engineering, Texas Tech University, Lubbock, Texas (A.K.J., H.S.G.); and Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil (M.H.N., J.T.C.-N.)
| | - Harvinder Singh Gill
- Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil (H.B.A.); Department of Chemical Engineering, Texas Tech University, Lubbock, Texas (A.K.J., H.S.G.); and Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Campinas, São Paulo, Brazil (M.H.N., J.T.C.-N.)
| |
Collapse
|
12
|
Petrilli R, Lopez RFV. Physical methods for topical skin drug delivery: concepts and applications. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Metallic crown-induced occlusal trauma as a protocol to evaluate inflammatory response in temporomandibular joint and periodontal tissues of rats. Clin Oral Investig 2018; 23:1905-1912. [DOI: 10.1007/s00784-018-2639-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
|
14
|
Ruiz-Miyazawa KW, Staurengo-Ferrari L, Pinho-Ribeiro FA, Fattori V, Zaninelli TH, Badaro-Garcia S, Borghi SM, Andrade KC, Clemente-Napimoga JT, Alves-Filho JC, Cunha TM, Fraceto LF, Cunha FQ, Napimoga MH, Casagrande R, Verri WA. 15d-PGJ 2-loaded nanocapsules ameliorate experimental gout arthritis by reducing pain and inflammation in a PPAR-gamma-sensitive manner in mice. Sci Rep 2018; 8:13979. [PMID: 30228306 PMCID: PMC6143605 DOI: 10.1038/s41598-018-32334-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Gout arthritis (GA) is a painful inflammatory disease in response to monosodium urate (MSU) crystals in the joints. 15deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a natural activator of PPAR-γ with analgesic, anti-inflammatory, and pro-resolution properties. Thus, we aimed to evaluate the effect and mechanisms of action of 15d-PGJ2 nanocapsules (NC) in the model of GA in mice, since a reduction of 33-fold in the dose of 15d-PGJ2 has been reported. Mice were treated with 15d-PGJ2-loaded NC, inert NC, free 15d-PGJ2 (without NC), or 15d-PGJ2-loaded NC+ GW9662, a PPAR-γ inhibitor. We show that 15d-PGJ2-loaded NC provided analgesic effect in a dose that the free 15d-PGJ2 failed to inhibiting pain and inflammation. Hence, 15d-PGJ2-loaded NC reduced MSU-induced IL-1β, TNF-α, IL-6, IL-17, and IL-33 release and oxidative stress. Also, 15d-PGJ2-loaded NC decreased the maturation of IL-1β in LPS-primed BMDM triggered by MSU. Further, 15d-PGJ2-loaded NC decreased the expression of the components of the inflammasome Nlrp3, Asc, and Pro-caspase-1, as consequence of inhibiting NF-κB activation. All effects were PPAR-γ-sensitive. Therefore, we demonstrated that 15d-PGJ2-loaded NC present analgesic and anti-inflammatory properties in a PPAR-γ-dependent manner inhibiting IL-1β release and NF-κB activation in GA. Concluding, 15d-PGJ2-loaded NC ameliorates MSU-induced GA in a PPAR-γ-sensitive manner.
Collapse
Affiliation(s)
- Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Tiago H Zaninelli
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Stephanie Badaro-Garcia
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Ketlem C Andrade
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Researcher Center, Campinas, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490, Ribeirão Preto, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo F Fraceto
- Department of Environmental Engineering, São Paulo State University, Sorocaba, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Researcher Center, Campinas, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil.
| |
Collapse
|
15
|
Richter-Johnson J, Kumar P, Choonara YE, du Toit LC, Pillay V. Therapeutic applications and pharmacoeconomics of microneedle technology. Expert Rev Pharmacoecon Outcomes Res 2018; 18:359-369. [PMID: 29889571 DOI: 10.1080/14737167.2018.1485100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Microneedle (MN) arrays contain a backing plate with multiple microscopic projections to puncture the skin and can be used to deliver drug in a minimally invasive way. Advantages of MNs are numerous including administration of large molecules, avoiding first-pass metabolism, ease of administration, lack of pain, site-specific drug targeting, and dose reduction due to increased absorption efficacy. The growth in the transdermal market has been fueled by an increasing number of chronic disease patients and a demand for easy and pain-free drug administration. AREAS COVERED This paper highlights the use of MNs as a drug delivery system and discusses their potential market impact from a cost perspective. A number of clinical trials have been conducted and are listed to illustrate the potential applications of MNs for therapeutic use. Furthermore, the cosmetic market has made use of the MN technology, indicating that MNs can be used safely, efficaciously, and on a commercial scale. Furthermore, the cost-effectiveness of MNs is discussed. EXPERT COMMENTARY For MNs to become commercially available for therapeutic use, a number of factors will need to be considered: safety, ease of use, manufacturing and storage, uptake, effectiveness, and regulatory requirements.
Collapse
Affiliation(s)
- Jolanda Richter-Johnson
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Pradeep Kumar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Yahya E Choonara
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Lisa C du Toit
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Viness Pillay
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|